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Fig. 7. Predicted contour groups. (A) An example stimulus that contains a target contour. (B) The connected line segments show the groups
obtained by applying a local grouping function (based directly upon the edge co-occurrence statistics) followed by a simple transitivity rule: if
(edge element) a binds to b, and b binds to c, then a becomes bound to c.

5. Predictions

Is the local grouping function that the visual system
uses for contour grouping consistent with the co-occur-
rence statistics of natural images? To address this ques-
tion, we generated predictions for the psychophysical
experiment.

Consider first the absolute co-occurrence statistics.
To generate predictions using the edge co-occurrence
data in Fig. 3C, it is necessary to introduce two
parameters. The first is a ‘tolerance’ parameter, !,
which assigns a relative probability to orientation dif-
ferences around the maximum probabilities shown in
Fig. 3C. This parameter produces a small family of
local grouping functions, all of which are consistent
with the data in Fig. 3C. The second parameter is a
binding criterion, ", which is a threshold on the local
grouping function: any pair of edge elements whose
co-occurrence probability exceeds this criterion get
bound together, otherwise they do not. An example of
a thresholded local grouping function is shown in Fig.
3E. The line segments drawn in this diagram show all
the specific combinations of distance, orientation differ-
ence, and direction that result in grouping to the refer-
ence element. Predictions for the contour detection task
were obtained by combining a thresholded local group-
ing function with the simplest possible integration
mechanism — a transitivity rule: if (edge element) a
binds to b, and b binds to c, then a becomes bound to
c (Geisler & Super, 2000).

A predicted response (‘first’or ‘second’ interval) was
computed for each of the specific stimuli presented in
each trial of the experiment, for each subject. The
predictions for a given trial were generated as follows.
First, we retrieved the specific list of line segments
presented in the first and second intervals of the trial.
Second, each line segment was compared with every

other line segment, and a pair of line segments was
bound together if they satisfied one of the geometrical
relationships specified in the thresholded local grouping
function (i.e. Fig. 3E). Third, the final groups were
obtained by applying the transitivity rule over all the
two-element groups formed in the second step. Fourth,
and finally, we assumed that, in our two-interval forced
choice task, observers selected the interval containing
the longest group that was consistent with the possible
contour locations. The result of this processing is
demonstrated in Fig. 7B, where the connected elements
show the final groups that are formed for the image in
Fig. 7A. As can be seen, the longest group corresponds
to the target contour.

The open circles in Fig. 6A–D show the predictions
for all the data using the thresholded local grouping
function in Fig. 3E, which was obtained from Fig. 3C
by setting !=20° and "=0.05. As can be seen, the
predictions are remarkably good (given only two free
parameters). The value of the Pearson correlation co-
efficient for the predicted accuracy versus the observed
accuracy is 0.87.

To generate predictions using the Bayesian co-occur-
rence statistics only one free parameter is required —
the likelihood-ratio criterion ". Recall that the rational
decision rule is to group a given pair of edge elements
together if the likelihood ratio exceeds this criterion.
Thus, the optimal local grouping function is obtained
by thresholding the likelihood ratio histogram shown in
Fig. 3D. The resulting function for the best fitting value
of " (0.38) is shown in Fig. 3F. The psychophysical
predictions are not shown here, but they are slightly
better than those obtained using the absolute co-occur-
rence statistics. The value of the Pearson correlation
coefficient for the predicted accuracy versus the ob-
served accuracy is 0.89.

[Geisler et al., 2001, Vision Research]



[Bosking et al, 1997, Journal of Neuroscience]
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(a) Connections in
iso-OR patches

(b) Connections in
OR pinwheels

(c) Connections in
OR saddles

(d) Connections in
OR fractures

Fig. 5.12. Long-range lateral connections in the orientation map. The lateral inhibitory
connection weights of four sample neurons from the marked regions in Figure 5.9 are shown
in the top row, situated in the orientation map as shown in the bottom row. The small white
square in both figures identifies the neuron; the black outline on top indicates the extent of
these connections before self-organization, and the white outline on the map plot shows their
extent after self-organization and pruning. On top, the color coding represents the connected
neuron’s orientation, selectivity, and connection strength, as in Figure 5.7; the map encodes
orientation and selectivity as in Figure 5.9c. The connection histogram (CH) in the middle
shows how many connections come from neurons of each orientation. For every neuron, the
strongest connections originate from the neuron’s nearby neighbors, as indicated by the large,
bright central area in each weight plot. The long-range connection patterns differ depending
on where the neuron is located in the orientation map. (a) Neurons in the middle of an OR
patch receive connections from neurons with similar preferences, aligned along the orientation
preference of the neuron (for this neuron, about 65�, i.e. blue). (b) At pinwheel centers, the
connections come from all directions and orientations and are nearly isotropic. The histogram
is nearly flat, with small peaks near orientations that happen to be overrepresented in the
pinwheel. (c) Connections at saddle points extend along the two orientations of the saddle,
in this case red (0�) and blue (65�). The neuron also makes connections with intermediate
orientations and directions; these connections match its own OR preference (30�, purple), and
result in one broad peak in the histogram. (The connections of this neuron are cut off along
the bottom because it is located near the bottom of the map.) (d) Connections of neurons at
fractures are also elongated along the two directions of the neighboring orientation patches.
The neuron plotted in (d) is on a fracture between yellow–green (130�) and blue–purple (40�),
and makes connections with both of these orientations. In contrast to saddle points, it does not
connect with intermediate orientations and directions, resulting in two distinct peaks in the
orientation histogram. While the connection patterns in iso-orientation patches have already
been confirmed in biology, the patterns at the other map features are predictions for future
experiments.

[Choe et al. 2004; Miikkulainen et al., 2005]
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Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r=0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.
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Log Gabor representation / Sparse coding

[Fischer et al, 2007, International Journal of Computer Vision]
[Perrinet, 2010, Neural Computation]
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Some examples of edge extraction

Natural Laboratory



Second-order statistics
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Second-order statistics
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Second-order statistics

p(d, φ, θ, σ|π0) ≈ p(d, σ|π0)p(θ, φ|π0)
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Quantitative difference using classification
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Neuromorphic implementation

[Series et al., 2002]
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