2018-12-23 Origins of the Von Mises distribution

Blah blah blah

Emphasis, aka italics, with asterisks or underscores.

Strong emphasis, aka bold, with asterisks or underscores.

Combined emphasis with asterisks and underscores.

Strikethrough uses two tildes. Scratch this.

I'm an inline-style link

I'm an inline-style link with title

I'm a reference-style link

I'm a relative reference to a repository file

You can use numbers for reference-style link definitions

Or leave it empty and use the link text itself.

URLs and URLs in angle brackets will automatically get turned into links. http://www.example.com or http://www.example.com and sometimes example.com (but not on Github, for example).

Some text to show that the reference links can follow later.

Here's our logo (hover to see the title text):

Inline-style: alt text

Reference-style: alt text

Inline code has back-ticks around it.

var s = "JavaScript syntax highlighting";
s = "Python syntax highlighting"
print s
No language indicated, so no syntax highlighting. 
But let's throw in a <b>tag</b>.

Colons can be used to align columns.

Tables Are Cool
col 3 is right-aligned $1600
col 2 is centered $12
zebra stripes are neat $1

There must be at least 3 dashes separating each header cell. The outer pipes (|) are optional, and you don't need to make the raw Markdown line up prettily. You can also use inline Markdown.

Markdown Less Pretty
Still renders nicely
1 2 3

Blockquotes are very handy in email to emulate reply text. This line is part of the same quote.

Quote break.

This is a very long line that will still be quoted properly when it wraps. Oh boy let's keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.

Let's first initialize the notebook:

In [11]:
from __future__ import division, print_function
import numpy as np
np.set_printoptions(precision=6, suppress=True)
import os
%matplotlib inline
#%config InlineBackend.figure_format='retina'
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
phi = (np.sqrt(5)+1)/2
fig_width = 10
figsize = (fig_width, fig_width/phi)
from IPython.display import display, HTML
def show_video(filename): 
    return HTML(data='<video src="{}" loop autoplay width="600" height="600"></video>'.format(filename))

%load_ext autoreload
%autoreload 2
In [42]:
N = 100
m_x, m_y = 5., 3
sigma_x, sigma_y = 1., .2
x, y = m_x + sigma_x*np.random.randn(N), m_y + sigma_y*np.random.randn(N)
In [43]:
x.min(), x.max()
(2.848184598670695, 7.231300146192632)
In [44]:
fig, ax = plt.subplots(1, 1, figsize=(fig_width, fig_width))
ax.scatter(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(0, 10);
In [45]:
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
In [47]:
fig, ax = plt.subplots(1, 1, figsize=(fig_width, fig_width), subplot_kw=dict(polar=True))
ax.scatter(theta % np.pi, r);
ax.set_ylim(0, 10);

projection on the ring: the von Mises distribution

application to neural modeling: a MWE with pyNN

some book keeping for the notebook

In [ ]:
%load_ext watermark
In [ ]:
%load_ext version_information
%version_information numpy, scipy, matplotlib, sympy, pillow, imageio
In [ ]:
cd ..
nikola build ; nikola deploy
cd posts


Comments powered by Disqus