[Stage M1] Chloé Pasturel : week 4

  • simulations avec différents MCs
  • ring avec représentation de la vitesse angulaire
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt

import numpy as np
import MotionClouds as mc

fig_width_pt = 646.79  # Get this from LaTeX using \showthe\columnwidth
inches_per_pt = 1.0/72.27               # Convert pt to inches
fig_width = fig_width_pt*inches_per_pt  # width in inches
In [2]:
sf_0 = 0.15
B_sf = 0.05
theta_0 = np.pi/2
B_theta = 0.15
loggabor = True

def get_grids(N_X, N_Y):
    fx, fy = np.mgrid[(-N_X//2):((N_X-1)//2 + 1), (-N_Y//2):((N_Y-1)//2 + 1)]
    fx, fy = fx*1./N_X, fy*1./N_Y
    return fx, fy

def frequency_radius(fx, fy):
    N_X, N_Y = fx.shape[0], fy.shape[1]
    R2 = fx**2 + fy**2
    R2[N_X//2 , N_Y//2] = np.inf
    return np.sqrt(R2)

def envelope_orientation(fx, fy, theta_0=theta_0, B_theta=B_theta, norm = True):
    theta = np.arctan2(fx, fy)
    env =  np.exp(np.cos(2*(theta-theta_0))/B_theta**2)
    #return (1/(2*np.pi*iv(0, (1/((B_theta)**2)))))*env
    if norm: env /= np.sqrt((env**2).sum())
    return env

def envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf, loggabor=loggabor, norm = True):
    if sf_0 == 0.: return 1.
    if loggabor:
        fr = frequency_radius(fx, fy)
        env = 1./fr*np.exp(-.5*(np.log(fr/sf_0)**2)/(np.log((sf_0+B_sf)/sf_0)**2))
        if norm: env /= np.sqrt((env**2).sum())
        return env
    else:
        return np.exp(-.5*(frequency_radius(fx, fy) - sf_0)**2/B_sf**2)

fx, fy = get_grids(mc.N_X, mc.N_Y)
fr = frequency_radius(fx, fy)
In [27]:
env = envelope_radial(fx, fy)

fig, ax = plt.subplots(1, 4, figsize=(14, 9))
for i, (f, label) in enumerate(zip([fx, fy, fr, env], ['x', 'y', 'f_r', 'env'])):
    ax[i].matshow(f)
    ax[i].set_title(label)
    ax[i].set_xticks([])
    ax[i].set_yticks([])
    
No description has been provided for this image
In [28]:
env = envelope_radial(fx, fy) * envelope_orientation(fx, fy)

fig, ax = plt.subplots(1, 4, figsize=(14, 9))
for i, (f, label) in enumerate(zip([fx, fy, fr, env], ['x', 'y', 'f_r', 'env'])):
    ax[i].matshow(f)
    ax[i].set_title(label)
    ax[i].set_xticks([])
    ax[i].set_yticks([])
    
No description has been provided for this image

Figure

In [5]:
#  réalisation du motion clouds

theta0 = np.pi/2
Btheta = 0.15
theta_0 = [0, np.pi/4, np.pi/2]
B_theta = [0.1, 0.5, 1.]

def texture(env):
 return np.fft.fft2(np.fft.ifftshift(env * np.exp(1j * 2 * np.pi * np.random.rand(mc.N_X, mc.N_Y)))).real

fig, ax = plt.subplots(1, 3, figsize=(fig_width, fig_width*6/18))
for i, (theta0_, label) in enumerate(zip(theta_0, [r'$\theta = \pi$', r'$\theta = \pi/4$', r'$\theta = \pi/2$']) ) :
    env = envelope_radial(fx, fy) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=Btheta)
    I = texture(env)
    ax[i].matshow(I, cmap=plt.cm.gray)
    ax[i].set_title(label)
#    ax[i].set_xticks(np.linspace(0, 120, 5))
#    ax[i].set_yticks(np.linspace(0, 120, 5))
    ax[i].set_xticks([])
    ax[i].set_yticks([])
#plt.title(u'Réalisation du Motion Clouds')
plt.tight_layout()
fig.savefig('figures/realisation_MC_theta0(week4).pdf')


fig, ax = plt.subplots(1, 3, figsize=(fig_width, fig_width*6/18))
for i, (Btheta_, label) in enumerate(zip(B_theta, [r'$B_\theta = 0.1$', r'$B_\theta = 0.5$', r'$B_\theta = 1.0$']) ) :
    env = envelope_radial(fx, fy) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=Btheta_)
    I = texture(env)
    ax[i].matshow(I, cmap=plt.cm.gray)
    ax[i].set_title(label)
    ax[i].set_xticks([])
    ax[i].set_yticks([])
#plt.title(u'Réalisation du Motion Clouds')
plt.tight_layout()
fig.savefig('figures/realisation_MC_Btheta(week4).pdf')
No description has been provided for this image
No description has been provided for this image

Réponse théorique de l'énergie du filtre linéaire

In [6]:
# prédiction de la réponse spikante maximale

env = envelope_radial(fx, fy) * envelope_orientation(fx, fy)

reponse = env**2

fig, ax = plt.subplots(figsize=(14, 9))
ax.matshow(reponse)
plt.title(u'Réponse spikante')
Out[6]:
<matplotlib.text.Text at 0x110738f90>
No description has been provided for this image
In [7]:
# montrons que la convolution d'un MC avec un gabor donne un von - Mises
sf_0 = 0.15
B_sf = 0.05
theta_0 = np.pi/2
B_theta = 0.15
loggabor = True
# testons d'abord la convolution avec un angle arbitraire
seed = None
np.random.seed(seed=seed)
def texture(env):
    I= np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(env * np.exp(1j * 2 * np.pi * np.random.rand(mc.N_X, mc.N_Y)))).real)
    #I /= np.sqrt((env**2).sum())
    I /= env.sum()
    return I

def impulse(env, phi=2 * np.pi):
    I = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(env * np.exp(1j * phi))).real)
    #I /= np.sqrt((env**2).sum())
    I /= env.sum()
    return I

env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta_0, B_theta=B_theta)
env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=np.random.rand()*np.pi, B_theta=B_theta)

fig, ax = plt.subplots(1, 2, figsize=(14, 9))
for i, (f, label) in enumerate(zip([texture(env_in), impulse(env_V1)], [u'Texture', u'Gabor'])):
    ax[i].matshow(f, cmap=plt.cm.gray)
    ax[i].set_title(label)
    ax[i].set_xticks([])
    ax[i].set_yticks([])    
No description has been provided for this image

Pour justifier la convolution circulaire que nous allons utiliser voir :

http://stackoverflow.com/questions/18172653/convolving-a-periodic-image-with-python

In [8]:
#from scipy.signal import fftconvolve as convolve
# convolution circulaire
def convolve(image_in, image_V1):
    env_in = np.fft.fft2(image_in)
    env_V1 = np.fft.fft2(image_V1)
    return np.fft.fftshift(np.fft.ifft2((env_in*env_V1)).real)

R = convolve(texture(env_in), impulse(env_V1))
print R.shape
fig, ax = plt.subplots(figsize=(14, 9))
ax.matshow(R, cmap=plt.cm.gray)
plt.title(u"Convolution d'un MC avec un gabor")
print (R**2).sum() / mc.N_X**4 # à normaliser
(128, 128)
6.5244606908e-46
No description has been provided for this image
In [9]:
# images des convolutions avec différents angles
N_theta=360
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, 10)

for i, theta0_ in enumerate(theta_0) :
    env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
    env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta)
    R = convolve(texture(env_in), impulse(env_V1))
    fig, ax = plt.subplots(1, 3, figsize=(14, 9))
    for i, (f, label) in enumerate(zip([texture(env_in), impulse(env_V1), R], [u'Texture', u'Gabor', u'convolution'])):
        ax[i].matshow(f, cmap=plt.cm.gray)
        ax[i].set_title(label)
        ax[i].set_xticks([])
        ax[i].set_yticks([])
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image

Figure

In [10]:
N_theta=360
theta0 = np.pi/2
theta_0 = np.pi/4

env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta_0, B_theta=B_theta)
R = convolve(texture(env_in), impulse(env_V1))

fig, ax = plt.subplots(1, 3, figsize=(fig_width, fig_width*6/18))
for i, (f, label) in enumerate(zip([texture(env_in), impulse(env_V1), R], [u'Texture', u'Gabor', u'Convolution'])):
    ax[i].matshow(f, cmap=plt.cm.gray)
    ax[i].set_title(label)
    ax[i].set_xticks([])
    ax[i].set_yticks([])
    
plt.tight_layout()
fig.savefig('figures/texture_gabor_convolution(week4).pdf')
No description has been provided for this image
In [11]:
# évolution du gain / bandwidth avec différents angles
N_theta = 360
sf_0 = 0.15
B_sf = 0.05
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)
B_theta = 0.15

gain = np.zeros((N_theta))

for i, theta0_ in enumerate(theta_0) :
    env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
    env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta)
    R = convolve(texture(env_in), impulse(env_V1))
    gain[i] = (R**2).mean() / (mc.N_X*mc.N_Y)**2

mean = np.sum(gain*theta_0)/np.sum(gain)
bandwidth = np.sqrt(np.sum(gain*(theta_0-mean)**2)/np.sum(gain))
gain_max0 = gain.max()

fig, ax = plt.subplots(figsize=(18, 6))
_ = ax.plot(theta_0, gain / gain_max0 )
_ = ax.text(2., .5, 'mean = %.2f, bw = %.2f' % (mean,bandwidth))
_ = ax.set_xlabel(r'$\theta_{0}$')
_ = ax.set_ylabel(r'Gain')
No description has been provided for this image

selectivite en fonction des paramètres du filtre de V1 (sf_0, B_sf, theta_0, B_theta)

selectivite en fonction de sf_0

In [12]:
B_sf = 0.05
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)
B_theta = 0.15


# évolution du gain en fonction de sf_0
N_test = 5
sf0 = 0.15
sf_0 = np.linspace(0.01, .3, N_test)

mean = np.zeros((N_test))
bandwidth = np.zeros((N_test))


fig, ax = plt.subplots(1, 1, figsize=(18, 6))
colors = ['k', 'r', 'y', 'g', 'c', 'b', 'ro', 'yo', 'go', 'co',  'bo']
for i_test, (sf_0_, color) in enumerate(zip(sf_0, colors[:N_test])):
    gain = np.zeros((N_theta))
    for i, theta0_ in enumerate(theta_0) :
        env_in = envelope_radial(fx, fy, sf_0=sf0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
        env_V1 = envelope_radial(fx, fy, sf_0=sf_0_, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta)
        R = convolve(texture(env_in), impulse(env_V1))
        gain[i] = ((R**2).mean() / (mc.N_X*mc.N_Y)**2) / gain_max0
    ax.plot(theta_0, gain , color, alpha=0.5)
    mean[i_test] = np.sum(gain*theta_0)/np.sum(gain)
    bandwidth[i_test] = np.sqrt(np.sum(gain*(theta_0-mean[i_test])**2)/np.sum(gain))
ax.set_xlabel(r'$\theta_{0}$')
ax.set_ylabel(r'Gain')

print mean, bandwidth

fig, ax = plt.subplots(1, 2, figsize=(18, 6))
ax[0].plot(sf_0, mean, 'r', alpha=0.5)
ax[0].plot(sf_0, theta0*np.ones(N_test), 'b--', alpha=0.5)
ax[0].set_ylim([.9*theta0, 1.1*theta0])
ax[1].plot(sf_0, bandwidth, 'r', alpha=0.5)
ax[1].set_ylim([0, .2])

#ax[0].axis('tight')
ax[0].set_xlabel(r'sf_0')
ax[0].set_ylabel(r'mean')
#ax[1].axis('tight')
ax[1].set_xlabel(r'sf_0')
_ = ax[1].set_ylabel(r'bandwidth')
[ 1.572224    1.56942755  1.57033707  1.57174283  1.57255281] [ 0.08717323  0.07579885  0.07472725  0.07718378  0.07513938]
No description has been provided for this image
No description has been provided for this image

selectivite en fonction de B_sf

In [13]:
sf_0 = 0.15
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)
B_theta = 0.15

# évolution du gain en fonction de B_sf
N_test = 5
Bsf = 0.05
B_sf = np.linspace(0.01, 1., N_test)

mean = np.zeros((N_test))
bandwidth = np.zeros((N_test))

fig, ax = plt.subplots(figsize=(18, 6))
for i_test, (B_sf_, color) in enumerate(zip(B_sf, colors[:N_test])):
    gain = np.zeros((N_theta))
    for i, theta0_ in enumerate(theta_0) :
        env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=Bsf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
        env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf_) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta)
        R = convolve(texture(env_in), impulse(env_V1))
        gain[i] = ((R**2).mean() / (mc.N_X*mc.N_Y)**2)/ gain_max0
    ax.plot(theta_0, gain, color, alpha=0.5)
    mean[i_test] = np.sum(gain*theta_0)/np.sum(gain)
    bandwidth[i_test] = np.sqrt(np.sum(gain*(theta_0-mean[i_test])**2)/np.sum(gain))
ax.set_xlabel(r'$\theta_{0}$')
ax.set_ylabel(r'Gain')


print mean, bandwidth


fig, ax = plt.subplots(1, 2, figsize=(18, 6))
ax[0].plot(B_sf, mean, 'r', alpha=0.5)
ax[0].plot(B_sf, theta0*np.ones(N_test), 'b--', alpha=0.5)
ax[0].set_ylim([.9*theta0, 1.1*theta0])
ax[1].plot(B_sf, bandwidth, 'r', alpha=0.5)
ax[1].set_ylim([0, .2])

#ax[0].axis('tight')
ax[0].set_xlabel(r'B_sf')
ax[0].set_ylabel(r'mean')
#ax[1].axis('tight')
ax[1].set_xlabel(r'B_sf')
_ = ax[1].set_ylabel(r'bandwidth')
[ 1.5715285   1.57177095  1.56949447  1.5698324   1.56988947] [ 0.07328953  0.07574617  0.0754913   0.07768964  0.0754156 ]
No description has been provided for this image
No description has been provided for this image

selectivite en fonction de B_theta

In [14]:
sf_0 = 0.15
B_sf = 0.05
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)

# évolution du gain en fonction de B_theta
N_test = 10
Btheta = 0.15
B_theta = np.linspace(.1, 2., N_test)

mean = np.zeros((N_test))
bandwidth = np.zeros((N_test))

fig, ax = plt.subplots(figsize=(18, 6))
for i_test, (B_theta_, color) in enumerate(zip(B_theta, colors[:N_test])) :
    gain = np.zeros((N_theta))
    for i, theta0_ in enumerate(theta_0) :
        env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=Bsf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=Btheta)
        env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf_) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta_)
        R = convolve(texture(env_in), impulse(env_V1))
        gain[i] = ((R**2).mean() / (mc.N_X*mc.N_Y)**2)/gain_max0
    ax.plot(theta_0, gain, color, alpha=0.5)
    mean[i_test] = np.sum(gain*theta_0)/np.sum(gain)
    bandwidth[i_test] = np.sqrt(np.sum(gain*(theta_0-mean[i_test])**2)/np.sum(gain))
ax.set_xlabel(r'$\theta_{0}$')
ax.set_ylabel(r'Gain')

print mean, bandwidth

fig, ax = plt.subplots(1, 2, figsize=(18, 6))
ax[0].plot(B_theta, mean, 'r', alpha=0.5)
ax[0].plot(B_theta, theta0*np.ones(N_test), 'b--', alpha=0.5)
ax[0].set_ylim([.9*theta0, 1.1*theta0])
ax[1].plot(B_theta, bandwidth, 'r', alpha=0.5)
ax[1].set_ylim([0, 1.])

#ax[0].axis('tight')
ax[0].set_xlabel(r'B_theta')
ax[0].set_ylabel(r'mean')
#ax[1].axis('tight')
ax[1].set_xlabel(r'B_theta')
_ = ax[1].set_ylabel(r'bandwidth')
[ 1.56875403  1.57042957  1.57195141  1.57349354  1.56947689  1.56646674
  1.56732406  1.57067984  1.5726279   1.57197047] [ 0.06617958  0.12260714  0.19434988  0.28306913  0.40465995  0.52508696
  0.61788581  0.68543446  0.73341314  0.7687074 ]
No description has been provided for this image
No description has been provided for this image

On observe que le changement des paramètre sf_0, B_sf, theta_0 ne modifie pas la moyenne et la bandwidth de la convolution

B_theta ne modifie pas la moyenne mais modifie la bandwidth (augmente puis semble arriver à saturation quand = 3.)

Selectivite en fonction des paramètres de la texture (sf_0, B_sf, theta_0, B_theta)

selectivite en fonction de sf_0

In [15]:
B_sf = 0.05
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)
B_theta = 0.15


# évolution du gain en fonction de sf_0
N_test = 5
sf0 = 0.15
sf_0 = np.linspace(0.01, .3, N_test)

mean = np.zeros((N_test))
bandwidth = np.zeros((N_test))


fig, ax = plt.subplots(1, 1, figsize=(18, 6))
colors = ['k', 'r', 'y', 'g', 'c', 'b', 'ro', 'yo', 'go', 'co',  'bo']
for i_test, (sf_0_, color) in enumerate(zip(sf_0, colors[:N_test])):
    gain = np.zeros((N_theta))
    for i, theta0_ in enumerate(theta_0) :
        env_in = envelope_radial(fx, fy, sf_0=sf_0_, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
        env_V1 = envelope_radial(fx, fy, sf_0=sf0, B_sf=B_sf) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta)
        R = convolve(texture(env_in), impulse(env_V1))
        gain[i] = ((R**2).mean() / (mc.N_X*mc.N_Y)**2) / gain_max0
    ax.plot(theta_0, gain , color, alpha=0.5)
    mean[i_test] = np.sum(gain*theta_0)/np.sum(gain)
    bandwidth[i_test] = np.sqrt(np.sum(gain*(theta_0-mean[i_test])**2)/np.sum(gain))
ax.set_xlabel(r'$\theta_{0}$')
ax.set_ylabel(r'Gain')

print mean, bandwidth

fig, ax = plt.subplots(1, 2, figsize=(18, 6))
ax[0].plot(sf_0, mean, 'r', alpha=0.5)
ax[0].plot(sf_0, theta0*np.ones(N_test), 'b--', alpha=0.5)
ax[0].set_ylim([.9*theta0, 1.1*theta0])
ax[1].plot(sf_0, bandwidth, 'r', alpha=0.5)
ax[1].set_ylim([0, .2])

#ax[0].axis('tight')
ax[0].set_xlabel(r'sf_0')
ax[0].set_ylabel(r'mean')
#ax[1].axis('tight')
ax[1].set_xlabel(r'sf_0')
_ = ax[1].set_ylabel(r'bandwidth')
[ 1.57033552  1.57237246  1.5709161   1.57133805  1.56955788] [ 0.07639756  0.07522209  0.07440618  0.07535127  0.07554677]
No description has been provided for this image
No description has been provided for this image

selectivite en fonction de B_sf

In [16]:
sf_0 = 0.15
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)
B_theta = 0.15

# évolution du gain en fonction de B_sf
N_test = 5
Bsf = 0.05
B_sf = np.linspace(0.01, 1., N_test)

mean = np.zeros((N_test))
bandwidth = np.zeros((N_test))

fig, ax = plt.subplots(figsize=(18, 6))
for i_test, (B_sf_, color) in enumerate(zip(B_sf, colors[:N_test])):
    gain = np.zeros((N_theta))
    for i, theta0_ in enumerate(theta_0) :
        env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf_) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta)
        env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=Bsf) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=B_theta)
        R = convolve(texture(env_in), impulse(env_V1))
        gain[i] = ((R**2).mean() / (mc.N_X*mc.N_Y)**2)/ gain_max0
    ax.plot(theta_0, gain, color, alpha=0.5)
    mean[i_test] = np.sum(gain*theta_0)/np.sum(gain)
    bandwidth[i_test] = np.sqrt(np.sum(gain*(theta_0-mean[i_test])**2)/np.sum(gain))
ax.set_xlabel(r'$\theta_{0}$')
ax.set_ylabel(r'Gain')


print mean, bandwidth


fig, ax = plt.subplots(1, 2, figsize=(18, 6))
ax[0].plot(B_sf, mean, 'r', alpha=0.5)
ax[0].plot(B_sf, theta0*np.ones(N_test), 'b--', alpha=0.5)
ax[0].set_ylim([.9*theta0, 1.1*theta0])
ax[1].plot(B_sf, bandwidth, 'r', alpha=0.5)
ax[1].set_ylim([0, .2])

#ax[0].axis('tight')
ax[0].set_xlabel(r'B_sf')
ax[0].set_ylabel(r'mean')
#ax[1].axis('tight')
ax[1].set_xlabel(r'B_sf')
_ = ax[1].set_ylabel(r'bandwidth')
[ 1.56856432  1.57193146  1.56884488  1.57112907  1.5703577 ] [ 0.07462171  0.07558502  0.07447181  0.07376597  0.07590689]
No description has been provided for this image
No description has been provided for this image

Figure

selectivite en fonction de B_theta

In [17]:
sf_0 = 0.15
B_sf = 0.05
theta0 = np.pi/2
theta_0 = np.linspace(0., np.pi, N_theta, endpoint=False)

# évolution du gain en fonction de B_theta
N_test = 10
Btheta = 0.15
B_theta = np.linspace(.1, 1., N_test)

N_gabor, xmax = 100, np.pi
dx = xmax / N_gabor
theta_out = np.linspace(0., np.pi, N_gabor)

mean = np.zeros((N_test))
bandwidth = np.zeros((N_test))
gain_out = np.zeros(B_theta.shape)
sigma_p = np.zeros(B_theta.shape)
gain_p = np.zeros(B_theta.shape)
mean_p = np.zeros(B_theta.shape)

colors = ['k', 'r', 'y', 'g', 'c', 'b', 'm', 'k', 'r', 'c', 'g', 'c', 'b', 'm']

fig, ax = plt.subplots(figsize=(fig_width, fig_width*6/18.))
for i_test, (B_theta_, color) in enumerate(zip(B_theta, colors[:N_test])) :
    gain = np.zeros((N_theta))
    p = np.zeros((N_theta))
    for i, theta0_ in enumerate(theta_0) :
        env_in = envelope_radial(fx, fy, sf_0=sf_0, B_sf=Bsf) * envelope_orientation(fx, fy, theta_0=theta0, B_theta=B_theta_)
        env_V1 = envelope_radial(fx, fy, sf_0=sf_0, B_sf=B_sf_) * envelope_orientation(fx, fy, theta_0=theta0_, B_theta=Btheta)
        p[i] = (dx/(2*np.pi*B_theta_*Btheta))*np.exp(-2*((theta0_-theta0)**2)/(B_theta_**2+Btheta**2))
        R = convolve(texture(env_in), impulse(env_V1))
        gain[i] = ((R**2).mean() / (mc.N_X*mc.N_Y)**2)/ gain_max0 / .18
    gain_out[i_test] = gain.max()
    mean_p[i_test] = np.sum((p**2)*theta_0)/np.sum(p**2)
    gain_p[i_test] = p.max()
    ax.semilogy(theta_0*180/np.pi, gain, color, alpha=0.7)
    ax.semilogy(theta_0*180/np.pi,(p**2)/dx, color, marker='o', alpha=0.25)
    mean[i_test] = np.sum(gain*theta_0)/np.sum(gain)
    bandwidth[i_test] = np.sqrt(np.sum(gain*(theta_0-mean[i_test])**2)/np.sum(gain))
ax.set_xlim([0, 180])
ax.set_ylim([1e-6, 10.])
ax.set_xticks(np.linspace(0, 180, 5))
ax.set_yticks(np.linspace(1e-6, 10, 5))
#plt.tight_layout()
ax.set_xlabel(r'$\theta_{0}$ ' u'(degrés)')
ax.set_ylabel(r'nombre de spikes')
#ax.set_title(u'Courbe de sélectivité en fonction du paramêtre de la texture ' r'$B_{\theta}$')
fig.savefig('figures/selectivite_Btheta(week4).pdf')
No description has been provided for this image
In [18]:
print gain_out,gain_p, gain_out/gain_p
gain_p /= gain_out.max()
gain_out /= gain_out.max()
print gain_out,gain_p, gain_out/gain_p
[ 0.81912921  0.2717424   0.15869923  0.08300208  0.05510532  0.04008408
  0.02650276  0.01915059  0.01457867  0.01089413] [ 0.33333333  0.16666667  0.11111111  0.08333333  0.06666667  0.05555556
  0.04761905  0.04166667  0.03703704  0.03333333] [ 2.45738762  1.63045442  1.42829305  0.996025    0.82657983  0.72151337
  0.55655793  0.45961406  0.3936241   0.32682392]
[ 1.          0.33174547  0.19374139  0.10132966  0.06727305  0.04893499
  0.0323548   0.0233792   0.01779777  0.01329965] [ 0.40693621  0.2034681   0.1356454   0.10173405  0.08138724  0.0678227
  0.05813374  0.05086703  0.04521513  0.04069362] [ 2.45738762  1.63045442  1.42829305  0.996025    0.82657983  0.72151337
  0.55655793  0.45961406  0.3936241   0.32682392]
In [19]:
R.shape
Out[19]:
(128, 128)
In [20]:
fig, ax = plt.subplots(1, 3, figsize=(fig_width, fig_width*6/18.))
ax[0].plot(B_theta*180/np.pi, mean*180/np.pi, 'r', alpha=0.7)
#ax[0].plot(B_theta*180/np.pi, theta0*np.ones(N_test)*180/np.pi, 'k--', alpha=0.7)
ax[0].plot(B_theta*180/np.pi, mean_p*180/np.pi, 'ro', alpha=0.5)
ax[0].set_xlim([0., 60.])
ax[0].set_ylim([0., 180.])
ax[0].set_xticks(np.linspace(0, 60, 5))
ax[0].set_yticks(np.linspace(0., 180., 5))
ax[1].plot(B_theta*180/np.pi, gain_out, 'r', alpha=0.7)
ax[1].plot(B_theta*180/np.pi, gain_p, 'ro', alpha=0.5)
ax[1].set_xlim([0., 60.])
ax[1].set_ylim([0., gain_out.max()])
ax[1].set_xticks(np.linspace(0, 60, 5))
ax[1].set_yticks(np.linspace(0, 1, 5))
ax[2].plot(B_theta*180/np.pi, bandwidth*180/np.pi, 'r', alpha=0.7)
ax[2].plot(B_theta*180/np.pi, np.sqrt(.25/2*(B_theta**2+Btheta**2))*180/np.pi, 'ro', alpha=0.5)
#ax[2].set_xlim([0., 60.])
#ax[2].set_ylim([0, 30])
ax[2].set_xticks(np.linspace(0, 60, 5))
ax[2].set_yticks(np.linspace(0, 30, 5))

#ax[0].axis('tight')
ax[0].set_xlabel(r'$B_{\theta}$ ' u'(degrés)')
ax[0].set_ylabel(u'moyenne (degrés)')

ax[1].set_xlabel(r'$B_{\theta}$ ' u'(degrés)')
ax[1].set_ylabel(r'gain')
#ax[1].axis('tight')
ax[2].set_xlabel(r'$B_{\theta}$ ' u'(degrés)')
_ = ax[2].set_ylabel(u'largeur de bande (degrés)')
plt.tight_layout()
fig.savefig('figures/mean_gain_bandwidth_Btheta(week4).pdf')
print gain_out
[ 1.          0.33174547  0.19374139  0.10132966  0.06727305  0.04893499
  0.0323548   0.0233792   0.01779777  0.01329965]
No description has been provided for this image

On observe que le changement des paramètre sf_0, B_sf, theta_0 ne modifie pas la moyenne et la bandwidth de la convolution

B_theta ne modifie pas la moyenne mais modifie la bandwidth (augmente puis semble arriver à saturation quand = 3.)

Prédiction théorique

Réponse spikante

I = les stimili

G = recepteur

F est la fonction de fourier

$$ I = F^{-1}(\varepsilon \cdot e^{i \phi})$$ $$ G = F^{-1}(\varepsilon^{,})$$

Réponse linéaire neuronale : $$ I \circ G = F^{-1}(F(I) \cdot F(G)) = F^{-1}(\varepsilon^{,} \cdot \varepsilon \cdot e^{i \phi}) $$

d'après le théorème de Parseval : $$ (f)^{2} = (F(f))^{2} $$

la réponse spikante est donc : $$ (I \circ G)^{2} = (\varepsilon^{,} \cdot \varepsilon \cdot e^{i \phi})^{2} = \varepsilon^{2} \cdot \varepsilon^{,2}$$

Multiplication de deux fonctions gaussiennes $\varepsilon$ et $\gamma$ donne une gaussienne :

$$ \varepsilon(x) = \frac {1} {\sigma_{1} \sqrt{2\pi}} \cdot e^{\frac {-(x-m_{1})^{2}} {2\sigma_{1}^{2}}} ~~et~~ \gamma (x) = \frac {1} {\sigma_2 \sqrt{2\pi}} \cdot e^{\frac {-(x-m_2)^{2}} {2\sigma_{2}^{2}}} $$

$$ (\varepsilon \cdot \gamma) (m) = \frac {G} {\sigma \sqrt{2\pi}} \cdot e^{\frac{-(m-m)^{2}} {2\sigma^{2}}} $$

$$ \sigma^{-2} = \sigma_{1}^{-2} + \sigma_{2}^-{2} $$ $$ m \sigma^{-2} = m_{1} \sigma_{1}^{-2} + m_{2} \sigma_{2}^{-2} $$

en particulier, la valeur à la moyenne $m$ donne:

$$ (\varepsilon \cdot \gamma) (m) = \varepsilon(m) \cdot \gamma(m) = \frac {1} {2\pi \sigma_1 \sigma_2} \cdot e^{- \frac{1}{2} \frac{(m_2-m_1)^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}}$$

donc $~\frac{G}{\sigma \sqrt{2\pi}} = \frac{1}{2\pi \sigma_1 \sigma_2} \cdot e^{- \frac{1}{2} \frac{(m_2-m_1)^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}}$ car $~e^{\frac{-(m-m)^{2}}{2\sigma^{2}}} = e^{0} = 1 $

Le gain $~\frac{G}{\sigma \sqrt{2\pi}}$ est donc modulé par la différence entre les deux moyennes et leurs $\sigma$

In [21]:
def gain_theorique(m1, m2, sigma1, sigma2):
    return 1/(2*np.pi*sigma1*sigma2)*np.exp(-.5*(m2-m1)**2/(sigma2**2+sigma1**2))

N, xmax = 1000, 10.
x = np.linspace(-xmax, xmax, N)
dx = xmax / N
m1, sigma1 = 1, .3
m2, sigma2 = -3, .6 
p1 = dx/(np.sqrt(2*np.pi)*sigma1)*np.exp(-.5*(x-m1)**2/sigma1**2)
#p1 /= p1.sum()
p2 = dx/(np.sqrt(2*np.pi)*sigma2)*np.exp(-.5*(x-m2)**2/sigma2**2)
plt.plot(x, p1)
plt.plot(x, p2, 'r')
plt.plot(x, p1*p2/(p1*p2).sum(), 'g')
print p1.sum(), p2.sum(), (p1*p2).max(), gain_theorique(m1, m2, sigma1, sigma2)
0.4995 0.4995 1.68060869714e-12 1.68173219025e-08
No description has been provided for this image
In [22]:
m1, sigma1 = 1.2, .3
m2, sigma2 = 1., .6
p1 = (dx/(np.sqrt(2*np.pi)*sigma1))*np.exp(-.5*(x-m1)**2/sigma1**2)
p2 = (dx/(np.sqrt(2*np.pi)*sigma2))*np.exp(-.5*(x-m2)**2/sigma2**2)
plt.plot(x, p1)
plt.plot(x, p2, 'r')
plt.plot(x, p1*p2/(p1*p2).sum(), 'g')
print p1.sum(), p2.sum(), (p1*p2/dx**2).max(), gain_theorique(m1, m2, sigma1, sigma2)
0.4995 0.4995 0.845297326761 0.845757094654
No description has been provided for this image
In [23]:
m1, sigma1 = 0, .2
m2, sigma2 = np.linspace (-5, 5, 1000), .6

def gain_sim(m1, m2, sigma1, sigma2, dx):
    p1 = (dx/(np.sqrt(2*np.pi)*sigma1))*np.exp(-.5*(x-m1)**2/sigma1**2)
    p2 = (dx/(np.sqrt(2*np.pi)*sigma2))*np.exp(-.5*(x-m2)**2/sigma2**2)
    return (p1*p2/dx).max()

G_sim = np.linspace (-5, 5, 1000)
for i, m2_ in enumerate(m2):
    G_sim[i] = gain_sim(m1, m2_, sigma1, sigma2, dx)

# ici G = G/(np.sqrt(2*np.pi)*sigma)
G = (dx/(2*np.pi*sigma1*sigma2))*np.exp(-.5*((m2-m1)**2)/(sigma1**2+sigma2**2))

fig, ax = plt.subplots(1, 2, figsize=(14, 8))
ax[0].plot(m2, G, 'b', m2, G_sim, 'ro', alpha=.2)

font = {'family' : 'serif',
        'color'  : 'darkred',
        'weight' : 'normal',
        'size'   : 16,
        }
font1 = {'family' : 'serif',
        'color'  : 'black',
        'weight' : 'bold',
        'size'   : 12,
        }

ax[0].set_title(u'Gain théorique et Gain de la simulation', fontdict=font)
ax[0].set_xlabel(u'm2', fontdict=font1)
ax[0].set_ylabel(u'Gain', fontdict=font1)
#print p1.sum(), p2.sum(), (p1*p2).max(), gain_theorique(m1, m2, sigma1, sigma2)
ax[1].plot(G , G_sim, '+', alpha=.4)
ax[1].plot(np.linspace(G.min(), G.max(), 100),np.linspace(G_sim.min(), G_sim.max(), 100), '--')
ax[1].set_xlabel(u'Gain Théorique', fontdict=font1)
ax[1].set_ylabel(u'Gain Simulé', fontdict=font1)
Out[23]:
<matplotlib.text.Text at 0x1104ece90>
No description has been provided for this image
In [24]:
# maintenant on varie la bandwidth pour 3 valeurs de m2 = [m1-1, m1, m1+1]

comparaison avec la vraie convolution

In [25]:
convo = (np.convolve(p1, p2)/dx)**2
plt.plot(convo)
plt.plot((p1/dx)**2, 'r')
plt.plot((p2/dx)**2, 'g')
Out[25]:
[<matplotlib.lines.Line2D at 0x112182210>]
No description has been provided for this image

on va maintenant appliquer aux textures

In [26]:
from IPython.display import FileLink
FileLink('Week 5.ipynb',url_prefix='')
Out[26]:
Path (Week 5.ipynb) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
In [26]: