A hitchhiker guide to Matching Pursuit

The Matching Pursuit algorithm is popular in signal processing and applies well to digital images.

I have contributed a python implementation and we will show here how we may use that for extracting a sparse set of edges from an image.



@inbook{Perrinet15bicv,
    title = {Sparse models},
    author = {Perrinet, Laurent U.},
    booktitle = {Biologically-inspired Computer Vision},
    chapter = {13},
    editor = {Keil, Matthias and Crist\'{o}bal, Gabriel and Perrinet, Laurent U.},
    publisher = {Wiley, New-York},
    year = {2015}
}

setting things up

We will take some "baby steps first to show how it works, and then apply that to an image .

At first, we will define the SparseEdges framework which will create the necessary processing steps, from the raw image, to creating the multi-resolution scheme and the Matching Pursuit algorithm:

In [1]:
from SparseEdges import SparseEdges
mp = SparseEdges('https://raw.githubusercontent.com/bicv/SparseEdges/master/default_param.py')
mp.pe.N = 4
mp.pe.do_mask = False
mp.pe.MP_alpha = 1.
mp.pe.do_whitening = False

This defines the following set of parameters:

In [2]:
print('Default parameters: ', mp.pe)
Default parameters:  {'verbose': 0, 'N_image': None, 'seed': 42, 'N_X': 256, 'N_Y': 256, 'noise': 0.33, 'do_mask': False, 'mask_exponent': 3.0, 'do_whitening': False, 'white_name_database': 'kodakdb', 'white_n_learning': 0, 'white_N': 0.07, 'white_N_0': 0.0, 'white_f_0': 0.4, 'white_alpha': 1.4, 'white_steepness': 4.0, 'white_recompute': False, 'base_levels': 1.618, 'n_theta': 24, 'B_sf': 0.4, 'B_theta': 0.17453277777777776, 'N': 4, 'MP_alpha': 1.0, 'd_width': 45.0, 'd_min': 0.5, 'd_max': 2.0, 'N_r': 6, 'N_Dtheta': 24, 'N_phi': 12, 'N_scale': 5, 'loglevel_max': 7, 'edge_mask': True, 'do_rank': False, 'scale_invariant': True, 'multiscale': True, 'kappa_phase': 0.0, 'weight_by_distance': True, 'svm_n_jobs': 1, 'svm_test_size': 0.2, 'N_svm_grid': 32, 'N_svm_cv': 50, 'C_range_begin': -5, 'C_range_end': 10.0, 'gamma_range_begin': -14, 'gamma_range_end': 3, 'svm_KL_m': 0.34, 'svm_tol': 0.001, 'svm_max_iter': -1, 'svm_log': False, 'svm_norm': False, 'figpath': 'results', 'do_edgedir': False, 'edgefigpath': 'results/edges', 'matpath': 'data_cache', 'edgematpath': 'data_cache/edges', 'datapath': 'database', 'figsize': 14.0, 'figsize_hist': 8, 'figsize_cohist': 8, 'formats': ['png', 'pdf', 'jpg'], 'dpi': 450, 'use_cache': True, 'scale': 0.8, 'scale_circle': 0.08, 'scale_chevrons': 2.5, 'line_width': 1.0, 'line_width_chevrons': 0.75, 'edge_scale_chevrons': 180.0}

The useful imports for a nice notebook:

In [3]:
import matplotlib
matplotlib.rcParams.update({'text.usetex': False})
%matplotlib inline
%config InlineBackend.figure_format='retina'
import matplotlib.pyplot as plt

import numpy as np
np.set_printoptions(precision=4)#, suppress=True)

fig_width = 14
In [4]:
print('Range of spatial frequencies: ', mp.sf_0)
Range of spatial frequencies:  [0.4545 0.2935 0.1895 0.1224 0.079  0.051  0.0329 0.0213 0.0137 0.0089
 0.0057]
In [5]:
print('Range of angles (in degrees): ', mp.theta*180./np.pi)
Range of angles (in degrees):  [-82.5 -75.  -67.5 -60.  -52.5 -45.  -37.5 -30.  -22.5 -15.   -7.5   0.
   7.5  15.   22.5  30.   37.5  45.   52.5  60.   67.5  75.   82.5  90. ]

testing one step of (Matching + Pursuit)

Here, we will synthesize an image using 2 log-Gabor filters and check that they are correctly retrieved using a few Matching Pursuit steps. An edge will be represented by a nd.array with respectively [x position, y center position, indice of angle in multi resolution, index of scale in multi resolution scheme] and a coefficient (a complex number whose argument determines the phase of the log-Gabor filter):

In [6]:
# one
edge_in, C_in= [3*mp.pe.N_X/4, mp.pe.N_Y/2, 2, 2], 42
# the second
edge_bis, C_bis = [mp.pe.N_X/8, mp.pe.N_Y/4, 8, 4], 4.*np.sqrt(2)*np.exp(1j*np.pi/4.)

Which results in

In [7]:
# filters in Fourier space
FT_lg_in = mp.loggabor(edge_in[0], edge_in[1], sf_0=mp.sf_0[edge_in[3]],
                         B_sf=mp.pe.B_sf, theta= mp.theta[edge_in[2]], B_theta=mp.pe.B_theta)
FT_lg_bis = mp.loggabor(edge_bis[0], edge_bis[1], sf_0=mp.sf_0[edge_bis[3]],
                         B_sf=mp.pe.B_sf, theta= mp.theta[edge_bis[2]], B_theta=mp.pe.B_theta)
# mixing both and shows one
FT_lg_ = C_in *  FT_lg_in + C_bis * FT_lg_bis
image = mp.invert(FT_lg_)

_ = mp.show_FT(FT_lg_, axis=True)
No description has been provided for this image

We may start by computing the linear coefficients in the multi resolution scheme

In [8]:
C = mp.linear_pyramid(image)

These coefficients correspond to a measure of how well the image matches with the filters in the multi-resolution scheme. These will be used in the Matching step. We then detect the best match corresponding to the coefficient with maximum absolute activity:

In [9]:
edge_star = mp.argmax(C)
print('Coordinates of the maximum ', edge_star, ', true value: ', edge_in)
print('Value of the maximum ', C[edge_star], ', true value: ', C_in)
Coordinates of the maximum  (192, 128, 2, 2) , true value:  [192.0, 128.0, 2, 2]
Value of the maximum  (41.99999999999932+4.213693403441275e-13j) , true value:  42

At this particular orientation and scale, the absolute activity looks like:

In [10]:
fig, a1, a2 = mp.show_spectrum(np.absolute(C[:, :, edge_star[2], edge_star[3]]), axis=True)
_ = a2.plot([edge_star[1]], [edge_star[0]], 'r*')
No description has been provided for this image

On our image, this looks like:

In [11]:
fig, a1, a2 = mp.show_spectrum(image, axis=True)
_ = a2.plot([edge_star[1]], [edge_star[0]], 'r*')
No description has been provided for this image

Let's now extract and show the "winner" of the Matching Step:

In [12]:
FT_star = mp.loggabor(edge_star[0], edge_star[1], sf_0=mp.sf_0[edge_star[3]],
                         B_sf=mp.pe.B_sf, theta= mp.theta[edge_star[2]], B_theta=mp.pe.B_theta)
im_star = mp.invert(FT_star)
_ = mp.show_FT(FT_star, axis=True)
No description has been provided for this image

Great, it looks like we have extracted the first edge. Let's first check that the energy of

  • the sum the extracted component energy,
  • maximum of its power spectrum (equivalent to the above, but we just check),
  • half the mean spectrum energy (half? rememeber the trick used in Log-Gabor filters) are all equal to one:
In [13]:
print(np.sum(im_star**2), mp.FTfilter(im_star, FT_star).max(), np.mean(np.abs(FT_star)**2)/2)
1.0000000000000002 1.0000000000000004 1.0000000000000004

Let's overlay the extracted edge on the image:

In [14]:
edge_star_in = np.array([edge_star[0], edge_star[1], mp.theta[edge_in[2]], mp.sf_0[edge_star[3]], np.absolute(C[edge_star]), np.angle(C[edge_star])])
mp.pe.figsize_edges = 9
fig, a = mp.show_edges(edge_star_in[:, np.newaxis], image=image)
No description has been provided for this image

Now, we may substract the residual from the image, it is the Pursuit step:

In [15]:
image_res = (image - C[edge_star] * im_star).real 
fig, a1, a2 = mp.show_spectrum(image_res, axis=True)
_ = a2.plot([edge_star[1]], [edge_star[0]], 'r*')
No description has been provided for this image

Looks pretty clear now that only the second edge remains. We may now repeat another Matching step on the residual image:

In [16]:
C = mp.linear_pyramid(image_res)
edge_star_bis = mp.argmax(C)
print('Coordinates of the maximum ', edge_star_bis, ', true value: ', edge_bis)
print('Value of the maximum ', C[edge_star_bis], ', true value: ', C_bis)
Coordinates of the maximum  (32, 64, 8, 4) , true value:  [32.0, 64.0, 8, 4]
Value of the maximum  (4+4.000000000000005j) , true value:  (4.000000000000001+4j)

Note: to store the complex value of the coefficient, we use the fact that it is easy to transform a complex number to 2 reals and back:

In [17]:
z = np.sqrt(2)*np.exp(1j*np.pi/4.)
z_, z_p = np.absolute(z), np.angle(z)
print(z, z_*np.exp(1j*z_p))
(1.0000000000000002+1j) (1.0000000000000002+1j)

Note that the linear coefficients corresponding to the first winning filter are canceled:

In [18]:
print('Value of the residual ', C[edge_star], ', initial value: ', C_in)
Value of the residual  (-1.1652065246228562e-14+5.182340906836718e-13j) , initial value:  42

Let's overlay the extracted edge on the image:

In [19]:
fig, a1, a2 = mp.show_spectrum(image_res, axis=True)
_ = a2.plot([edge_star_bis[1]], [edge_star_bis[0]], 'r*')
No description has been provided for this image

We have well extracted the two edges:

In [20]:
edge_stars = np.vstack((edge_star_in,
                        np.array([edge_star_bis[0], edge_star_bis[1], mp.theta[edge_star_bis[2]], mp.sf_0[edge_star_bis[3]], np.absolute(C[edge_star_bis]), np.angle(C[edge_star_bis])])))
print(edge_stars)
mp.pe.figsize_edges = 9
fig, a = mp.show_edges(edge_stars.T, image=image)
[[ 1.9200e+02  1.2800e+02 -1.1781e+00  1.8950e-01  4.2000e+01  1.0033e-14]
 [ 3.2000e+01  6.4000e+01 -3.9270e-01  7.9005e-02  5.6569e+00  7.8540e-01]]
No description has been provided for this image

testing four steps of Matching Pursuit

Let's redo these steps using the run_mp function:

In [21]:
# filters in Fourier space
FT_lg_in = mp.loggabor(edge_in[0], edge_in[1], sf_0=mp.sf_0[edge_in[3]],
                         B_sf=mp.pe.B_sf, theta= mp.theta[edge_in[2]], B_theta=mp.pe.B_theta)
FT_lg_bis = mp.loggabor(edge_bis[0], edge_bis[1], sf_0=mp.sf_0[edge_bis[3]],
                         B_sf=mp.pe.B_sf, theta= mp.theta[edge_bis[2]], B_theta=mp.pe.B_theta)
# mixing both and shows one
FT_lg_ = C_in *  FT_lg_in + C_bis * FT_lg_bis
In [22]:
fig = mp.show_FT(FT_lg_)
No description has been provided for this image
In [23]:
image = mp.invert(FT_lg_)
edges, C_res = mp.run_mp(image, verbose=True)
Edge  0 / 4  - Max activity  :  0.000  phase=  98.412  deg,  @  (192, 128, 2, 2)
Edge  1 / 4  - Max activity  :  0.000  phase=  -78.690  deg,  @  (32, 64, 8, 4)
Edge  2 / 4  - Max activity  :  0.000  phase=  67.620  deg,  @  (192, 128, 2, 2)
Edge  3 / 4  - Max activity  :  0.000  phase=  -96.698  deg,  @  (190, 127, 2, 2)
In [24]:
fig, a = mp.show_edges(edges, image=image)
No description has been provided for this image

Testing edge detection on a natural image

trying out on a flikr image from @Doug88888:

In [25]:
!curl https://farm7.staticflickr.com/6058/6370387703_5e718ea681_q_d.jpg -o ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/6370387703_5e718ea681_q_d.jpg
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 10602  100 10602    0     0  18814      0 --:--:-- --:--:-- --:--:-- 18831
In [26]:
%ls -l ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial*
-rw-r--r--  1 laurentperrinet  staff   98432 Jun 25 14:17 ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial.npy
-rw-r--r--  1 laurentperrinet  staff   16512 Jun 25 14:17 ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_MSE.npy
-rw-r--r--  1 laurentperrinet  staff   98432 Jun 18 18:26 ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_lena.npy
-rw-r--r--  1 laurentperrinet  staff  145757 Jun 26 12:05 ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.gif
-rw-r--r--  1 laurentperrinet  staff   84303 Jun 26 12:05 ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.mp4
%rm ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial.npy ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_MSE.npy%rm ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_MSE.npy
In [27]:
import numpy as np
from SparseEdges import SparseEdges
mp = SparseEdges('https://raw.githubusercontent.com/bicv/SparseEdges/master/default_param.py')
if not mp.pe.do_whitening: print('\!/ Wrong parameters... \!/')
    
# where should we store the data + figures generated by this notebook
import os
name = 'MPtutorial'
mp.pe.matpath, mp.pe.figpath = '../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit', '../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit'
mp.pe.do_mask = True

mp.pe.N = 2048
mp.pe.MP_alpha = 1.
mp.pe.MP_alpha = .8

mp.pe.mask_exponent = 6.

mp.init()

# defining input image (get it @ https://www.flickr.com/photos/doug88888/6370387703)
#image = mp.imread('https://farm7.staticflickr.com/6058/6370387703_5e718ea681_q_d.jpg')
image = mp.imread(os.path.join(mp.pe.matpath, '6370387703_5e718ea681_q_d.jpg'))

white = mp.pipeline(image, do_whitening=True)

import os
matname = os.path.join(mp.pe.matpath, name + '.npy')

try:
    edges = np.load(matname)
except:
    edges, C_res = mp.run_mp(white, verbose=True)
    np.save(matname, edges)    

matname_MSE = os.path.join(mp.pe.matpath, name + '_MSE.npy')
try:
    MSE = np.load(matname_MSE)
except:
    MSE = np.ones(mp.pe.N)
    image_rec = np.zeros_like(image)
    for i_N in range(mp.pe.N):
        MSE[i_N] =  ((white-image_rec)**2).sum()
        image_rec += mp.reconstruct(edges[:, i_N][:, np.newaxis])
        
    np.save(matname_MSE, MSE)        

Showing the original image with the edges overlaid:

In [28]:
#edges = np.load(matname)

fig_width_pt = 318.670  # Get this from LaTeX using \showthe\columnwidth
inches_per_pt = 1.0/72.27               # Convert pt to inches
fig_width = fig_width_pt*inches_per_pt  # width in inches
mp.pe.figsize_edges = .382 * fig_width  # useful for papers
mp.pe.figsize_edges = 9 # useful in notebooks
mp.pe.line_width = 1.
mp.pe.scale = 1.
fig, a = mp.show_edges(edges, image=image, show_phase=True, show_mask=True)
#mp.savefig(fig, name + '_rec')
No description has been provided for this image

A nice property of Matching Pursuit is that one can reconstruct the image from the edges:

In [29]:
image_rec = mp.reconstruct(edges)
print('remaining energy  = ', ((white-image_rec)**2).sum()/(white**2).sum()*100, '%')
remaining energy  =  1.7582915882828347 %

The whitened reconstructed image looks like:

In [30]:
fig, a = mp.show_edges(edges, image=image_rec);
No description has been provided for this image

Knowing that we may reconstructing back a non-whitened image by applying the inverse filter:

In [31]:
fig, a = mp.show_edges(edges, image=mp.dewhitening(white));
No description has been provided for this image

Then we may reconstruct the image estimated from the edges:

In [32]:
fig, a = mp.show_edges(edges, image=mp.dewhitening(image_rec));
No description has been provided for this image

Another nice property of Matching Pursuit is that one may guess the reconstructed error just from the coefficients, without having to actually reconstruct the image:

In [33]:
# checking the quick computation of the MSE in MP
MSE_0 = (white**2).sum()
print('stats on white:', white.mean(), white.std(), np.sqrt(MSE_0), np.sqrt(MSE[0]))
print ('mp.pe.MP_alpha=', mp.pe.MP_alpha)    
MP_alpha = 1.2 #mp.pe.MP_alpha
MSE_MP = np.ones(mp.pe.N)
MSE_MP[1:] = 1. - np.cumsum(edges[4, :-1]**2) / MSE_0  * (2 -  mp.pe.MP_alpha)/mp.pe.MP_alpha

plt.figure(figsize=(12,6))
plt.subplot(111)
plt.plot(np.sqrt(MSE/MSE[0]), 'ro', label='true', alpha=.2)
plt.plot(np.sqrt(MSE_MP), 'g--', label='MP-vec', lw=2)
plt.xlim([0, mp.pe.N])
plt.ylim([0, 1])
plt.xlabel('# atoms')
plt.ylabel('MSE')
_ = plt.legend()
stats on white: -3.362092974025879e-06 0.13311745527744864 19.967618297985922 19.967618297985922
mp.pe.MP_alpha= 0.8
No description has been provided for this image

Note that the representation is extremly sparse:

In [34]:
print('Total number of coefficients:', int(mp.oc))
print('Number of active coefficients:', mp.pe.N)
print('Ratio of active coefficients:', (mp.pe.N/mp.oc)*100., '%')
Total number of coefficients: 5400000
Number of active coefficients: 2048
Ratio of active coefficients: 0.037925925925925925 %

These coefficients can be plotted on the multiresolution representation:

In [35]:
opts= {'vmin':0., 'vmax':1., 'interpolation':'nearest', 'origin':'upper'}

fig_width = 14
phi = (np.sqrt(5) +1.)/2. # golden number
fig = plt.figure(figsize=(fig_width, fig_width/phi))
xmin, ymin, size = 0, 0, 1.

C_sparse = np.zeros((mp.pe.N_X, mp.pe.N_Y, mp.pe.n_theta, mp.n_levels))

for edge in edges.T:
    x, y, theta, sf, coeff, phase = edge
    i_theta = np.argmax(mp.theta == theta)
    level = np.argmax(mp.sf_0 == sf)
    C_sparse[int(x), int(y), i_theta, level] += coeff
    
fig, axs = mp.golden_pyramid(C_sparse);

#mp.savefig(fig, name + '_pyr');
/Users/laurentperrinet/pool/science/LogGabor/LogGabor/LogGabor.py:95: RuntimeWarning: invalid value encountered in true_divide
  im_RGB /= im_RGB.max()
/usr/local/lib/python3.6/site-packages/numpy/core/_methods.py:29: RuntimeWarning: invalid value encountered in reduce
  return umr_minimum(a, axis, None, out, keepdims)
<Figure size 1008x622.978 with 0 Axes>
No description has been provided for this image

Voilà, hope you liked this introduction! Please leave comments below if you have any question regarding this post.

Showing progressive reconstruction

Below, we show that a nice property of Matching Pursuit is that it allows to progressively reconstruct the image.

In [36]:
image_true = mp.dewhitening(white)
In [37]:
list_of_number_of_edge = [ 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] # np.logspace(1, 10, 10, base=2) #

fig_width = 14
vmax = 1.
fig, axs = plt.subplots(len(list_of_number_of_edge), 2, figsize=(fig_width, fig_width/2*len(list_of_number_of_edge)))
vmax = image.max()
for i_ax, number_of_edge in enumerate(list_of_number_of_edge):
    edges_ = edges[:, :number_of_edge][..., np.newaxis]
    image_rec = mp.dewhitening(mp.reconstruct(edges_))
    fig, axs[i_ax, 0] = mp.imshow((image_true-image_rec)/vmax, fig=fig, ax=axs[i_ax, 0], norm=False)
    axs[i_ax, 0].text(96, 144, 'N=%d' % number_of_edge, color='red', fontsize=32)
    fig, axs[i_ax, 1] = mp.imshow((image_rec), fig=fig, ax=axs[i_ax, 1], norm=False)
    plt.tight_layout()

#mp.savefig(fig, name + '_rec')
No description has been provided for this image
In [38]:
list_of_number_of_edge = [ 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] # np.logspace(1, 10, 10, base=2) #

fig_width = 14
vmax = 1.
vmax = image.max()
for number_of_edge in list_of_number_of_edge:
    fig, axs = plt.subplots(1, 2, figsize=(fig_width, fig_width/2))
    edges_ = edges[:, :number_of_edge][..., np.newaxis]
    image_rec = mp.dewhitening(mp.reconstruct(edges_))
    fig, axs[0] = mp.imshow((image_true-image_rec)/vmax, fig=fig, ax=axs[0], norm=False)
    axs[0].text(96, 144, 'N=%d' % number_of_edge, color='red', fontsize=32)
    fig, axs[1] = mp.imshow((image_rec), fig=fig, ax=axs[1], norm=False)
    plt.tight_layout()
    #mp.savefig(fig, 'MP_' + str(number_of_edge), formats=['png'])
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
!pip install moviepy
In [39]:
import moviepy.editor as mpy
from moviepy.video.io.bindings import mplfig_to_npimage

def make_frame_mpl(i_frame):
    fig_mpl, ax = plt.subplots(1, figsize=(5, 5), facecolor='white')
    ax = fig_mpl.add_axes([0., 0., 1., 1.], facecolor='w')
    ax.cla()
    plt.setp(ax, xticks=[])
    plt.setp(ax, yticks=[])
    #ax.axis(c='b', lw=0, frame_on=False)
    ax.grid(b=False, which="both")
    number_of_edge = list_of_number_of_edge[int(i_frame)]
    edges_ = edges[:, :number_of_edge][..., np.newaxis]
    image_rec = mp.dewhitening(mp.reconstruct(edges_))
    fig_mpl, ax = mp.imshow((image_rec)/vmax, fig=fig_mpl, ax=ax, norm=False)
    ax.text(96, 144, 'N=%d' % number_of_edge, color='red', fontsize=32)
    return mplfig_to_npimage(fig_mpl) # RGB image of the figure

animation = mpy.VideoClip(make_frame_mpl, duration=len(list_of_number_of_edge))
animation.ipython_display(fps=1, loop=1, autoplay=1)
 93%|█████████▎| 13/14 [00:26<00:02,  2.02s/it]
Out[39]:
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
In [40]:
_ = animation.write_videofile(os.path.join(mp.pe.figpath, name + '_rec.mp4'), fps=1)
[MoviePy] >>>> Building video ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.mp4
[MoviePy] Writing video ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.mp4
 93%|█████████▎| 13/14 [00:26<00:02,  2.00s/it]
[MoviePy] Done.
[MoviePy] >>>> Video ready: ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.mp4 


No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
In [41]:
!ffmpeg -y -i ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.mp4 ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.gif
ffmpeg version 4.0.1 Copyright (c) 2000-2018 the FFmpeg developers
  built with Apple LLVM version 9.1.0 (clang-902.0.39.2)
  configuration: --prefix=/usr/local/Cellar/ffmpeg/4.0.1 --enable-shared --enable-pthreads --enable-version3 --enable-hardcoded-tables --enable-avresample --cc=clang --host-cflags= --host-ldflags= --enable-gpl --enable-libmp3lame --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libxvid --enable-opencl --enable-videotoolbox --disable-lzma
  libavutil      56. 14.100 / 56. 14.100
  libavcodec     58. 18.100 / 58. 18.100
  libavformat    58. 12.100 / 58. 12.100
  libavdevice    58.  3.100 / 58.  3.100
  libavfilter     7. 16.100 /  7. 16.100
  libavresample   4.  0.  0 /  4.  0.  0
  libswscale      5.  1.100 /  5.  1.100
  libswresample   3.  1.100 /  3.  1.100
  libpostproc    55.  1.100 / 55.  1.100
Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.mp4':
  Metadata:
    major_brand     : isom
    minor_version   : 512
    compatible_brands: isomiso2avc1mp41
    encoder         : Lavf57.56.101
  Duration: 00:00:13.00, start: 0.000000, bitrate: 51 kb/s
    Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 360x360, 51 kb/s, 1 fps, 1 tbr, 16384 tbn, 2 tbc (default)
    Metadata:
      handler_name    : VideoHandler
Stream mapping:
  Stream #0:0 -> #0:0 (h264 (native) -> gif (native))
Press [q] to stop, [?] for help
[swscaler @ 0x7fe8e0844c00] No accelerated colorspace conversion found from yuv420p to bgr8.
Output #0, gif, to '../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_rec.gif':
  Metadata:
    major_brand     : isom
    minor_version   : 512
    compatible_brands: isomiso2avc1mp41
    encoder         : Lavf58.12.100
    Stream #0:0(und): Video: gif, bgr8, 360x360, q=2-31, 200 kb/s, 1 fps, 100 tbn, 1 tbc (default)
    Metadata:
      handler_name    : VideoHandler
      encoder         : Lavc58.18.100 gif
frame=   13 fps=0.0 q=-0.0 Lsize=     142kB time=00:00:12.01 bitrate=  97.1kbits/s speed= 153x    
video:141kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.624776%
In [42]:
!curl https://raw.githubusercontent.com/bicv/SparseEdges/master/database/lena256.png  -o ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/lena256.png
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 68859  100 68859    0     0   156k      0 --:--:-- --:--:-- --:--:--  156k
%rm ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_lena.npy ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/MPtutorial_lena_MSE.npy
In [43]:
name =  'MPtutorial_lena'

mp = SparseEdges('https://raw.githubusercontent.com/bicv/SparseEdges/master/default_param.py')
mp.pe.N = 2048
mp.pe.MP_alpha = 1.

# defining input image
image = mp.imread('https://raw.githubusercontent.com/bicv/SparseEdges/master/database/lena256.png')
#image = mp.imread('lena256.png')
mp.set_size(image)
mp.init()

white = mp.pipeline(image, do_whitening=True)


try:
    edges = np.load(name + '.npy')
except:
    edges, C_res = mp.run_mp(white, verbose=True)
    np.save(name + '.npy', edges)    

fig_width_pt = 318.670  # Get this from LaTeX using \showthe\columnwidth
inches_per_pt = 1.0/72.27               # Convert pt to inches
fig_width = fig_width_pt*inches_per_pt  # width in inches
mp.pe.figsize_edges = 9 #.382 * fig_width
mp.pe.line_width = 3.
mp.pe.scale = .5

fig, a = mp.show_edges(edges, image=mp.dewhitening(white), show_phase=False, show_mask=True)
#mp.savefig(fig, name)

image_rec = mp.reconstruct(edges, do_mask=False)        
fig, a = mp.show_edges(edges, image=mp.dewhitening(image_rec), show_phase=False, show_mask=True)
#mp.savefig(fig, name + '_rec')        
No description has been provided for this image
No description has been provided for this image
In [44]:
%cd -q ../files/2015-05-22-a-hitchhiker-guide-to-matching-pursuit/
%run MPtutorial_lena.py
%cd -q ../../posts

some book keeping for the notebook

In [45]:
%load_ext watermark
%watermark
2018-06-26T12:49:22+02:00

CPython 3.6.5
IPython 6.4.0

compiler   : GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.2)
system     : Darwin
release    : 17.6.0
machine    : x86_64
processor  : i386
CPU cores  : 36
interpreter: 64bit
In [46]:
%load_ext version_information
%version_information numpy, scipy, matplotlib
Out[46]:
Software Version
Python 3.6.5 64bit [GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.2)]
IPython 6.4.0
OS Darwin 17.6.0 x86_64 i386 64bit
numpy 1.14.5
scipy 1.1.0
matplotlib 2.2.2
Tue Jun 26 12:49:23 2018 CEST