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Apparent motion in V1 - Probabilistic approaches

(hello) Hi, I am Laurent U. Perrinet and I work at the team "inference in Vision & Behavior"
supervised by Guillaume Masson in Marseille.

(objective) in this talk, as part as the goal set in WP5T4 & 5, my goal is to show that

(proba) It i possible to construct a functional probabilistic approach adapted to
apparent motion

(AP) I will illustrate by showing that motion-based prediction is sufficient to
solve the aperture problem

(dissemination) this may help guide models in demo 1 and also experiments (WP1) to
validate our predictions

http://invibe.net/LaurentPerrinet/Presentations/12-03-23_Juelich
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Motion-based prediction

A typical conundrum in neuroscience to illustrate the ambiguity of sensory motion information
is the aperture problem:

(definition) imagine that we know a priori that there is a line moving on the visual field but that it is
occluded by a small aperture such as shown here. due to the translational symmetry of
the line along its axis, the motion component parallel to the line may correspond to any
possible solution: the measurement of motion is ambiguous.

(neural) this is an important problem since it sketches a situation faced by neurons in low-level
sensory areas: due to the limited size of their dendritic arborisation, each neuron is only
directly sensitive to a bounded part of the visual field -its classical receptive field . it is as
if each neuron is looking through a small window or aperture. This is what I roughly
sketch here: if you fixate on the red dot on the left, the aperture will approximately
correspond to the extent of the classical receptive field of a neuron from the cortical
area typically associated to the extraction of motion (area MT).
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Motion-based prediction

... but if we now enlarge this static aperture, it is enough to introduce a bias which rotates the
perceived direction of motion: here along the longer axis of the aperture. if we now think
back in terms of the neurones in the previous example, the raw input is still the same in the
classical receptive field, still the global response is influenced by the contextual information
that lies outside the classical receptive field to give the horizontal motion... Note that there is
not one solution (here are still other objects leading to the same stimulus), but I will speak
about the horizontal motion as the right "solution" following the classical terminology.

(inference) In this perspective, we will follow the seminal contributions to theories of vision from
German physicist Hermann von Helmholtz and study perception as a detection process
for which we may use statistical inference. In that context, the goal of low-level sensory
processes is to recover the most likely objects in the world based on the ambiguous
visual evidence.

(ill-posed) Detection of motion, as a one-to-many mapping of sensible space (retina) to motion
space, is thus an ill-posed problem. Note that the same problems faced by perception
are found in other mathematical problems such as optical flow estimation in computer
vision. that's certainly the reason why there is such great convergence between both
fields.

aperture_box.mp4
Media File (video/mp4)
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Motion-based prediction

Our hypothesis is that predictive coding is sufficient to solve the AP. To validate that, we use a
classical HMM model. This model is constituted by a classical measurement stage and of a
predictive coding layer. The measurement stage consists of inferring from

(A) two consecutive frames of the input flow,

(B) : a best estimate of motion. This layer interacts with the predictive layer which consists of

(C) : a prediction stage that infers from the current estimate and the transition prior the
upcoming state estimate and

(D) an estimation stage that merges the current prediction of motion with the likelihood
measured at the same instant in the previous layer (B).
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Results

Let's see the results on the slanted line
(A) On a polar representation of possible velocity vectors (the cross in the center

corresponds to the null velocity), we plot the empirical histogram of detected velocity
vectors. This representation gives a quantification of the aperture problem in the
velocity domain: At the onset of motion detection, information is concentrated along
an elongated constraint line (white=high , black=zero probability).

(B) We use the prior knowledge that in natural scenes, motion as defined by its position
and velocity is following smooth trajectories. Quantitatively, it means that velocity is
approximately conserved and that position is transported according to the known
velocity. We show here such a transition on position and velocity with the perturbation
modeling the smoothness of prediction in position and velocity

(C) Applying such a prior on a dynamical system detecting motion, we show that the
motion converges to the physical motion after approximately one spatial period (the
line moved by twice its height). (C-Inset) The read-out of the system converged to the
physical motion: Motion-based prediction is sufficient to resolve the aperture problem.

(D) As observed at the perceptual level in vision behavior or somatosensory, size and
duration of the tracking angle bias decreased with respect to the height of the line.
Height was measured relative to a spatial period (60%, 40% and 20%). Here we show
the average tracking angle red-out from the probabilistic representation as a function
of time, averaged over 20 trials (error bars show one standard deviation).
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Results

So it works, but why? A first reason why we solve the aperture problem is that the system tracks
coherent features such as the line endings. To explore the state-space of the dynamical
system, we simulated motion-based prediction for a simple small dot (size 2.5% of a spatial
period) moving horizontally from the left to the right of the screen. We tested different levels of
sensory noise with respect to different levels of internal noise, that is, to different values of
prediction strength.

( (Right) ) : Results show the emergence of different states for different prediction precisions: a
regime when prediction is low showing relatively high tracking error and variability (No
Tracking - NT), a phase for intermediate values of prediction strength (as in previous
slide) exhibiting a low tracking error and low variability in the tracking phase (True
Tracking - TT) and finally a phase corresponding to higher precisions with relatively
efficient mean detection but high variability (False Tracking - FT). We give 3
representative examples of the emerging states at one contrast level (C = 0.1) with
starting (red) and ending (blue) points and respectively NT, TT and FT by showing
inferred trajectories for each trial.

((Left)) We define tracking error as the ratio between detected speed and target speed and
we plot it with respect to the stimulus contrast as given by the inverse of sensory noise.
Error bars give the variability in tracking error as averaged over 20 trials. As prediction
strength increases, there is a transition from smooth contrast response function (NT) to
more binary responses (TT and FT) and to higher biases in FT.
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Results

Secondly

Left Prediction implements a competition between different trajectories. Here, we focus on
one step of the algorithm by testing different trajectories at three key positions of the
segment stimulus: the two edges and the center (dashed circles). Compared to the
pure sensory velocity likelihood (left insets in grayscale), prediction modulates response
as shown by the velocity vectors (direction coded as hue as in the figure 2 slides ago)
and by the ratio of velocity probabilities (log ratio in bits, right insets). There is no change
for the middle of the segment (yellow tone), but trajectories that are predicted out of
the line are ``explained away'' (navy tone) while others may be amplified (orange
tone). Notice the asymmetry between both edges, the upper edge carrying a
suppressive predictive information while the bottom edge diffuses coherent motion.

Right Finally, the aperture problem is solved due to the repeated application of this
spatio-temporal contextual information modulation. To highlight the anisotropic
diffusion of information over the rest of the line, we plot as a function of time (horizontal
axis) the histogram of the detected motion marginalized over horizontal positions
(vertical axis), while detected direction of velocity is given by the distribution of hues.
Blueish colors correspond to the direction perpendicular to the diagonal while a green
color represents a disambiguated motion to the right (see line figure). The plot shows
that motion is disambiguated by progressively explaining away incoherent motion.
Other trajectories are weighted as improbable as they fall off the line or are not smooth.
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Take-home message

To summarize, during this talk I hope I convinced you that

• we achieved a practical Probabilistic modeling of dynamic sensory integration and the
AP is a good framework to test it

• Motion-based prediction is sufficient to solve the aperture problem.

• Our future goal is to translate the probabilistic model to the multi-whisker stimulation
protocol (CNRS-UNIC) / implement in neural networks (with KTH and TUG) / close the
loop."

Thank you for your attention.
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