Generating second-order figures from texture

The goal here is to use the MotionClouds library to generate figures with second-order contours, similar to those used in the P. Roelfsema's group.

Let's first initialize the notebook:

In [1]:
from __future__ import division, print_function
import numpy as np
np.set_printoptions(precision=6, suppress=True)
%matplotlib inline
import matplotlib.pyplot as plt
fig_width = 10
figsize = (fig_width, fig_width)

install and load the library

In [2]:
%pip install MotionClouds
Requirement already satisfied: MotionClouds in /usr/local/anaconda3/envs/sim/lib/python3.9/site-packages (20200212)
Requirement already satisfied: numpy in /usr/local/anaconda3/envs/sim/lib/python3.9/site-packages (from MotionClouds) (1.19.4)
Note: you may need to restart the kernel to use updated packages.

In particular, we just generate one frame:

In [3]:
import MotionClouds as mc
mc.N_frame = 1
fx, fy, ft = mc.get_grids(mc.N_X, mc.N_Y, mc.N_frame)
name = 'texture'
env = mc.envelope_gabor(fx, fy, ft, theta=np.pi/4, V_X=0., V_Y=0., B_V=0)
z = mc.rectif(mc.random_cloud(env))
image = z.reshape((mc.N_X, mc.N_Y))
In [4]:
import matplotlib.pyplot as plt
%matplotlib inline
fig, ax = plt.subplots(figsize=(10,10))
_ = ax.imshow(image, cmap=plt.gray())
No description has been provided for this image

define a crop function

The library has a representation of space that we may take advantage of:

In [5]:
fig, ax = plt.subplots(figsize=(10,10))
_ = ax.imshow(fx, cmap=plt.gray())
print(fx.min(), fx.max())
-0.5 0.49609375
No description has been provided for this image

We may easily define a central cropping mask:

In [6]:
rho = .2 
mask = (np.abs(fx) < rho) * (np.abs(fy) < rho)
fig, ax = plt.subplots(figsize=(10,10))
_ = ax.imshow(mask, cmap=plt.gray())
print(mask.min(), mask.max())
False True
No description has been provided for this image

From this we define a cropping function

In [7]:
def crop_and_merge(image, rho=.2, use_flip=True, use_fill=False, fill=.5):
    N_X, N_Y = image.shape
    fx, fy, ft = mc.get_grids(N_X, N_Y, 1)

    image_fig = image.copy()
    if use_flip: image_fig = np.fliplr(image_fig)
    image_fig = np.roll(image_fig, N_X//4 + int(N_X//2*np.random.rand()), axis=0 ) # roll over one axis
    image_fig = np.roll(image_fig, N_Y//4 + int(N_Y//2*np.random.rand()), axis=1 ) # roll over one axis    
    mask = (np.abs(fx[:, :, 0]) < rho) * (np.abs(fy[:, :, 0]) < rho)
    
    if use_fill:
        return image * (1-mask) + fill * mask
    else:
        return image * (1-mask) + image_fig * mask
        

usage

With a flip

In [8]:
fig, ax = plt.subplots(figsize=(10,10))
_ = ax.imshow(crop_and_merge(image, rho=.2, use_flip=True), cmap=plt.gray())
No description has been provided for this image

and without:

In [9]:
fig, ax = plt.subplots(figsize=(10,10))
_ = ax.imshow(crop_and_merge(image, rho=.2, use_flip=False), cmap=plt.gray())