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Abstract

Many animal species, such as humans, are character-
ized by a focused vision in which the sensor capturing the
light information has a higher resolution around the orien-
tation of gaze. Compared with a regular camera-like model
of the eye, this arrangement of sensory inputs is still largely
under-exploited in the field of computer vision. We propose
to study the advantages of this transformation in the con-
text of image classification. Inspired by this neuroscientific
observation, we use a log-polar mapping which can be di-
rectly used to transform the input to classical deep learning
classification algorithms using Convolutional Neural Net-
works (CNN). We apply this architecture to the recognition
of the presence of an animal in the image and results show
an improved accuracy for object recognition with a retino-
topic transformation compared to a classical regular grid,
but also a more robust object localization with respect to
zooms or rotations. Moreover, we find that the retinotopic
transformation improves the robustness of the localization
of image classification when it is directed towards an iso-
lated object. This opens perspectives for the use of the log-
polar mapping in models of visual search, in particular by
introducing biologically-inspired saccades in computer vi-
sion algorithms to efficiently localize and detect targets.

1. Introduction
A distinctive aspect of the vision of species like primates

is that the eye can be directed and that visual information on
the retina is concentrated at the center of gaze. It is still an
open question as to understand the function of this retino-
topic mapping, especially in comparison with other species,
like rabbits, which lack this distinctive feature. In that direc-
tion, an important task in nature is the detection of objects
of interest in a scene, such as an animal. Applied to generic
natural scenes, the task is relatively difficult as the animal
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Figure 1. Log-polar mapping. (a) An example input image with
the center of fixation denoted by a red cross. (b) Log-polar projec-
tion of the coordinates of each pixel of the input image according
to: on the x-axis its angle of DEVIATION = θ from the horizontal
axis and on the y-axis the logarithm of its eccentricity (or radius) ρ
with respect to the fixation point. (c) Reconstruction from the log-
polar mapping in (b) of the input (a), illustrating that fine details
are kept around the point of fixation only.

species is arbitrary and may for instance include birds, in-
sects, or mammals. A further difficulty is due to the large
variations in identity, shape, pose, size, and position of the
animals that could be present in the scene. Yet, biological
visual systems are able to efficiently perform such detec-
tion in images which are briefly flashed [13]. This task can
be performed very rapidly [4] and robustly to geometrical
transforms [9]. With respect to the generality and difficulty
of this task, a scientific question is to understand how this is
achieved. Here we propose that a retinotopic mapping may
be an essential ingredient in that efficiency.

Serre et al [11] has previously investigated an artificial
visual system applied to such a task which compares in
efficiency to biological ones. We recently extended such
type of architecture on a larger, more generic dataset [3].
In that study, we retrained an artificial neural network to
compare its performances with the physiological data on the
categorization of an animal in a natural scene. In order to
achieve this task, we constructed a dataset built on the IM-
AGENET database [10]. For this, we defined our dataset’s
labels based on a large semantic database of English words:
WORDNET [2] and used a Transfer Learning method to re-



train the networks [6], a method using an existing network
pre-trained on a specific task (here, the VGG16 architec-
ture [12] trained on IMAGENET) and modifies this network
by re-training a subset of its weights on a different task.
Specifically, we re-trained the CNN, for the categorization
task (for instance, “is there an animal in the scene?”) as
defined by the dataset of supervision pairs.

This method [3] generalized previous results but was ap-
plied on regular images constituted by a set of pixels ar-
ranged on a regular grid. Here, we will define a retinotopic
log-polar mapping, transforming the regular pixel grid into
a grid resembling that found in some animal species and
such that visual information is concentrated in the center of
gaze. This mapping will be such that each input matrix de-
fined into the two spatial dimensions is transformed into a
new matrix with one axis corresponding to the azimuth and
the other to the radius with respect to the point of fixation
(see Figure 1). As such, this new matrix can be use as the
input to a classical CNN. This will allow us to re-train the
network using this mapping and quantify the classification
abilities of this solution. Moreover, we will expose the con-
tribution of this mapping to the localization of objects by
showing how the predicted likelihood of detecting an object
may change as a function of the location of gaze.

Overall, this will provide a tool to qualitatively show
how such a retinotopic mapping may be necessary to per-
form this task. Finally, we will discuss how this work can be
beneficial for the conception of new architectures for com-
puter vision biologically inspired by the organization of the
visual system.

2. Methods

2.1. Transfer Learning

Transfer Learning is a method that takes advantage of
the knowledge accumulated on a problem to transfer it to a
different but related problem, it allows us to gain computing
time during the training process and to test multiple possi-
ble configurations. Here, we use the same protocol exposed
in [3] to re-trained the VGGGEN network. The dataset con-
tains a ‘train’, ‘validation’ and ‘test’ folder (2000, 1200 and
1200 images, respectively). Each folder contains a ‘target’
and a ‘distractor’ category (50% and 50% of the dataset, re-
spectively). All networks are trained on the ‘train’ folder
and tested during their learning on the corresponding ‘val-
idation’ folder. Then, we compute the performances using
the ‘test’ folder. Thereafter, we extend the protocol by in-
cluding a log-polar mapping (see below) to re-train the net-
work (VGGPOLAR). Here we will focus on the F1-score
of the networks which is defined as the harmonic mean of
the model’s precision and recall and thus conveniently com-
bines these measures thus giving a good indication of the
ability of the network to detect the presence of a label of

interest (here an animal) in an image.

2.2. Retinotopic transformation

We model the retinal transformation by a log-polar pro-
jection of the linear space to a space represented on one
axis by the azimuth and on the other by the logarithm of
the eccentricity. To do this, we start by defining the log
polar space. The projection in discrete coordinates can be
represented by a disk. Two characteristics are therefore im-
portant to take into account: the radius on which we will
sample our information and the size of our output matrix.
They define a compression index of the information. We
can then reshape the pixels composing the image according
to these new coordinates. In the case where we apply the
log-polar transformation, the radius of the input disk is 240
pixels for an output matrix of 64x64, i.e. a compression
ratio of 3.75 between the center and the periphery. This im-
plies a loss of information with the eccentricity with respect
to the point of fixation, hence the importance of the choice
of the latter (represented by a red cross (see Figure 1)). The
Imagenet database appears to have a bias in the position-
ing of its labels of interest, as these are most often centered
in the image. Thus, after exploring training strategies on
dataset where we had redefined the center of the image to
match the boxes surrounding the objects of interest, or using
only these boxes to compose our dataset without observing
any real difference between these conditions, we opted for
a fixation point at the center of the native image.

3. Results
3.1. Performances on natural scenes

We first tested the network re-traind on our IMAGENET
dataset without any transformation. It seems efficient in the
categorization on this dataset as it reach about 91% mean
accuracy (see Figure 2 (a)). Then, we tested the log-polar
version of this network, that is re-trained on images in log-
polar space. It also reaches accuracies comparable to the
network tested on raw images (see Figure 2 (a)). Moreover,
it seems to exhibit a robustness to rotation and zoom trans-
formation unlike the latter (see Figure 2 (b) & (c)). These
observations are coherent with the characteristics of a CNN
like VGG16 as these transformations in the linear space
correspond to translation in the log-polar space, a transfor-
mation for which this architecture is by definition robust.
When we train, then test this network on the reconstruc-
tion of the linear image (see Figure 1), we observe a drop
in the accuracy of the network, even if we use a version of
the dataset IMAGENET with images centered on the label
of interest. This drop is probably due to the great variabil-
ity of the label of interest (here animal) coupled with a low
knowledge of the features necessary for this categorization,
which makes it difficult to define the point of fixation which
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Figure 2. Comparisons for animal categorization with different
mappings to the input. (a) Mean accuracy of the CNN VGG16
re-trained with linear images (yellow), with a log-polar transfor-
mation to the input (green), or with a reconstructed images (blue)
as shown in Figure 1. (b) Mean accuracy over the test dataset of the
re-trained networks for different rotations of the input image. The
rotation is applied around the fixation point with an angle ranging
from -180° to +180° (step=1°) with raw images (purple) or with a
log-polar mapping to the input (green), showing the invariance to
rotation characteristic to log-polar mappings. (c) Mean accuracy
over a centered test dataset of the re-trained networks for different
scaling of the input image. The zoom is applied around the fixa-
tion point with a scale factor ranging from 0.1 to 1 (step=0.1) with
raw images (purple), with a log-polar transformation to the input
(green).

could maximize the contribution of this transformation.

3.2. Implementing the saliency map protocols

A saliency map corresponds, in our case, to a map in-
dicating the positions of the images for which the predic-
tion of the categorization of the presence of an animal by
our network is above p = 0.5. To obtain these maps,
we performed a subsampling of a 240 × 240 window on a
2400×2400 resolution image with a step size of 9, for a to-
tal of 58081 subsamples. Each of these samples is then sent
to the input of the network, providing a matrix of 241×241
predictions for each of these positions. We then superposed
this saliency maps on the raw image dataset with or without

(a) (b)

Figure 3. Retinotopic saliency map compared with linear
saliency map (a) Heat map computed with the CNN VGG16 re-
trained with linear images on raw inputs. (b)Heat map computed
with the CNN VGG16 re-trained with linear images on recon-
structed inputs.

applying a retinotopic transformation (see Figure 1) during
the process. Foremost, in both case it allows us to extract
the regions of interest including the key features necessary
for the categorization of an animal by our network, with
a finer contour around the area of interest for the heat map
generated with a reconstructed input and this even if the net-
work used is trained to recognize an animal in a linear space
(see Figure 3). Thus this example is qualitative, but we ob-
served similar results on several images for several species
of animals in different contexts (not shown here).

4. Discussion

In summary, we have shown that a retinotopic mapping
can be applied to a classical CNN and that when we re-
trained networks using transfer learning, it achieved human-
level accuracies to on an ecological task. Furthermore,
the robustness of the categorization is comparable to those
found in psycho-physical data as the categorization of the
dedicated networks are robust to transformation like rota-
tion, reflection or grayscale filtering [9].

A surprising fact is the conservation of categorization
despite training with a log-polair transformation resulting
in the degradation of textures outside the area of interest.
These results are promising because in addition to being
consistent with physiological data, they allow us to pursue
a research direction where we could implement training of
a retinotopic map with information compression in the pe-
riphery. The use of saliency maps allowed us to highlight
the fact that the categorization of this kind of network can
be modulated by the application of a retinotopic log-polar
transformation, which seem to allow a more accurate local-
ization of the object of interest, here an animal. Further-
more, it gives us an insight on what features our networks
actually rely on, in order to categorize the presence of an
animal. Of course, a study on a larger dataset is necessary
to validate these results.



Figure 4. Model build over the anatomical visual processing path-
ways observed in mammals, namely the “What” and the “Where”
pathways : Peripheral pathway (top row) is applied to a large dis-
play from a natural scene (A): It is first transformed into a retino-
topic log-polar input (B) and we then learn to return a “saliency
map” (C). The latter infers, for different positions in the target, the
predicted accuracy value that can be reached by the foveal path-
way, mimicking the “Where” pathway used for global localization.
The position with the best accuracy will feed a saccade system (D),
adjusting the fixation point at the input of the foveal pathway (bot-
tom row). It takes a subsample (E) of the large display (A), over
which a categorization is done (F), mimicking the “What” path-
way.

5. Perspectives

One of the main goals of this study was to provide a com-
parison on an ecological and well studied task used in pri-
mate visual neuroscience. Although this study focuses on
the analysis of categorization, it is a necessary step for a
well-known task in the field of vision: visual search. This
task consists of the simultaneous localization and detection
of a visual target of interest. Applied to the case of nat-
ural scenes, searching for example for an animal (either a
prey, a predator or a partner) constitutes a challenging prob-
lem due to large variability over numerous visual dimen-
sions. Previous models managed to solve the visual search
task by dividing the image into sub-areas. This is at the
cost, however, of computer-intensive parallel processing on
relatively low-resolution image samples [5] [8]. Taking in-
spiration from natural vision systems [7], we develop here
a model that builds over the anatomical visual processing
pathways observed in mammals, namely the “What” and
the “Where” pathways [1]. It operates in two steps, one by
selecting a region of interest, before knowing their actual
visual content, through an ultra-fast/low resolution analysis
of the full visual field, and the second providing a detailed
categorization over the detailed “foveal” selected region at-
tained with a saccade (see Figure 4). Modeling this dual-
pathways architecture allows offering an efficient model of
visual search as active vision. In particular, it allows fill-
ing the gap with the shortcomings of CNNs with respect
to physiological performances. In the future, we expect to
apply this model to better understand visual pathologies in
which there would exist a deficiency of one of the two path-
ways [14] while contributing to the field of computer vision.
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