Experimenting with transfer learning for visual categorization
Hi! I am Jean-Nicolas Jérémie and the goal of this notebook is to provide a framework to implement (and experiment with) transfer learning on deep convolutional neuronal network (DCNN). In a nutshell, transfer learning allows to re-use the knowlegde learned on a problem, such as categorizing images from a large dataset, and apply it to a different (yet related) problem, performing the categorization on a smaller dataset. It is a powerful method as it allows to implement complex task de novo quite rapidly (in a few hours) without having to retrain the millions of parameters of a DCNN (which takes days of computations). The basic hypothesis is that it suffices to re-train the last classification layers (the head) while keeping the first layers fixed. Here, these networks teach us also some interesting insights into how living systems may perform such categorization tasks.
Based on our previous work, we will start from a VGG16 network loaded from the torchvision.models
library and pre-trained on the Imagenet dataset wich allows to perform label detection on naturals images for $K = 1000$ labels. Our goal here will be to re-train the last fully-Connected layer of the network to perfom the same task but in a sub-set of $K = 10$ labels from the Imagenet dataset.
Moreover, we are going to evaluate different strategies of transfer learning:
- VGG General : Substitute the last layer of the pyTorch VGG16 network ($K = 1000$ labels) with a new layer build from a specific subset ($K = 10$ labels).
- VGG Linear : Add a new layer build from a specific subset ($K = 10$ labels) after the last Fully-Connected layer of the the pyTorch VGG16 network.
- VGG Gray : Same architecture as the VGG General network but trained with grayscale images.
- VGG Scale : Same architecture as the VGG General network but trained with images of different size.
- VGG Full : Same architecture as the VGG General network but all the layers are trained (otherwise I trained the last Fully-Connected layer).
In this notebook, I will use the pyTorch library for running the networks and the pandas library to collect and display the results. This notebook was done during a master 2 internship at the Neurosciences Institute of Timone (INT) under the supervision of Laurent Perrinet. It is curated in the following github repo.
Implementing transfer learning on Vgg16 using pyTorch¶
In our previous work, as the VGG16 network was first trained on the entire dataset of $K=1000$ labels, and in order to recover the categorization confidence predicted by the model according to the specific subset of classes ($K = 10$ labels) on which it is tested, the output softmax
mathematical function of the last layer of the network was slightly changed. By assuming that we know a priori that the image belongs to one (and only one) category from the sub-set the probabilities obtained would correspond to a confidence of categorization discriminating only the classes of interest and can be compared to a chance level of $1 /K$. This creates another network (which is not retrained) directly based on VGG:
- VGG Subset : Just consider the specific subset ($K = 10$ labels) from the last layer of the pyTorch VGG16 network ($K = 1000$ labels).
This notebook aims in addition to test this hypothesis. Our use case consists of measuring whether there are differences in the likelihood of these networks during an image recognition task on a sub-set of $1000$ classes of the ImageNet
library, with $K = 10$ (experiment 1). Additionally, we will implement some image transformations as up/down-sampling (experiment 2) or transforming to grayscale (experiment 3) to quantify their influence on the accuracy and computation time of each network.
Some useful links :
- https://jaketae.github.io/study/pytorch-vgg/
- https://www.kaggle.com/carloalbertobarbano/vgg16-transfer-learning-pytorch
- https://www.kaggle.com/paultimothymooney/detect-retina-damage-from-oct-images/notebook
- https://en.wikipedia.org/wiki/Transfer_learning
- https://github.com/laurentperrinet/ImageNet-Datasets-Downloader/tree/8d1c0925b5512f48978177a76e7b851ff40acb7b
Let's first install requirements
%pip install --upgrade -r requirements.txt
%matplotlib inline
# uncommment to re-run training
#%rm -fr models
%mkdir -p DCNN_transfer_learning
%mkdir -p results
%mkdir -p models
Initialization of the libraries/variables¶
Our coding strategy is to build up a small library as a package of scripts in the DCNN_transfer_learning
folder and to run all calls to that library from this notebook. This follows our previous work in which we benchmarked various DCNNs and which allowed us to select VGG16 network as a good compromise between performance and complexity.
First of all, a init.py
script defines all our usefull variables like the new labels to learn, the number of training images or the root folder to use. Also, we import libraries to train the different networks and display the results.
scriptname = 'DCNN_transfer_learning/init.py'
%%writefile {scriptname}
# Importing libraries
import torch
import argparse
import json
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['xtick.labelsize'] = 18
plt.rcParams['ytick.labelsize'] = 18
import numpy as np
import os
import requests
import time
from math import log
from time import strftime, gmtime
datetag = strftime("%Y-%m-%d", gmtime())
HOST, device = os.uname()[1], torch.device("cuda" if torch.cuda.is_available() else "cpu")
# to store results
import pandas as pd
def arg_parse():
DEBUG = 25
DEBUG = 1
parser = argparse.ArgumentParser(description='DCNN_transfer_learning/init.py set root')
parser.add_argument("--root", dest = 'root', help = "Directory containing images to perform the training",
default = 'data', type = str)
parser.add_argument("--folders", dest = 'folders', help = "Set the training, validation and testing folders relative to the root",
default = ['test', 'val', 'train'], type = list)
parser.add_argument("--N_images", dest = 'N_images', help ="Set the number of images per classe in the train folder",
default = [400//DEBUG, 200//DEBUG, 800//DEBUG], type = list)
parser.add_argument("--HOST", dest = 'HOST', help = "Set the name of your machine",
default=HOST, type = str)
parser.add_argument("--datetag", dest = 'datetag', help = "Set the datetag of the result's file",
default = datetag, type = str)
parser.add_argument("--image_size", dest = 'image_size', help = "Set the default image_size of the input",
default = 256)
parser.add_argument("--image_sizes", dest = 'image_sizes', help = "Set the image_sizes of the input for experiment 2 (downscaling)",
default = [64, 128, 256, 512], type = list)
parser.add_argument("--num_epochs", dest = 'num_epochs', help = "Set the number of epoch to perform during the traitransportationning phase",
default = 25//DEBUG)
parser.add_argument("--batch_size", dest = 'batch_size', help="Set the batch size", default = 16)
parser.add_argument("--lr", dest = 'lr', help="Set the learning rate", default = 0.0001)
parser.add_argument("--momentum", dest = 'momentum', help="Set the momentum", default = 0.9)
parser.add_argument("--beta2", dest = 'beta2', help="Set the second momentum - use zero for SGD", default = 0.)
parser.add_argument("--subset_i_labels", dest = 'subset_i_labels', help="Set the labels of the classes (list of int)",
default = [945, 513, 886, 508, 786, 310, 373, 145, 146, 396], type = list)
parser.add_argument("--class_loader", dest = 'class_loader', help = "Set the Directory containing imagenet downloaders class",
default = 'imagenet_label_to_wordnet_synset.json', type = str)
parser.add_argument("--url_loader", dest = 'url_loader', help = "Set the file containing imagenet urls",
default = 'Imagenet_urls_ILSVRC_2016.json', type = str)
parser.add_argument("--model_path", dest = 'model_path', help = "Set the path to the pre-trained model",
default = 'models/re-trained_', type = str)
parser.add_argument("--model_names", dest = 'model_names', help = "Modes for the new trained networks",
default = ['vgg16_lin', 'vgg16_gen', 'vgg16_scale', 'vgg16_gray', 'vgg16_full'], type = list)
return parser.parse_args()
args = arg_parse()
datetag = args.datetag
json_fname = os.path.join('results', datetag + '_config_args.json')
load_parse = False # False to custom the config
if load_parse:
with open(json_fname, 'rt') as f:
print(f'file {json_fname} exists: LOADING')
override = json.load(f)
args.__dict__.update(override)
else:
print(f'Creating file {json_fname}')
with open(json_fname, 'wt') as f:
json.dump(vars(args), f, indent=4)
# matplotlib parameters
colors = ['b', 'r', 'k', 'g', 'm','y']
fig_width = 20
phi = (np.sqrt(5)+1)/2 # golden ratio for the figures :-)
#to plot & display
def pprint(message): #display function
print('-'*len(message))
print(message)
print('-'*len(message))
#DCCN training
print('On date', args.datetag, ', Running benchmark on host', args.HOST, ' with device', device.type)
# Labels Configuration
N_labels = len(args.subset_i_labels)
paths = {}
N_images_per_class = {}
for folder, N_image in zip(args.folders, args.N_images):
paths[folder] = os.path.join(args.root, folder) # data path
N_images_per_class[folder] = N_image
os.makedirs(paths[folder], exist_ok=True)
with open(args.class_loader, 'r') as fp: # get all the classes on the data_downloader
imagenet = json.load(fp)
# gathering labels
labels = []
class_wnids = []
reverse_id_labels = {}
for a, img_id in enumerate(imagenet):
reverse_id_labels[str('n' + (imagenet[img_id]['id'].replace('-n','')))] = imagenet[img_id]['label'].split(',')[0]
labels.append(imagenet[img_id]['label'].split(',')[0])
if int(img_id) in args.subset_i_labels:
class_wnids.append('n' + (imagenet[img_id]['id'].replace('-n','')))
# a reverse look-up-table giving the index of a given label (within the whole set of imagenet labels)
reverse_labels = {}
for i_label, label in enumerate(labels):
reverse_labels[label] = i_label
# a reverse look-up-table giving the index of a given i_label (within the sub-set of classes)
reverse_subset_i_labels = {}
for i_label, label in enumerate(args.subset_i_labels):
reverse_subset_i_labels[label] = i_label
# a reverse look-up-table giving the label of a given index in the last layer of the new model (within the sub-set of classes)
subset_labels = []
pprint('List of Pre-selected classes : ')
# choosing the selected classes for recognition
for i_label, id_ in zip(args.subset_i_labels, class_wnids) :
subset_labels.append(labels[i_label])
print('-> label', i_label, '=', labels[i_label], '\nid wordnet : ', id_)
subset_labels.sort()
%run -int {scriptname}
Download the train
& val
dataset¶
In the dataset.py
, we use an archive of the Imagenet urls (from fall 2011) to populate datasets based on the pre-selected classes listed in the DCNN_transfer_learning/init.py
file. The following script is inspired by previous work in our group.
scriptname = 'DCNN_transfer_learning/dataset.py'
%%writefile {scriptname}
from DCNN_transfer_learning.init import *
verbose = False
with open(args.url_loader) as json_file:
Imagenet_urls_ILSVRC_2016 = json.load(json_file)
def clean_list(list_dir, patterns=['.DS_Store']):
for pattern in patterns:
if pattern in list_dir: list_dir.remove('.DS_Store')
return list_dir
import imageio
def get_image(img_url, timeout=3., min_content=3, verbose=verbose):
try:
img_resp = imageio.imread(img_url)
if (len(img_resp.shape) < min_content):
print(f"Url {img_url} does not have enough content")
return False
else:
if verbose : print(f"Success with url {img_url}")
return img_resp
except Exception as e:
if verbose : print(f"Failed with {e} for url {img_url}")
return False # did not work
import hashlib # jah.
# root folder
os.makedirs(args.root, exist_ok=True)
# train, val and test folders
for folder in args.folders :
os.makedirs(paths[folder], exist_ok=True)
list_urls = {}
list_img_name_used = {}
for class_wnid in class_wnids:
list_urls[class_wnid] = Imagenet_urls_ILSVRC_2016[str(class_wnid)]
np.random.shuffle(list_urls[class_wnid])
list_img_name_used[class_wnid] = []
# a folder per class in each train, val and test folder
for folder in args.folders :
class_name = reverse_id_labels[class_wnid]
class_folder = os.path.join(paths[folder], class_name)
os.makedirs(class_folder, exist_ok=True)
list_img_name_used[class_wnid] += clean_list(os.listdir(class_folder)) # join two lists
# train, val and test folders
for folder in args.folders :
print(f'Folder \"{folder}\"')
filename = f'results/{datetag}_dataset_{folder}_{args.HOST}.json'
columns = ['img_url', 'img_name', 'is_flickr', 'dt', 'worked', 'class_wnid', 'class_name']
if os.path.isfile(filename):
df_dataset = pd.read_json(filename)
else:
df_dataset = pd.DataFrame([], columns=columns)
for class_wnid in class_wnids:
class_name = reverse_id_labels[class_wnid]
print(f'Scraping images for class \"{class_name}\"')
class_folder = os.path.join(paths[folder], class_name)
while (len(clean_list(os.listdir(class_folder))) < N_images_per_class[folder]) and (len(list_urls[class_wnid]) > 0):
# pick and remove element from shuffled list
img_url = list_urls[class_wnid].pop()
if len(df_dataset[df_dataset['img_url']==img_url])==0 : # we have not yet tested this URL yet
# Transform URL into filename
# https://laurentperrinet.github.io/sciblog/posts/2018-06-13-generating-an-unique-seed-for-a-given-filename.html
img_name = hashlib.sha224(img_url.encode('utf-8')).hexdigest() + '.png'
tic = time.time()
if img_url.split('.')[-1] in ['.tiff', '.bmp', 'jpe', 'gif']:
if verbose: print('Bad extension for the img_url', img_url)
worked, dt = False, 0.
# make sure it was not used in other folders
elif not (img_name in list_img_name_used[class_wnid]):
img_content = get_image(img_url, verbose=verbose)
worked = img_content is not False
if worked:
if verbose : print('Good URl, now saving', img_url, ' in', class_folder, ' as', img_name)
imageio.imsave(os.path.join(class_folder, img_name), img_content, format='png')
list_img_name_used[class_wnid].append(img_name)
df_dataset.loc[len(df_dataset.index)] = {'img_url':img_url, 'img_name':img_name, 'is_flickr':1 if 'flickr' in img_url else 0, 'dt':time.time() - tic,
'worked':worked, 'class_wnid':class_wnid, 'class_name':class_name}
df_dataset.to_json(filename)
print(f'\r{len(clean_list(os.listdir(class_folder)))} / {N_images_per_class[folder]}', end='\n' if verbose else '', flush=not verbose)
if (len(clean_list(os.listdir(class_folder))) < N_images_per_class[folder]) and (len(list_urls[class_wnid]) == 0):
print('Not enough working url to complete the dataset')
df_dataset.to_json(filename)
%run -int {scriptname}
Let's plot some statistics for the scrapped images:
for folder in args.folders :
filename = f'results/{datetag}_dataset_{folder}_{args.HOST}.json'
if os.path.isfile(filename):
df_dataset = pd.read_json(filename)
df_type = pd.DataFrame({'urls_type': [len(df_dataset[df_dataset['is_flickr']==1]),
len(df_dataset[df_dataset['is_flickr']==0])]},
index=['is_flickr', 'not_flikr'])
df_flikr = pd.DataFrame({'not_flikr': [df_dataset[df_dataset['is_flickr']==0]['worked'].sum(),
(len(df_dataset[df_dataset['is_flickr']==0]) - df_dataset[df_dataset['is_flickr']==0]['worked'].sum())],
'is_flickr': [df_dataset[df_dataset['is_flickr']==1]['worked'].sum(),
(len(df_dataset[df_dataset['is_flickr']==1]) - df_dataset[df_dataset['is_flickr']==1]['worked'].sum())],
'url': [len(df_dataset[df_dataset['worked']==1]), len(df_dataset[df_dataset['worked']==0])]},
index=['worked', 'not_working'])
fig, axes = plt.subplots(figsize=(12,12),nrows=2, ncols=2)
fig.suptitle('Stats for the folder '+ folder + ' (' + str(len(df_dataset)) + ' attempts) :', size = 18)
df_flikr["url"].plot(rot=0, ax=axes[0,0], kind='bar', grid=True, fontsize=14)
axes[0,0].set_xlabel('All URLs', size=14)
df_flikr["not_flikr"].plot(rot=0, ax=axes[1,1], kind='bar', grid=True, fontsize=14)
axes[1,1].set_xlabel('Non flikr URLs', size=14)
df_flikr["is_flickr"].plot(rot=0, ax=axes[1,0], kind='bar', grid=True, fontsize=14)
axes[1,0].set_xlabel('Flikr URLs', size=14)
df_type["urls_type"].plot(rot=0, ax=axes[0,1], kind='bar', grid=True, fontsize=14)
axes[0,1].set_xlabel('Different types of URLs', size=14)
else:
print(f'The file {filename} is not available...')
Let's show some random images from each label :
import imageio
folder = 'test'
N_image_i = 5
plot_classes = {}
for class_wnid in class_wnids:
class_name = reverse_id_labels[class_wnid]
class_folder = os.path.join(paths[folder], class_name)
plot_classes[class_name] = os.listdir(class_folder)
x = 0
fig, axs = plt.subplots(len(plot_classes), N_image_i, figsize=(fig_width, fig_width))
for ax, class_name in zip(axs, plot_classes):
for i_image in np.arange(N_image_i):
ax = axs[x][i_image]
path = os.path.join(paths[folder], class_name, plot_classes[class_name][i_image])
ax.imshow(imageio.imread(path))
ax.set_xticks([])
ax.set_yticks([])
if i_image%5 == 0:
ax.set_ylabel(class_name)
x +=1
fig.set_facecolor(color='white')
Transfer learning and dataset config¶
In the model.py
script, we first define the transform
functions for the datasets. To perform image augmentation, we apply the pyTorch AutoAugment
function to the train
and val
dataset. Then, we load the pretrained models and store them in memory.
scriptname = 'DCNN_transfer_learning/model.py'
%%writefile {scriptname}
from DCNN_transfer_learning.init import *
import torchvision
from torchvision import datasets, models, transforms
from torchvision.datasets import ImageFolder
import torch.nn as nn
# normalization used to train VGG
# see https://pytorch.org/hub/pytorch_vision_vgg/
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
transforms_norm = transforms.Normalize(mean=mean, std=std) # to normalize colors on the imagenet dataset
import seaborn as sns
import sklearn.metrics
from scipy import stats
from scipy.special import logit
# VGG-16 datasets initialisation
def datasets_transforms(image_size=args.image_size, c=1, p=0, num_workers=1, batch_size=args.batch_size, **kwargs):
data_transforms = {
'train': transforms.Compose([
transforms.Resize((int(image_size), int(image_size))),
transforms.AutoAugment(), # https://pytorch.org/vision/master/transforms.html#torchvision.transforms.AutoAugment
transforms.RandomGrayscale(p=p),
transforms.ToTensor(), # Convert the image to pyTorch Tensor data type.
transforms_norm ]),
'val': transforms.Compose([
transforms.Resize((int(image_size), int(image_size))),
transforms.AutoAugment(), # https://pytorch.org/vision/master/transforms.html#torchvision.transforms.AutoAugment
transforms.RandomGrayscale(p=p),
transforms.ToTensor(), # Convert the image to pyTorch Tensor data type.
transforms_norm ]),
'test': transforms.Compose([
transforms.Resize((int(image_size), int(image_size))),
transforms.RandomGrayscale(p=p),
transforms.ColorJitter(contrast=c), # https://pytorch.org/vision/0.8/_modules/torchvision/transforms/transforms.html#ColorJitter
transforms.ToTensor(), # Convert the image to pyTorch Tensor data type.
transforms_norm ]),
}
image_datasets = {
folder: datasets.ImageFolder(
paths[folder],
transform=data_transforms[folder]
)
for folder in args.folders
}
dataloaders = {
folder: torch.utils.data.DataLoader(
image_datasets[folder], batch_size=batch_size,
shuffle=False if folder == "test" else True, num_workers=num_workers
)
for folder in args.folders
}
dataset_sizes = {folder: len(image_datasets[folder]) for folder in args.folders}
return dataset_sizes, dataloaders, image_datasets, data_transforms
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=args.image_size)
for folder in args.folders : print(f"Loaded {dataset_sizes[folder]} images under {folder}")
class_names = image_datasets['train'].classes
print("Classes: ", image_datasets['train'].classes)
n_output = len(os.listdir(paths['train']))
%run -int {scriptname}
Training process¶
Finaly, we implement the training process in experiment_train.py
, using a classic training script with pyTorch. For further statistical analyses, we extract factors (like the accuracy and loss) within a pandas
object (a DataFrame
).
scriptname = 'experiment_train.py'
%%writefile {scriptname}
from DCNN_transfer_learning.model import *
def train_model(model, num_epochs, dataloaders, lr=args.lr, momentum=args.momentum, beta2=args.beta2, log_interval=100, **kwargs):
model.to(device)
if beta2 > 0.:
optimizer = torch.optim.Adam(model.parameters(), lr=lr, betas=(momentum, beta2)) #, amsgrad=amsgrad)
else:
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum) # to set training variables
df_train = pd.DataFrame([], columns=['epoch', 'avg_loss', 'avg_acc', 'avg_loss_val', 'avg_acc_val', 'device_type'])
for epoch in range(num_epochs):
loss_train = 0
acc_train = 0
for i, (images, labels) in enumerate(dataloaders['train']):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_train += loss.item() * images.size(0)
_, preds = torch.max(outputs.data, 1)
acc_train += torch.sum(preds == labels.data)
avg_loss = loss_train / dataset_sizes['train']
avg_acc = acc_train / dataset_sizes['train']
with torch.no_grad():
loss_val = 0
acc_val = 0
for i, (images, labels) in enumerate(dataloaders['val']):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss_val += loss.item() * images.size(0)
_, preds = torch.max(outputs.data, 1)
acc_val += torch.sum(preds == labels.data)
avg_loss_val = loss_val / dataset_sizes['val']
avg_acc_val = acc_val / dataset_sizes['val']
df_train.loc[epoch] = {'epoch':epoch, 'avg_loss':avg_loss, 'avg_acc':float(avg_acc),
'avg_loss_val':avg_loss_val, 'avg_acc_val':float(avg_acc_val), 'device_type':device.type}
print(f"Epoch {epoch+1}/{num_epochs} : train= loss: {avg_loss:.4f} / acc : {avg_acc:.4f} - val= loss : {avg_loss_val:.4f} / acc : {avg_acc_val:.4f}")
model.cpu()
torch.cuda.empty_cache()
return model, df_train
criterion = nn.CrossEntropyLoss()
# Training and saving the network
models_vgg = {}
opt = {}
models_vgg['vgg'] = torchvision.models.vgg16(pretrained=True)
# Downloading the model
model_filenames = {}
for model_name in args.model_names:
model_filenames[model_name] = args.model_path + model_name + '.pt'
filename = f'results/{datetag}_{args.HOST}_train_{model_name}.json'
models_vgg[model_name] = torchvision.models.vgg16(pretrained=True)
if model_name == 'vgg16_full':
pass
else:
for param in models_vgg[model_name].features.parameters():
param.require_grad = False
if model_name == 'vgg16_lin':
num_features = models_vgg[model_name].classifier[-1].out_features
features = list(models_vgg[model_name].classifier.children())
features.extend([nn.Linear(num_features, n_output)]) # Adding one layer on top of last layer
models_vgg[model_name].classifier = nn.Sequential(*features)
else :
num_features = models_vgg[model_name].classifier[-1].in_features
features = list(models_vgg[model_name].classifier.children())[:-1] # Remove last layer
features.extend([nn.Linear(num_features, n_output)]) # Add our layer with 10 outputs
models_vgg[model_name].classifier = nn.Sequential(*features) # Replace the model classifier
if os.path.isfile(model_filenames[model_name]):
print("Loading pretrained model for..", model_name, ' from', model_filenames[model_name])
if device.type == 'cuda':
models_vgg[model_name].load_state_dict(torch.load(model_filenames[model_name])) #on GPU
else:
models_vgg[model_name].load_state_dict(torch.load(model_filenames[model_name], map_location=torch.device('cpu'))) #on CPU
else:
print("Re-training pretrained model...", model_filenames[model_name])
since = time.time()
p = 1 if model_name == 'vgg16_gray' else 0
if model_name =='vgg16_scale':
df_train = None
for image_size_ in args.image_sizes: # starting with low resolution images
print(f"Traning {model_name}, image_size = {image_size_}, p (Grayscale) = {p}")
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=image_size_, p=p)
models_vgg[model_name], df_train_ = train_model(models_vgg[model_name], num_epochs=args.num_epochs//len(args.image_sizes),
dataloaders=dataloaders)
df_train = df_train_ if df_train is None else df_train.append(df_train_, ignore_index=True)
else :
print(f"Traning {model_name}, image_size = {args.image_size}, p (Grayscale) = {p}")
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=args.image_size, p=p)
models_vgg[model_name], df_train = train_model(models_vgg[model_name], num_epochs=args.num_epochs,
dataloaders=dataloaders)
torch.save(models_vgg[model_name].state_dict(), model_filenames[model_name])
df_train.to_json(filename)
elapsed_time = time.time() - since
print(f"Training completed in {elapsed_time // 60:.0f}m {elapsed_time % 60:.0f}s")
print()
%run -int {scriptname}
Here we display both average accuracy and loss during the training phase and during the validation one :
for model_name in args.model_names:
filename = f'results/{datetag}_{args.HOST}_train_{model_name}.json'
df_train = pd.read_json(filename)
fig, axs = plt.subplots(figsize=(fig_width, fig_width/phi/2))
ax = df_train['avg_loss'].plot(lw=2, marker='.', markersize=10)
ax = df_train['avg_loss_val'].plot(lw=2, marker='.', markersize=10)
ax.legend(["avg_loss", "avg_loss_val"], fontsize=18);
ax.set_xlabel("Epoch", size=18)
ax.spines['left'].set_position(('axes', -0.01))
ax.set_xlim(-0.5, args.num_epochs)
ax.grid(which='both')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_ylim(0., 1.1)
axs.set_title(f'Average values of the loss by epoch : {filename}' , size = 20)
ax.get_legend().remove()
fig.legend(bbox_to_anchor=(1.05, .5), loc='lower right', fontsize = 20)
for model_name in args.model_names:
filename = f'results/{datetag}_{args.HOST}_train_{model_name}.json'
df_train = pd.read_json(filename)
fig, axs = plt.subplots(figsize=(fig_width, fig_width/phi/2))
ax = df_train['avg_acc'].plot(lw=2, marker='.', markersize=10)
ax = df_train['avg_acc_val'].plot(lw=2, marker='.', markersize=10)
ax.legend(["avg_acc", "avg_acc_val"], fontsize=18);
ax.set_xlabel("Epoch", size=18)
ax.spines['left'].set_position(('axes', -0.01))
ax.set_ylim(0.70, .992)
ax.set_yscale("logit", one_half="1/2", use_overline=True)
ax.grid(which='both')
ax.set_xlim(-0.5, args.num_epochs+.5)
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
axs.set_title(f'Average values of the accuracy by epoch : {filename}' , size = 20)
ax.get_legend().remove()
fig.legend(bbox_to_anchor=(1.05, .5), loc='lower right', fontsize=20)
Bonus: Scan of some parameters¶
If there is some GPU time time left, let's try to meta-optimize some parameters by testing how accuracy would vary. To avoid potential over-fitting problems, we perform that test on the val
validation set which is separate from the test
and train
datasets.
scriptname = 'experiment_scan.py'
%%writefile {scriptname}
#import model's script and set the output file
from DCNN_transfer_learning.model import *
scan_dicts= {'batch_size' : [8, 13, 21, 34, 55],
'lr': args.lr * np.logspace(-1, 1, 7, base=10),
'momentum': 1 - np.logspace(-3, -.5, 7, base=10),
'beta2': 1 - np.logspace(-5, -1, 7, base=10),
}
def main(N_avg=10, num_epochs=args.num_epochs//4):
from experiment_train import train_model
for key in scan_dicts:
filename = f'results/{datetag}_train_scan_{key}_{args.HOST}.json'
print(f'{filename=}')
if os.path.isfile(filename):
df_scan = pd.read_json(filename)
else:
i_trial = 0
measure_columns = [key, 'avg_loss_val', 'avg_acc_val', 'time']
df_scan = pd.DataFrame([], columns=measure_columns)
for i_trial, value in enumerate(scan_dicts[key]):
new_kwarg = {key: value}
print('trial', i_trial, ' /', len(scan_dicts[key]))
print('new_kwarg', new_kwarg)
# Training and saving the network
models_vgg_ = torchvision.models.vgg16(pretrained=True)
# Freeze training for all layers
# Newly created modules have require_grad=True by default
for param in models_vgg_.features.parameters():
param.require_grad = False
num_features = models_vgg_.classifier[-1].in_features
features = list(models_vgg_.classifier.children())[:-1] # Remove last layer
features.extend([nn.Linear(num_features, n_output)]) # Add our layer with `n_output` outputs
models_vgg_.classifier = nn.Sequential(*features) # Replace the model classifier
since = time.time()
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=args.image_size, p=0, **new_kwarg)
models_vgg_, df_train = train_model(models_vgg_, num_epochs=num_epochs, dataloaders=dataloaders, **new_kwarg)
elapsed_time = time.time() - since
print(f"Training completed in {elapsed_time // 60:.0f}m {elapsed_time % 60:.0f}s")
df_scan.loc[i_trial] = {key:value, 'avg_loss_val':df_train.iloc[-N_avg:-1]['avg_loss_val'].mean(),
'avg_acc_val':df_train.iloc[-N_avg:-1]['avg_acc_val'].mean(), 'time':elapsed_time}
print(df_scan.loc[i_trial])
i_trial += 1
df_scan.to_json(filename)
main()
%run -int {scriptname}
for key in scan_dicts:
filename = f'results/{datetag}_train_scan_{key}_{args.HOST}.json'
print(filename)
df_scan = pd.read_json(filename)
print(df_scan)
subplotpars = matplotlib.figure.SubplotParams(left=0.1, right=.95, bottom=0.25, top=.975, hspace=.6)
dfs_ = {}
for key in scan_dicts:
filename = f'results/{datetag}_train_scan_{key}_{args.HOST}.json'
dfs_[str(key)] = pd.read_json(filename)
fig, axs = plt.subplots(len(dfs_), 1, figsize=(fig_width, fig_width*len(dfs_)/(phi*2)), subplotpars=subplotpars)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.tick_params(axis='both', which='major', labelsize=10)
for ax, df_train, key in zip(axs, dfs_, scan_dicts):
ax.plot(range(len(scan_dicts[key])), dfs_[df_train]["avg_acc_val"], alpha=0.5, lw=2, marker='.')
ax.set_ylabel(f"Accuracy for {key}", size=18)
ax.set_xlabel(f"Parameter : {key}", size=18)
ax.set_xticks(range(len(scan_dicts[key])))
ax.set_xticklabels([f'{s:.4f}' for s in scan_dicts[key]], rotation=60, size = 20)
ax.spines['left'].set_position(('axes', -0.01))
ax.set_ylim(0.40, .99)
ax.set_yscale("logit", one_half="1/2", use_overline=True)
ax.grid(which='both')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
#ax.get_legend().remove()
axs[0].set_title(f'Average values of the accuracy for different parameters :' , size = 20);
dfs_ = {}
for key in scan_dicts:
filename = f'results/{datetag}_train_scan_{key}_{args.HOST}.json'
dfs_[str(key)] = pd.read_json(filename)
fig, axs = plt.subplots(len(dfs_), 1, figsize=(fig_width, fig_width*len(dfs_)/(phi*2)), subplotpars=subplotpars)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.tick_params(axis='both', which='major', labelsize=10)
for ax, df_train, key in zip(axs, dfs_, scan_dicts):
ax.plot(range(len(scan_dicts[key])), dfs_[df_train]["avg_loss_val"], alpha=0.5, lw=2, marker='.')
ax.set_ylabel(f"Loss value for {key}", size=18)
ax.set_xlabel(f"Parameter :{key}", size= 16)
ax.set_xticks(range(len(scan_dicts[key])))
ax.set_xticklabels([f'{s:.4f}' for s in scan_dicts[key]], rotation=60, size = 20)
ax.grid(which='both')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
axs[0].set_title(f'Average values of the accuracy for different parameters :' , size = 20);
These results are useful to fine-tune the parameters in order to maximise the efficiency of the transfer learning method.
Experiment 1: Image processing and recognition for differents labels¶
The networks are now ready for a quantitative evaluation. The second part of this notebook offers a comparison between:
-
A pre-trained image recognition's networks, here VGG16 network, trained on the Imagenet dataset wich allows to work on naturals images for $1000$ labels, taken from the
torchvision.models
library -
And five re-trained version of the same network VGG16 network based on a reduced Imagenet dataset wich allows to focus on naturals images from $10$ labels.
For further statistical analyses, we extract these differents factors (like the accuracy and the processing time for differents datasets at differents resolution) in a pandas.DataFrame
object.
scriptname = 'experiment_basic.py'
%%writefile {scriptname}
#import model's script and set the output file
from experiment_train import *
filename = f'results/{datetag}_results_1_{args.HOST}.json'
print(f'{filename=}')
def main():
if os.path.isfile(filename):
df = pd.read_json(filename)
else:
i_trial = 0
df = pd.DataFrame([], columns=['model', 'likelihood', 'fps', 'time', 'label', 'i_label', 'i_image', 'filename', 'device_type', 'top_1'])
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=args.image_size, batch_size=1)
for i_image, (data, label) in enumerate(dataloaders['test']):
data, label = data.to(device), label.to(device)
for model_name in models_vgg.keys():
model = models_vgg[model_name]
model = model.to(device)
with torch.no_grad():
i_label_top = reverse_labels[image_datasets['test'].classes[label]]
tic = time.time()
out = model(data).squeeze(0)
_, indices = torch.sort(out, descending=True)
if model_name == 'vgg' : # our previous work
top_1 = labels[indices[0]]
percentage = torch.nn.functional.softmax(out[args.subset_i_labels], dim=0) * 100
likelihood = percentage[reverse_subset_i_labels[i_label_top]].item()
else :
top_1 = subset_labels[indices[0]]
percentage = torch.nn.functional.softmax(out, dim=0) * 100
likelihood = percentage[label].item()
elapsed_time = time.time() - tic
print(f'The {model_name} model get {labels[i_label_top]} at {likelihood:.2f} % confidence in {elapsed_time:.3f} seconds, best confidence for : {top_1}')
df.loc[i_trial] = {'model':model_name, 'likelihood':likelihood, 'time':elapsed_time, 'fps': 1/elapsed_time,
'label':labels[i_label_top], 'i_label':i_label_top,
'i_image':i_image, 'filename':image_datasets['test'].imgs[i_image][0], 'device_type':device.type, 'top_1':top_1}
i_trial += 1
df.to_json(filename)
main()
%run -int {scriptname}
Here we collect our results, we can already display all the data in a table
filename = f'results/{datetag}_results_1_{args.HOST}.json'
df = pd.read_json(filename)
df
Image display¶
We first display the best categorizations as ranked by likelihood, all models combined :
import imageio
N_image_i = 8
N_image_j = 8
fig, axs = plt.subplots(N_image_i, N_image_j, figsize=(fig_width*1.3, fig_width))
for i_image, idx in enumerate(df.sort_values(by=['likelihood'], ascending=False).head(N_image_i*N_image_j).index):
ax = axs[i_image%N_image_i][i_image//N_image_i]
img_address = image_datasets['test'].imgs[df.loc[idx]['i_image']][0]
ax.imshow(imageio.imread(img_address))
ax.set_xticks([])
ax.set_yticks([])
color = 'g' if df.loc[idx]['top_1'] == df.loc[idx]['label'] else 'r'
ax.set_xlabel(df.loc[idx]['top_1'] + ' | ' + df.loc[idx]['model'], color=color)
likelihood = df.loc[idx]['likelihood']
ax.set_ylabel(f'P ={likelihood:2.3f}%', color=color)
fig.set_facecolor(color='white')
Then we display the worst categorizations as ranked by likelihood, all models combined :
import imageio
N_image_i = 8
N_image_j = 8
fig, axs = plt.subplots(N_image_i, N_image_j, figsize=(fig_width*1.3, fig_width))
for i_image, idx in enumerate(df.sort_values(by=['likelihood'], ascending=True).head(N_image_i*N_image_j).index):
ax = axs[i_image%N_image_i][i_image//N_image_i]
img_address = image_datasets['test'].imgs[df.loc[idx]['i_image']][0]
ax.imshow(imageio.imread(img_address))
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel(df.loc[idx]['top_1'] + ' | ' + df.loc[idx]['model'], color='r')
likelihood = df.loc[idx]['likelihood']
ax.set_ylabel(df.loc[idx]['label'], color='r')
fig.set_facecolor(color='white')
Accuracy, Precision Recall & F1 Score¶
We now compute the top-1 accuracy (which is a metric that describes how the model performs across all classes, here top 1 because we only take the best likelihood at the output of the networks), the precision (which reflects how reliable the model is in classifying samples as Positive) and the recall (which measures the model's ability to detect Positive samples) of each networks. We use the sklearn librairy to perform this analysis.
from sklearn.metrics import accuracy_score, precision_score, f1_score
df_precision = pd.DataFrame({model_name: {subset_label: precision_score(df[(df['model']==model_name) & (df['label']==subset_label)]["top_1"],
df[(df['model']==model_name) & (df['label']==subset_label)]["label"],
average='micro')
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_precision.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(subset_labels)-.5, y=1/n_output, ls='--', ec='k', label='chance level')
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title('Precision for each models - experiment 1', size=20)
ax.set_ylabel('Precision', size=20)
ax.set_xlabel('Label', size=20);
df_f1_score = pd.DataFrame({model_name: {subset_label: f1_score(df[(df['model']==model_name) & (df['label']==subset_label)]["top_1"],
df[(df['model']==model_name) & (df['label']==subset_label)]["label"],
average='micro')
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_f1_score.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(subset_labels)-.5, y=1/n_output, ls='--', ec='k', label='chance level')
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title('F1-score for each models - experiment 1', size=20)
ax.set_ylabel('F1-score', size=20)
ax.set_xlabel('Label', size=20);
df_acc = pd.DataFrame({model_name: {subset_label: accuracy_score(df[(df['model']==model_name) & (df['label']==subset_label)]["top_1"],
df[(df['model']==model_name) & (df['label']==subset_label)]["label"])
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_acc.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(subset_labels)-.5, y=1/n_output, ls='--', ec='k', label='chance level')
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title('Accuracy top_1 : for each models - experiment 1', size=20)
ax.set_ylabel('Accuracy', size=20)
ax.set_xlabel('Label', size=20);
Evidence form accuracy and likelihood¶
These graphs show the frequency of the logit of the categorization likelihood for our five models and also for the original VGG16 network. The categorization likelihood represents the predicted likelihood of detection for a given label at the output of the network. In addition, I display the accuracies of our networks using the logit ("logistic unit") function wich is the inverse of the logistic sigmoid function. Where the logistic function converts evidence into probabilities, its inverse converts probabilities into evidence, a metric wich appears naturally in Bayesian statistics. Then, as most of them are close either to 100 as to 0, we used the Hartley unit) to quantify the difference in performance between these networks.
df_acc = pd.DataFrame({model_name: {subset_label: (logit(accuracy_score(df[(df['model']==model_name) & (df['label']==subset_label)]["top_1"],
df[(df['model']==model_name) & (df['label']==subset_label)]["label"])))/log(10)
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_acc.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title('Evidence compute from the accuracy of each label: for each models - experiment 1', size=20)
ax.set_ylabel('Evidence (decibans)', size=20)
ax.set_xlabel('Label', size=20);
fig, axs = plt.subplots(len(models_vgg.keys()), 1, figsize=(fig_width, fig_width*phi/2), sharex=True, sharey=True)
for ax, color, model_name in zip(axs, colors, models_vgg.keys()):
ax.set_ylabel('Frequency', fontsize=14)
((logit((df[df['model']==model_name]['likelihood']/100)/(1-(df[df['model']==model_name]['likelihood']/100))))/log(10)).plot.hist(bins=np.linspace(-4, 4, 100), lw=1, label=model_name, ax=ax, color=color, density=True)
ax.legend(loc='upper left', fontsize=20)
ax.vlines(ymin=0, ymax=1, x=(logit(.1/.9))/log(10), ls='--', ec='k', label='chance level')
ax.get_legend().remove()
axs[-1].set_xlabel('Evidence (Hartley)', size=18)
axs[0].set_title('Distribution of the likelihood. Processed on : ' + args.HOST + '_' + str(df['device_type'][0]), size = 20);
fig.legend(bbox_to_anchor=(1.06, .35), loc='lower right', fontsize=20);
df_acc = pd.DataFrame({'accuracy': [accuracy_score(df[df['model']==model_name]["top_1"], df[df['model']==model_name]["label"]) for model_name in models_vgg.keys()]}, index=models_vgg.keys())
ax = df_acc.plot.bar(rot=0, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(models_vgg.keys())-.5, y=1/n_output, ls='--', ec='k', label='chance level')
# https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_label_demo.html
ax.bar_label(ax.containers[0], padding=-24, color='black', fontsize=14, fmt='%.3f')
plt.legend(bbox_to_anchor=(1.1, .5), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title('Average accuracy top_1 : for each models - experiment 1', size=20)
ax.set_xlabel('Model', size=20);
acc = []
lik = []
for model_name in models_vgg.keys():
acc.append(accuracy_score(df[df['model']==model_name]["top_1"], df[df['model']==model_name]["label"]))
lik.append((np.mean(df[df['model']==model_name]["likelihood"]))/100)
df_test = pd.DataFrame({"accuracy": acc, "mean likelihood": lik}, index = models_vgg.keys())
ax = df_test.plot.bar(rot=0, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(models_vgg.keys())-.5, y=1/n_output, ls='--', ec='k', label='chance level')
# https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_label_demo.html
for container in ax.containers: ax.bar_label(container, padding=-50, color='black', fontsize=14, fmt='%.3f', rotation=90)
plt.legend(bbox_to_anchor=(1.1, .5), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'Experiment 1 - Accuracy vs Mean likelihood', size=20)
ax.set_xlabel('Model', size=20);
plt.show();
Notice that the VGG16 network seems over confident as his mean likelihood ($= 0.937$) is greater than his actual accuracy ($= 0.722$) while our re-trained models seem to get accuracies that match their mean likelihoods.
Overall, with all the metrics used in this part of the notebook, our five re-trained networks seems more efficient than the VGG16 network on the newly defined task. For the end of this notebook, we will focus on the likelihood and the f1 score of our networks. It is defined as the harmonic mean of the model’s precision and recall and thus conveniently combines these measures.
Computation time¶
A display of the differents computation time of each models on the same dataset for the sequence of trials :
fig, axs = plt.subplots(len(models_vgg.keys()), 1, figsize=(fig_width, fig_width*phi/2), sharex=True, sharey=True)
for ax, color, model_name in zip(axs, colors, models_vgg.keys()):
ax.set_ylabel('Frequency', fontsize=14)
df[df['model']==model_name]['time'].plot.hist(bins=350, lw=1, label=model_name,ax=ax, color=color, density=True)
ax.set_xlim(df['time'].quantile(.01), df['time'].quantile(.99))
ax.legend(bbox_to_anchor=(1.19, .5), loc='lower right', fontsize=20)
ax.grid(which='both', axis='y')
ax.set_xlabel('Processing time (s): ' + model_name, size=22)
axs[0].set_title('Distribution of the Processing time (s). Processed on : ' + args.HOST + '_' + str(df['device_type'][0]), size = 20);
Summary¶
The re-trained networks and the VGG16 network gets close results for most of the parameters extrated from the experiment 1, their difference rely on the accuracy of the categorization, as the VGG16 network is over confident compared to our networks. To make it even clearer we extracted a specific mean for each models :
Mean F1 score
for model_name in models_vgg.keys():
mean_f1_score = f1_score(df[df['model']==model_name]["top_1"] , df[df['model']==model_name]["label"], average='micro')
print(f'For the {model_name} model, the mean f1 score = {mean_f1_score*100:.4f} %' )
Mean categorization likelihood
for model_name in models_vgg.keys():
med_likelihood = np.mean(df[df['model']==model_name]["likelihood"])
print(f'For the {model_name} model, the mean clasification likelihood = {med_likelihood:.4f} %' )
Mean computation time
for model_name in models_vgg.keys():
med_likelihood = np.mean(df[df['model']==model_name]["time"])
print(f'For the {model_name} model, the mean computation time = {med_likelihood:.5f} s')
Mean frame per second
for model_name in models_vgg.keys():
med_likelihood = np.mean(df[df['model']==model_name]["fps"])
print(f'For the {model_name} model, the mean fps = {med_likelihood:.3f} Hz' )
Experiment 2: Image processing and recognition for differents resolutions¶
In order to infer on the robustness of our networks and the impact of the dataset transformation during the learning process I study that same indicators at different image resolutions.
scriptname = 'experiment_downsample.py'
%%writefile {scriptname}
#import model's script and set the output file
from experiment_train import *
filename = f'results/{datetag}_results_2_{args.HOST}.json'
print(f'{filename=}')
def main():
if os.path.isfile(filename):
df_downsample = pd.read_json(filename)
else:
i_trial = 0
df_downsample = pd.DataFrame([], columns=['model', 'likelihood', 'fps', 'time', 'label', 'i_label', 'i_image', 'image_size', 'filename', 'device_type', 'top_1'])
# image preprocessing
for image_size_ in args.image_sizes:
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=image_size_, batch_size=1)
print(f'Résolution de {image_size_=}')
# Displays the input image of the model
for i_image, (data, label) in enumerate(dataloaders['test']):
data, label = data.to(device), label.to(device)
for model_name in models_vgg.keys():
model = models_vgg[model_name]
model = model.to(device)
with torch.no_grad():
i_label_top = reverse_labels[image_datasets['test'].classes[label]]
tic = time.time()
out = model(data).squeeze(0)
_, indices = torch.sort(out, descending=True)
if model_name == 'vgg' : # our previous work
top_1 = labels[indices[0]]
percentage = torch.nn.functional.softmax(out[args.subset_i_labels], dim=0) * 100
likelihood = percentage[reverse_subset_i_labels[i_label_top]].item()
else :
top_1 = subset_labels[indices[0]]
percentage = torch.nn.functional.softmax(out, dim=0) * 100
likelihood = percentage[label].item()
dt = time.time() - tic
#print(f'The {model_name} model get {labels[i_label_top]} at {likelihood:.2f} % confidence in {dt:.3f} seconds, best confidence for : {top_1}')
df_downsample.loc[i_trial] = {'model':model_name, 'likelihood':likelihood, 'time':dt, 'fps': 1/dt,
'label':labels[i_label_top], 'i_label':i_label_top,
'i_image':i_image, 'filename':image_datasets['test'].imgs[i_image][0], 'image_size': image_size_, 'device_type':device.type, 'top_1':str(top_1)}
i_trial += 1
df_downsample.to_json(filename)
main()
%run -int {scriptname}
Here, again, we collect our results, and display all the data in a table
filename = f'results/{datetag}_results_2_{args.HOST}.json'
df_downsample = pd.read_json(filename)
df_downsample
Image display¶
The 64 worsts categorization likelihood, all models and sizes combined :
import imageio
N_image_i = 8
N_image_j = 8
fig, axs = plt.subplots(N_image_i, N_image_j, figsize=(fig_width*1.3, fig_width))
for i_image, idx in enumerate(df_downsample.sort_values(by=['likelihood'], ascending=True).head(N_image_i*N_image_j).index):
ax = axs[i_image%N_image_i][i_image//N_image_i]
ax.imshow(imageio.imread(image_datasets['test'].imgs[df_downsample.loc[idx]['i_image']][0]))
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel(df_downsample.loc[idx]['top_1'] + ' | ' + df_downsample.loc[idx]['model'] + ' | ' + str(df_downsample.loc[idx]['image_size']), color='r')
label = df_downsample.loc[idx]['label']
ax.set_ylabel(f'True= {label}', color='r')
fig.set_facecolor(color='white')
for image_size in args.image_sizes:
df_acc = pd.DataFrame({model_name: {subset_label: f1_score(df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["top_1"],
df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["label"],
average = 'micro')
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_acc.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(subset_labels)-.5, y=1/n_output, ls='--', ec='k', label='chance level')
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'F1-score for each models - experiment 2 - image size = {image_size}', size=20)
ax.set_ylabel('F1-score', size=20)
ax.set_xlabel('Label', size=20);
plt.show();
df_acc = pd.DataFrame({model_name: {image_size: f1_score(df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["top_1"],
df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["label"],
average='micro')
for image_size in args.image_sizes}
for model_name in models_vgg.keys()})
ax = df_acc.plot.bar(rot=0, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(models_vgg.keys())-.5, y=1/n_output, ls='--', ec='k', label='chance level')
# https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_label_demo.html
for container in ax.containers: ax.bar_label(container, padding=-50, color='black', fontsize=14, fmt='%.3f', rotation=90)
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'Experiment 2 - F1 score at different image size for each models ', size=20)
ax.set_ylabel('F1 score', size=20)
ax.set_xlabel('Image size', size=20)
plt.show();
ax = df_acc.T.plot.bar(rot=0, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(models_vgg.keys())-.5, y=1/n_output, ls='--', ec='k', label='chance level')
# https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_label_demo.html
for container in ax.containers: ax.bar_label(container, padding=-50, color='black', fontsize=14, fmt='%.3f', rotation=90)
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'Experiment 2 - F1 score for each models at different image size', size=20)
ax.set_ylabel('F1 score', size=20)
ax.set_xlabel('Model', size=20)
plt.show();
Computation time¶
A display of the differents computation time of each models on the same dataset for differents resolutions :
fig, axs = plt.subplots(figsize=(fig_width, fig_width/phi))
for color, model_name in zip(colors, models_vgg.keys()):
axs = sns.violinplot(x="image_size", y="time", data=df_downsample, inner="quartile", hue='model')
axs.set_title('Processing time (s) for each network at different image size. Processed on : ' + args.HOST + '_' + str(df_downsample['device_type'][0]), size = 20)
axs.set_ylabel('Computation time (s)', size=18)
axs.set_xlabel('Image size', size=18)
axs.set_yscale('log')
axs.grid(which='both', axis='y')
for side in ['top', 'right'] :axs.spines[side].set_visible(False)
h, l = axs.get_legend_handles_labels()
axs.legend(h[:5], l[:5], loc='upper center', fontsize=16);
Categorization likelihood¶
Let's display the likelihood of each models on the same dataset for differents resolutions. Here accuracies are displayed as a violin plot to allow a better representation of the models.
fig, axs = plt.subplots(figsize=(fig_width, fig_width/phi))
axs = sns.violinplot(x="image_size", y="likelihood", data=df_downsample, inner="quartile", hue='model', cut = 0, scale = 'width')
axs.set_title('Categorization likelihood for each network at different image size. Processed on : ' + args.HOST + '_' + str(df_downsample['device_type'][0]), size=20)
axs.set_ylabel('Categorization likelihood (%)', size=18)
axs.set_xlabel('Image size', size=18)
axs.legend(bbox_to_anchor=(1.2, .45), loc='lower right', fontsize = 20)
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
h, l = axs.get_legend_handles_labels()
Summary¶
We observe that for all networks combined, the best F1 score is reached for the $256 \times 256$ resolution and decreases whenever we increase ($512 \times 512$ pixels) or decrease ($64 \times 64$ pixels and $128 \times 128$ pixels) this variable. This is certainly due to the fact that the VGG16
networks were pre-trained on a dataset of $234 \times 234$ pixels images. The F1 score of the pre-trained networks is better than the VGG16
network. Among the five retrain networks the VGG_Scale
is the one that shows the most stable F1 score. Another impact of the variation of the image size in input is the computation time necessary to perform the detection. As we increase the size by a factor of $8$ (from $64$ to $512$, and therefore a pixel number factor of $64$), the computation time increases by a factor about $4$ for all the networks
Mean f1 score
for model_name in models_vgg.keys():
pprint(f'Benchmarking model {model_name}')
for image_size in args.image_sizes:
df_ = df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]
mean_f1_score = f1_score(df_["top_1"] , df_["label"] , average = 'micro')
print(f'For size {image_size}, the mean f1 score = {mean_f1_score*100:.4f} %' )
Mean categorization likelihood
for model_name in models_vgg.keys():
pprint(f'Benchmarking model {model_name}')
for image_size in args.image_sizes:
med_likelihood = np.mean(df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["likelihood"])
print(f'For size {image_size}, the mean clasification likelihood = {med_likelihood:.5f} %' )
Mean computation time
for model_name in models_vgg.keys():
pprint(f'Benchmarking model {model_name}')
for image_size in args.image_sizes:
med_likelihood = np.mean(df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["time"])
print(f'For size {image_size}, the mean computation time = {med_likelihood:.3f} s' )
Mean frame per second
for model_name in models_vgg.keys():
pprint(f'Benchmarking model {model_name}')
for image_size in args.image_sizes:
med_likelihood = np.mean(df_downsample[(df_downsample['model']==model_name) & (df_downsample['image_size']==image_size)]["fps"])
print(f'For size {image_size}, the mean fps = {med_likelihood:.3f} Hz' )
Experiment 3: Image processing and recognition on grayscale images¶
Again, another analysis of the robustness using the likelihood indicators but now with a grayscale transformation and compare them with the likelihood indicators from experiment 1.
scriptname = 'experiment_grayscale.py'
%%writefile {scriptname}
#import model's script and set the output file
from experiment_train import *
filename = f'results/{datetag}_results_3_{args.HOST}.json'
print(f'{filename=}')
def main():
if os.path.isfile(filename):
df_gray = pd.read_json(filename)
else:
i_trial = 0
df_gray = pd.DataFrame([], columns=['model', 'likelihood', 'fps', 'time', 'label', 'i_label', 'i_image', 'filename', 'device_type', 'top_1'])
# image preprocessing setting a grayscale output
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(image_size=args.image_size, p=1, batch_size=1)
# Displays the input image of the model
for i_image, (data, label) in enumerate(dataloaders['test']):
data, label = data.to(device), label.to(device)
for model_name in models_vgg.keys():
model = models_vgg[model_name]
model = model.to(device)
with torch.no_grad():
i_label_top = reverse_labels[image_datasets['test'].classes[label]]
tic = time.time()
out = model(data).squeeze(0)
if model_name == 'vgg' :
percentage = torch.nn.functional.softmax(out[args.subset_i_labels], dim=0) * 100
_, indices = torch.sort(out, descending=True)
top_1 = labels[indices[0]]
likelihood = percentage[reverse_subset_i_labels[i_label_top]].item()
else :
percentage = torch.nn.functional.softmax(out, dim=0) * 100
_, indices = torch.sort(out, descending=True)
top_1 = subset_labels[indices[0]]
likelihood = percentage[label].item()
dt = time.time() - tic
df_gray.loc[i_trial] = {'model':model_name, 'likelihood':likelihood, 'time':dt, 'fps': 1/dt,
'label':labels[i_label_top], 'i_label':i_label_top,
'i_image':i_image, 'filename':image_datasets['test'].imgs[i_image][0], 'device_type':device.type, 'top_1':str(top_1)}
print(f'The {model_name} model get {labels[i_label_top]} at {likelihood:.2f} % confidence in {dt:.3f} seconds, best confidence for : {top_1}')
i_trial += 1
df_gray.to_json(filename)
main()
%run -int {scriptname}
Collecting all the results, displaying all the data in a table
filename = f'results/{datetag}_results_3_{args.HOST}.json'
df_gray = pd.read_json(filename)
df_gray
Image display¶
The 64 worsts categorization likelihood, all models combined :
import imageio
N_image_i = 8
N_image_j = 8
fig, axs = plt.subplots(N_image_i, N_image_j, figsize=(fig_width*1.3, fig_width))
for i_image, idx in enumerate(df_gray.sort_values(by=['likelihood'], ascending=True).head(N_image_i*N_image_j).index):
ax = axs[i_image%N_image_i][i_image//N_image_i]
ax.imshow(imageio.imread(image_datasets['test'].imgs[df_gray.loc[idx]['i_image']][0], pilmode="L"), cmap='gray')
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel('Top 1 :' + df_gray.loc[idx]['top_1'] + ' | ' + df_gray.loc[idx]['model'], color='r')
label = df_gray.loc[idx]['label']
ax.set_ylabel(f'True= {label}', color='r')
fig.set_facecolor(color='white')
F1 score¶
Mean f1 score
df_f1_score = pd.DataFrame({model_name: {subset_label: f1_score(df_gray[(df_gray['model']==model_name) & (df_gray['label']==subset_label)]["top_1"],
df_gray[(df_gray['model']==model_name) & (df_gray['label']==subset_label)]["label"],
average='micro')
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_f1_score.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(subset_labels)-.5, y=1/n_output, ls='--', ec='k', label='chance level')
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title('F1-score for each models - experiment 1', size=20)
ax.set_ylabel('F1-score', size=20)
ax.set_xlabel('Label', size=20);
from sklearn.metrics import accuracy_score, precision_score, f1_score
df_acc = pd.DataFrame({model_name: {label: f1_score(df_[(df_['model']==model_name)]["top_1"],
df_[(df_['model']==model_name)]["label"],
average='micro')
for label, df_ in zip(['original', 'gray'], [df, df_gray])}
for model_name in models_vgg.keys()})
ax = df_acc.T.plot.bar(rot=0, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(models_vgg.keys())-.5, y=1/n_output, ls='--', ec='k', label='chance level')
# https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_label_demo.html
for container in ax.containers: ax.bar_label(container, padding=-50, color='black', fontsize=14, fmt='%.3f', rotation=90)
plt.legend(bbox_to_anchor=(1.1, .5), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'Experiment 3 - color vs gray images', size=20)
ax.set_ylabel('F1 Score', size=14)
plt.show();
Computation time¶
A display of the differents computation time of each models on the same dataset for a single resolution :
fig, axs = plt.subplots(len(models_vgg.keys()), 1, figsize=(fig_width, fig_width*phi/2))
for color, df_, label, legend in zip(['gray', 'red'], [df_gray, df], ['black', 'color'], ['Grayscale', 'Regular']):
for ax, model_name in zip(axs, models_vgg.keys()):
ax.set_ylabel('Frequency', fontsize=20)
df_[df_['model']==model_name]['time'].plot.hist(bins=150, lw=1, label=str(legend+ ' ' + model_name), ax=ax, color=color, density=True)
ax.legend(loc='upper right', fontsize=20)
ax.set_xlim(df_gray['time'].quantile(.01), df_gray['time'].quantile(.99))
ax.legend(bbox_to_anchor=(1.15, .5), loc='lower right')
axs[-1].set_xlabel('Processing time (s)', size=18)
axs[0].set_title('Processed on : ' + args.HOST + '_' + str(df['device_type'][0]), size = 20);
Categorization likelihood¶
Let's analyze the categorization likelihood of each models on the same dataset for color versus grayscale images. Here likelihood's are displayed as a violin plot to allow a better representation of the models.
import seaborn as sns
fig, axs = plt.subplots(figsize=(fig_width, fig_width/phi**2))
for color, df_, label in zip(['gray', 'red'], [df_gray, df], ['black', 'color']):
axs = sns.violinplot(x="model", y="likelihood", data=df_, inner="quartile", cut=0, color=color, alpha=.5, scale = 'width', label = color)
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
axs.set_title('Categorization likelihood for each network in color and grayscale. Processed on : ' + args.HOST + '_' + str(df_['device_type'][0]), size=20)
axs.set_ylabel('Categorization likelihood (%)', size=18)
axs.set_xlabel('Model', size=18)
fig.legend(['Color (Red)', 'Grayscale (Gray)'], bbox_to_anchor=(1.06, .45), fontsize=18,loc='center right');
Summary¶
The F1 score for all networks are affected by the use of grayscale images, even the VGG_Gray
, although the latter is the most robust. This result may originate from the fact that it was pre-trained on RGB images. However, the performance remains largely above the chance level, and this for all networks, which shows that, without colors, the networks can still discriminate the $10$ classes in most cases. For some images, this information is necessary for the discrimination, a need that can be partly compensated by transfer learning in the VGG_Gray
network.
Mean F1 score
for model_name in models_vgg.keys():
mean_f1_score_orig = f1_score(df[df['model']==model_name]["top_1"] , df[df['model']==model_name]["label"], average='micro')
mean_f1_score = f1_score(df_gray[df_gray['model']==model_name]["top_1"] , df_gray[df_gray['model']==model_name]["label"], average='micro')
print(f'For the {model_name} model, the mean clasification likelihood = {mean_f1_score*100:.5f} % (color = {mean_f1_score_orig*100:.5f} % )' )
Mean categorization likelihood
for model_name in models_vgg.keys():
med_likelihood_orig = np.mean(df[df['model']==model_name]["likelihood"])
med_likelihood = np.mean(df_gray[df_gray['model']==model_name]["likelihood"])
print(f'For the {model_name} model, the mean clasification likelihood = {med_likelihood:.5f} % (color = {med_likelihood_orig:.5f} % )' )
print(stats.ttest_1samp(df_gray[df_gray['model']==model_name]["likelihood"], np.mean(df[df['model']==model_name]["likelihood"])))
Mean computation time
for model_name in models_vgg.keys():
med_likelihood_orig = np.mean(df[df['model']==model_name]["time"])
med_likelihood = np.mean(df_gray[df_gray['model']==model_name]["time"])
print(f'For the {model_name} model, the mean computation time = {med_likelihood:.4f} s (color = {med_likelihood_orig:.4f} s )' )
Mean frame per second
for model_name in models_vgg.keys():
med_likelihood_orig = np.mean(df[df['model']==model_name]["fps"])
med_likelihood = np.mean(df_gray[df_gray['model']==model_name]["fps"])
print(f'For the {model_name} model, the mean fps = {med_likelihood:.3f} Hz (color = {med_likelihood_orig:.3f} Hz )' )
Experiment 4: Image processing and recognition on contrasted images¶
Again, same likelihood indicators but now with a contrast filter.
scriptname = 'experiment_contrast.py'
%%writefile {scriptname}
#import model's script and set the output file
from experiment_train import *
filename = f'results/{datetag}_results_4_{args.HOST}.json'
print(f'{filename=}')
def main():
if os.path.isfile(filename):
df_contrast = pd.read_json(filename)
else:
i_trial = 0
df_contrast = pd.DataFrame([], columns=['model', 'likelihood', 'fps', 'time', 'label', 'i_label', 'i_image', 'contrast', 'filename', 'device_type', 'top_1'])
# image preprocessing
for contrast in np.arange(1,110,10):
(dataset_sizes, dataloaders, image_datasets, data_transforms) = datasets_transforms(c=contrast, batch_size=1)
print(f'Contrast de {contrast=}')
# Displays the input image of the model
for i_image, (data, label) in enumerate(dataloaders['test']):
data, label = data.to(device), label.to(device)
for model_name in models_vgg.keys():
model = models_vgg[model_name]
model = model.to(device)
with torch.no_grad():
i_label_top = reverse_labels[image_datasets['test'].classes[label]]
tic = time.time()
out = model(data).squeeze(0)
_, indices = torch.sort(out, descending=True)
if model_name == 'vgg' : # our previous work
top_1 = labels[indices[0]]
percentage = torch.nn.functional.softmax(out[args.subset_i_labels], dim=0) * 100
likelihood = percentage[reverse_subset_i_labels[i_label_top]].item()
else :
top_1 = subset_labels[indices[0]]
percentage = torch.nn.functional.softmax(out, dim=0) * 100
likelihood = percentage[label].item()
dt = time.time() - tic
print(f'The {model_name} model get {labels[i_label_top]} at {likelihood:.2f} % confidence in {dt:.3f} seconds, best confidence for : {top_1}')
df_contrast.loc[i_trial] = {'model':model_name, 'likelihood':likelihood, 'time':dt, 'fps': 1/dt,
'label':labels[i_label_top], 'i_label':i_label_top,
'i_image':i_image, 'filename':image_datasets['test'].imgs[i_image][0], 'contrast': contrast, 'device_type':device.type, 'top_1':str(top_1)}
i_trial += 1
df_contrast.to_json(filename)
main()
%run -int {scriptname}
filename = f'results/{datetag}_results_4_{args.HOST}.json'
df_contrast = pd.read_json(filename)
df_contrast
Image display¶
The 64 worsts categorization likelihood, all models combined :
import imageio
N_image_i = 8
N_image_j = 8
fig, axs = plt.subplots(N_image_i, N_image_j, figsize=(fig_width*1.3, fig_width))
for i_image, idx in enumerate(df_contrast.sort_values(by=['likelihood'], ascending=True).head(N_image_i*N_image_j).index):
ax = axs[i_image%N_image_i][i_image//N_image_i]
ax.imshow(imageio.imread(image_datasets['test'].imgs[df_contrast.loc[idx]['i_image']][0]))
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel(df_contrast.loc[idx]['top_1'] + ' | ' + df_contrast.loc[idx]['model'] + ' | ' + str(df_contrast.loc[idx]['contrast']), color='r')
label = df_contrast.loc[idx]['label']
ax.set_ylabel(f'True= {label}', color='r')
fig.set_facecolor(color='white')
F1 score¶
And extract the f1 score for each networks :
from sklearn.metrics import accuracy_score, precision_score, f1_score
for contrast in np.arange(1,110,10):
pprint(f'Benchmarking contrast = {contrast}')
df_acc = pd.DataFrame({model_name: {subset_label: f1_score(df_contrast[(df_contrast['model']==model_name) & (df_contrast['contrast']==contrast)]["top_1"],
df_contrast[(df_contrast['model']==model_name) & (df_contrast['contrast']==contrast)]["label"],
average = 'micro')
for subset_label in subset_labels}
for model_name in models_vgg.keys()})
ax = df_acc.plot.bar(rot=60, figsize=(fig_width, fig_width//4), fontsize=18)
ax.set_ylim(0, 1)
ax.hlines(xmin=-.5, xmax=len(subset_labels)-.5, y=1/n_output, ls='--', ec='k', label='chance level')
plt.legend(bbox_to_anchor=(1.1, .35), loc='lower right')
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'Experiment 4 - Categorization f1 score for each network at different contrast = {contrast}', size=20)
ax.set_ylabel('F1 score', size=14)
plt.show();
df_acc = pd.DataFrame({model_name: {contrast: f1_score(df_contrast[(df_contrast['model']==model_name) & (df_contrast['contrast']==contrast)]["top_1"],
df_contrast[(df_contrast['model']==model_name) & (df_contrast['contrast']==contrast)]["label"],
average='micro')
for contrast in np.arange(1,110,10)}
for model_name in models_vgg.keys()})
ax = df_acc.T.plot.bar(rot=0, figsize=(fig_width, fig_width/2), fontsize=20, width=.9)
ax.set_ylim(0, 1)
ax.hlines(xmin=-4.5, xmax=len(models_vgg.keys())+4.5, y=1/n_output, ls='--', ec='k', label='chance level')
# https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_label_demo.html
for container in ax.containers: ax.bar_label(container, padding=-50, color='black', fontsize=16, fmt='%.3f', rotation=90,fontweight='bold')
plt.legend(bbox_to_anchor=(1.15, .2), loc='lower right', fontsize = 15)
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
ax.set_title(f'Experiment 4 - Categorization f1 score at different contrast for each network', size=25)
ax.set_ylabel('F1 score', size=25)
ax.set_xlabel('Model', size=25)
plt.show();
Computation time¶
As there is no big difference for the models, in order to have a clearer display, we chose to expose the characteristics for VGG_Gen
.
Here a display of the differents computation time on the same dataset for different contrast:
fig, axs = plt.subplots(figsize=(fig_width, fig_width/(phi*2)))
data = df_contrast.loc[df_contrast['model'] == 'vgg16_gen']
axs = sns.violinplot(x="contrast", y="time", data=data, inner="quartile")
axs.set_title('Processing time (s) for the VGG Gen network at different contrast. Processed on : ' + args.HOST + '_' + str(df_contrast['device_type'][0]), size = 20)
axs.set_ylabel('Computation time (s)', size=18)
axs.set_xlabel('Contrast factor', size=18)
axs.set_yscale('log')
axs.grid(which='both', axis='y')
for side in ['top', 'right'] :axs.spines[side].set_visible(False)
h, l = axs.get_legend_handles_labels()
axs.legend(h[:5], l[:5], loc='upper center', fontsize=16);
Categorization likelihood¶
Again, in order to have a clearer display, we chose to expose the the categorization likelihood for VGG_Gen
at different contrast.
fig, axs = plt.subplots(figsize=(fig_width, fig_width/(phi*2)))
data = df_contrast.loc[df_contrast['model'] == 'vgg16_gen']
axs = sns.violinplot(x="contrast", y="likelihood", data=data, inner="quartile", cut = 0, scale = 'width')
axs.set_title('Categorization likelihood for the VGG Gen network at different contrast.. Processed on : ' + args.HOST + '_' + str(df_contrast['device_type'][0]), size=20)
axs.set_ylabel('Categorization likelihood (%)', size=18)
axs.set_xlabel('Contrast factor', size=18)
ax.grid(which='both', axis='y')
for side in ['top', 'right'] :ax.spines[side].set_visible(False)
h, l = axs.get_legend_handles_labels();
Summary¶
All network's F1 score are affected by changing the contrast. However, as in experiment 3, the performance remains largely above the chance level, and this for all the re-trained networks, this distinction may from the fact that they were re-trained with a contrast transformation, which shows that our training process partly compensated the degradation of the input's images.
Mean f1 score
for model_name in models_vgg.keys():
pprint(f'Benchmarking model {model_name}')
for contrast in np.arange(1,110,10):
df_ = df_contrast[(df_contrast['model']==model_name) & (df_contrast['contrast']==contrast)]
mean_f1_score = f1_score(df_["top_1"] , df_["label"] , average = 'micro')
print(f'For contrast factor {contrast}, the mean f1 score = {mean_f1_score*100:.4f} %' )
Mean categorization likelihood
for model_name in models_vgg.keys():
pprint(f'Benchmarking model {model_name}')
for contrast in np.arange(1,110,10):
med_likelihood = np.mean(df_contrast[(df_contrast['model']==model_name) & (df_contrast['contrast']==contrast)]["likelihood"])
print(f'For contrast factor {contrast}, the mean clasification likelihood = {med_likelihood:.5f} %' )
Final summary¶
As a summary, we have shown here that implementing transfer learning on a subset of images reaches a higher accuracy than the VGG16 network. We have also shown that transfer learning could also be used to teach the network to different perturbations of the image, for instance changes in the resolution of in the colorspace. Thus, as there is no huge differences between the VGG_Gen
and VGG_Full
networks on this task, we infer that the training of a single layer is sufficient to perform the categorization. Again, as there is no huge differences between the VGG_Gen
and the VGG_Lin
networks on this task, the architecture used for the VGG_Gen
network seems sufficient in order to perform categorization. Such framework is thus promising for further applications which aim at modelling higher-order cognitive processes.