Novel visual computations

Let’s admit it: brains are not computers. Indeed, computers are still deceptive compared to biological perceptual systems. Think about rapidly detecting a novel object in clutter. Think about performing this with little supervision at a low energetic cost…

To narrow the gap between neuroscience and the theory of sensory processing computations, I am interested in bridging geometrical regularities found in natural scenes with the properties of neural computations as they are observed in sensory processes or behavior.

Follow @laurentperrinet


Laurent U Perrinet

Researcher in Computational Neuroscience

Institut de Neurosciences de la Timone


Laurent Perrinet is a computational neuroscientist specialized in large scale neural network models of low-level vision, perception and action, currently at the “Institut de Neurosciences de la Timone” (France), a joint research unit (CNRS / Aix-Marseille Université). He co-authored more than 40 articles in computational neuroscience and computer vision. He graduated from the aeronautics engineering school SUPAERO, in Toulouse (France) with a signal processing and applied mathematics degree. He received a PhD in Cognitive Science in 2003 on the mathematical analysis of temporal spike coding of images by using a multi-scale and adaptive representation of natural scenes. His research program is focusing in bridging the complex dynamics of realistic, large-scale models of spiking neurons with functional models of low-level vision. In particular, as part of the FACETS and BrainScaleS consortia, he has developed experimental protocols in collaboration with neurophysiologists to characterize the response of population of neurons. Recently, he extended models of visual processing in the framework of predictive processing in collaboration with the team of Karl Friston at the University College of London. This method aims at characterizing the processing of dynamical flow of information as an active inference process. His current challenge within the NeOpTo team is to translate, or compile in computer terminology, this mathematical formalism with the event-based nature of neural information with the aim of pushing forward the frontiers of Artificial Intelligence systems.


  • Computational Neuroscience
  • Machine Learning
  • Vision


  • Habilitation à diriger des recherches , 2014

    Aix Marseille Université

  • PhD. in Cognitive Science, 2003

    Université P. Sabatier, Toulouse, France

  • M.S. in Engineering, 1998

    Supaéro, Toulouse, France


Art <> Sciences

Listes d’actions entre art et sciences.

Tout public!

Listes d’actions destinées à la culture scientifique et au public en général.

Recent Publications

Quickly discover relevant content by filtering publications.

Humans adapt their anticipatory eye movements to the volatility of visual motion properties

Humans are able to accurately track a moving object with a combination of saccades and smooth eye movements. These movements allow …

An adaptive homeostatic algorithm for the unsupervised learning of visual features

The formation of structure in the visual system, that is, of the connections between cells within neural populations, is by large an …

A dual foveal-peripheral visual processing model implements efficient saccade selection

In computer vision, the visual search task consists in extracting a scarce and specific visual information (the target) from a large …

Meaningful representations emerge from Sparse Deep Predictive Coding

The formation of connections between neural cells is essentially emerging from an unsupervised learning process. During the development …

Top-down feedback in Hierarchical Sparse Coding

From a computer science perspective, the problem of optimal representation using Hierarchical Sparse Coding (HSC) is often solved using …

Speed-Selectivity in Retinal Ganglion Cells is Sharpened by Broad Spatial Frequency, Naturalistic Stimuli

Motion detection represents one of the critical tasks of the visual system and has motivated a large body of research. However, it …

Illusions et hallucinations visuelles : une porte sur la perception

Les illusions visuelles sont des créations d’artistes, de scientifiques et plus récemment, grâce aux réseaux sociaux, du grand …

This would not be possible without…





Wahiba Taouali

PostDoc in Computational Neuroscience


Angelo Franciosini

Phd candidate in Computational Neuroscience


Victor Boutin

Phd candidate in Computational Neuroscience


Hugo Ladret

master in Computational Neuroscience


Jean-Bernard Damasse

Phd in Computational Neuroscience


Kiana Mansour-Pour

Phd in Computational Neuroscience


Mina A Khoei

Phd in Computational Neuroscience


Jens Kremkow

Phd in Computational Neuroscience


Nicole Voges

PostDoc in Computational Neuroscience

Recent Events

2019-10-10: GDR vision 2019

Le GDR Vision réunit toute la communauté des chercheurs en France travaillant sur la perception visuelle (de la perception des …

2019-10-10: Atelier Utiliser l'apprentissage profond en vision

Le GDR Vision réunit toute la communauté française de chercheurs en vision. Nous aurons un atelier méthodologique le jeudi matin sur …

2019-10-07: Le temps des sens

Dans le monde qui nous entoure, nous percevons le temps s’écouler de façon immuable et universelle. Pourtant, il existe un temps pour …

Illusions et hallucinations visuelles : une porte sur la perception

Article de dissémination sur la perception visuelle, vue à travers illusions et hallucinations.

2019-05-20: Symposium on Active Inference at NeuroFrance 2019

We organized a Symposium at NeuroFrance 2019 entitled Active Inference: Bridging theoretical and experimental neurosciences. This is …

Recent & Upcoming Talks

Learning where to look: a foveated visuomotor control model

In computer vision, the visual search task consists in extracting a scarce and specific visual information (the target) from a large …

Should I stay or should I go? Humans adapt to the volatility of visual motion properties, and know about it

Animal behavior must constantly adapt to changes, for example when the state of an environmental context changes unexpectedly. For an …

Des illusions aux hallucinations visuelles: une porte sur la perception

Les objectifs sont : – mieux comprendre la fonction de la perception visuelle en explorant certaines limites ; – mieux …

Should I stay or should I go? Adaption of human observers to the volatility of visual inputs

Animal behavior has to constantly adapt to changes, for instance when unexpectedly switching the state of an environmental context. For …

From the retina to action: Understanding visual processing

Visual areas are essential in transforming the raw luminous signal into a representation which efficiently conveys information about …



MesoCentre (20182022)

MesoCentre (20182022) : access to the HPC resources of Aix-Marseille Université.

SpikeAI: laureat du Défi Biomimétisme (2019)

Algorithmes événementiels d’Intelligence Artificielle / Event-Based Artificial Inteligence (2019).

ANR BalaV1 (20132016)

ANR BalaV1: Balanced states in area V1 (2013–2016)

ANR CausaL (20182022)

ANR CausaL (20182022) : Cognitive​ ​architectures​ ​of​ Causal​ ​Learning.

ANR Horizontal-V1 (20172021)

ANR Horizontal-V1 (20172021): Connectivité Horizontale et Prédiction de Cohérences dans l’Intégration de Contour et …

ANR PredictEye (20182022)

ANR PredictEye (20182022) : Mapping and predicting trajectories for eye movements

ANR REM (20132016)

ANR REM : Renforcement et mouvements oculaires (20132016).

ANR SPEED (20132016)

ANR SPEED: Traitement de la vitesse dans les scènes visuelles naturelles (20132016).


ANR TRAJECTORY (20162019).

DOC2AMU (20162019)

DOC2AMU: An Excellence Fellowship (20162019).

Motion Clouds

MotionClouds are random dynamic stimuli optimized to study motion perception.

PhD ICN (2017 / 2021)

A grant from the Ph.D. program in Integrative and Clinical Neuroscience (PhD position, 2017 / 2021).

BrainScaleS (20112014)

BrainScaleS: Brain-inspired multiscale computation in neuromorphic hybrid systems (20112014).

CODDE (20082012)

CODDE: understanding brain and behaviour (20082012).

FACETS (20062010)

FACETS: Fast Analog Computing with Emergent Transient States (20062010).

FACETS-ITN (20102013)

FACETS-ITN: From Neuroscience to neuro-inspired computing (20102013)

PACE-ITN (20152019)

PACE-ITN: ITN Marie Curie network (20152019).