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Abstract

We develop a visuo-motor model that implements visual search as a focal
accuracy-seeking policy across a crowded visual display. Stemming from the active
inference framework, saccade-based visual exploration is idealized as an inference
process, assuming that the target position and category are independently drawn from a
common generative process. This independence allows to divide the visual processing in
two independent pathways, consistently with the anatomical “What”/“Where”
separation. A biomimetic log-polar treatment of the visual information, that includes
the strong compression rate performed at the sensor level by retina and V1 encoding, is
preserved up to the action selection level. A dual neural network architecture, that
independently learns where to look and what to see, is then trained, with the foveal
accuracy used as a monitoring signal for action selection. This allows in particular to
interpret the “Where” as a retinotopic action selection pathway, that drives the fovea
toward the target position, in order to increase the recognition accuracy. A specific
approximate Information Gain metric, taken as the difference between central and
peripheral accuracy, is used for action selection after training. The comparison of both
accuracies amounts either to select a saccade or to keep the eye focused at the center, so
as to identify the target. Tested on a simple task of finding digits in a large, cluttered
image, simulation results demonstrate the benefit of our approach, whose key
computational shortcuts finally provide ways to implement visual search in a sub-linear
fashion, in contrast with mainstream computer vision.

Author summary

The visual search task consists in extracting a scarce and specific visual information 1

(the “target”) from a large and crowded visual display. In computer vision, this task is 2

usually implemented by scanning the different possible target identities at all possible 3

spatial positions, hence with strong computational load. The human visual system 4

employs a different strategy, combining a foveated sensor with the capacity to rapidly 5

move the center of fixation using saccades. Then, visual processing is separated in two 6

specialized pathways, the “where” pathway mainly conveying information about target 7

position in peripheral space (independently of its category), and the “what” pathway 8

mainly conveying information about the category of the target (independently of its 9

position). This object recognition pathway is shown here to have an essential role, 10

providing an “accuracy drive” that serves to force the eye to foveate peripheral objects 11

in order to increase the peripheral accuracy, much like in the “actor/critic” framework. 12
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Put together, all those principles to provide ways toward both adaptive and 13

resource-efficient visual processing systems. 14

Introduction 15

Problem statement. 16

Past 10 years have seen the disrupting development of deep learning based image 17

processing. Indeed the field of computer vision has been recast by the outstanding 18

capability of convolution-based deep networks to capture the semantic content of images 19

and photographs. Image processing algorithms recently outreached the performance of 20

human observers in specific image categorization tasks [?]. Their success relies on a 21

reduction of parameter complexity through weight sharing in convolutional neural 22

networks applied over the full image. Initially trained on energy greedy, high 23

performance computers, they are now designed to work on more common hardware such 24

as desktop computers with dedicated GPU hardware [?]. However, despite lot of efforts 25

spent in optimizing the processing costs, the processing of large images is still done at a 26

cost that scales linearly with the image size. All regions, even the “boring” ones are 27

systematically scanned and processed in parallel through dedicated hardware at a 28

significant computational cost. Image processing architectures consequently contain 29

millions of parameters with subsequent energy consumption while still handling 30

relatively small images. This introduces a trade-off between efficiency and accuracy, for 31

instance in autonomous driving, with the need to detect visual objects at a glance while 32

running on resource-constrained embedded hardware. 33

In contrast, when human vision is considered, things work differently. First, the 34

general performance is still greater than that of computer vision. Indeed, object 35

recognition can be achieved by the human visual system both rapidly, – in less than 100 36

ms [?] – and at a low energy cost (< 5 W ). On top of that, it is mostly self-organized, 37

robust to visual transforms or lighting conditions and can learn with a few examples. If 38

many different anatomical features may explain this efficiency, a main difference lies in 39

the fact that its sensor (the retina) combines a non homogeneous sampling of the world 40

with the capacity to rapidly change its center of fixation. On the one hand, the retina is 41

composed of two separate systems: a central, high definition fovea (a disk of about 6 42

degrees of diameter in visual angle around the center of gaze) and a large, lower 43

definition peripheral area. On the other hand, the human vision is dynamic. The retina 44

is attached on the back of the eye which is capable of low latency, high speed eye 45

movements. In particular, saccades allow for efficient changes of the position of the 46

center of gaze: they take about 200 ms to initiate, last about 200 ms and usually reach 47

a maximum velocity of approx 600 degrees per second. The scanning of a full visual 48

scene is thus not done in parallel but sequentially, and only scene-relevant regions of 49

interest are scanned through saccades. This implies a decision process at each step that 50

decides where to look next. This behavior is prevalent during our lifetime (about a 51

saccade every 2-3 seconds, that is, almost a billion saccade in a lifetime). The interplay 52

of those two features allows human observers to engage in an integrated action 53

perception loop which sequentially scans and analyses the different parts of the image. 54

Take for instance the case of an encounter with a friend in a crowded café. To catch 55

the moment at which she arrives, you need to visually search for her face despite the 56

sensory clutter in the visual field. To do so, you need to scan relevant parts of the visual 57

scene with your gaze. Doing a saccade at these locations will allow you to recognize 58

your friend. The main difficulty of this task is to identify a particular object class (e.g. 59

human faces) given all their possible spatial configurations and respective geometrical 60

visual transformations. Searching for any face in a peripheral and crowded display 61
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needs to precede the recognition of a specific face identity. 62

State of the art 63

To take benefit from this visuomotor behavior, it is important to understand both its 64

computational and neurophysiological principles. First, the joint problem of target 65

localization and identification is a classical problem of visual search in computer vision. 66

Addressing apparently simple questions such as “find the green bottle on the table”, it 67

is of broad interest in machine learning, computer vision and robotics, but also in 68

neuroscience, as it speaks to the mechanisms underlying foveation and more generally to 69

low-level attention mechanisms. When restricted to a mere “feature search” [?], many 70

solutions are proposed. Notably, recent advances in deep-learning have provided efficient 71

models such as faster-RCNN [?] or YOLO [?]. Their object search implementations 72

predict in the image the probability of proposed bounding boxes around visual objects. 73

While rapid, the number of boxes may significantly increase with image size and the 74

approach more generally necessitates dedicated hardware to run in real time. 75

In parallel, human visual scan-path over natural images provide ways to define 76

saliency maps, that quantify the attractiveness of the different parts of an image, that 77

are consistent with the detection of objects of interest. Essential to understand and 78

predict saccades, they also serve as phenomenological models of attention. Estimating 79

the saliency map from a luminous image is a classical problem in neuroscience, that was 80

shown consistent with a distance from baseline image statistics known as the “Bayesian 81

surprise” [?]. The saliency approach was recently updated using deep learning to 82

estimate saliency maps over large databases of natural images [?]. While these methods 83

are efficient at predicting the probability of fixation, they miss an essential component 84

in the action perception loop: they operate on the full image while the retina operates 85

on the non-uniform, foveated sampling of visual space (see Figure 1-B). Herein, we 86

believe that this fact is an essential factor to reproduce and understand the active vision 87

process. 88

Foveated models of vision have been considered for long time in robotics and 89

computer vision as a way to leverage the visual scene scaling problem. Focal image 90

processing relies a non-homogeneous compression of an image, that maintains the pixel 91

information at the center of fixation and strongly compresses it at the periphery, 92

including pyramidal encoding [?,?], local wavelet decomposition [?] and logpolar 93

encoding [?,?]. Though focal and multiscale encoding is now largely considered in static 94

computer vision, sequential implementations have not been shown effective enough to 95

overtake static object search methods. Several implementations of a focal sequential 96

search in visual processing can be found in the literature, with various degrees of 97

biological realism [?,?], that often rely on a simplified focal encoding, long training 98

procedures and bounded sequential processing. More realistic attempts to combine 99

foveal encoding and sequential visual search can be found in [?,?,?], that will be 100

compared further on with our approach. 101

In contrast to phenomenological (or “bottom-up”) approaches, active models of 102

vision [?,?,?] provide the ground principles of saccadic exploration. In general, they 103

assume the existence of a generative model from which both the target position and 104

category can be inferred through active sampling. This comes from the constraint that 105

the visual sensor is foveated but can generate a saccade. Several studies are relevant to 106

our endeavor. First, one can consider optimal strategies to solve the problem of the 107

visual search of a target [?]. In a setting similar to that presented in Figure 1-A, where 108

the target is an oriented edge and the background is defined as pink noise, authors show 109

first that a Bayesian ideal observer comes out with an optimal strategy, and second that 110

human observers are close to that optimal performance. Though well predicting 111

sequences of saccades in a perception action loop, this model is limited by the simplicity 112
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of the display (elementary edges added on stationary noise, a finite number of locations 113

on a discrete grid) and by the abstract level of modeling. Despite these (inevitable) 114

simplifications, this study could successfully predict some key characteristics of visual 115

scanning such as the trade-off between memory content and speed. Looking more 116

closely at neurophysiology, the study of [?] allows to go further in understanding the 117

interplay between saccadic behavior and the statistics of the input. In this study, 118

authors were able to manipulate the size of the saccades by monitoring key properties of 119

the presented (natural) images. For instance, smaller images generate smaller saccades. 120

A further modeling perspective is provided by [?]. In this setup, a full description of 121

the visual world is used as a generative process. An agent is completely described by 122

the generative model governing the dynamics of its internal beliefs and is interacting 123

with this image by scanning it through a foveated sensor, just as described in Figure 1. 124

Thus, equipping the agent with the ability to actively sample the visual world allows to 125

interpret saccades as optimal experiments, by which the agent seeks to confirm 126

predictive models of the (hidden) world. One key ingredient to this process is the 127

(internal) representation of counterfactual predictions, that is, the probable 128

consequences of possible hypothesis as they would be realized into actions (here, 129

saccades). Following such an active inference scheme [?] numerical simulations 130

reproduce sequential eye movements that fit well with empirical data. Saccades are here 131

a consequence of an active seek for the agent to minimize the uncertainty about his 132

beliefs, knowing his priors on the generative model of the visual world. 133

Outline 134

Stemming from the active vision principles, our aim is to produce a principled and 135

resource-effective model of vision. We start from an elementary visual search problem, 136

that is how to locate an object in a large, crowded image, and take human vision as a 137

guide for efficient design. Our framework is made as general as possible, with minimal 138

mathematical treatment, to speak largely to fragmented domains, such as machine 139

learning, neuroscience and robotics. We expect to provide an integrated view of 140

foveated active vision, applicable to both domains. 141

After this introduction, the principles underlying accuracy-based saccadic control are 142

defined in the second section. We first define notations, variables and equations for the 143

generative process governing the experiment and the generative model for the active 144

vision agent. Complex combinatorial inferences are here replaced by separate pathways, 145

i.e. the spatial (“Where”) and categorical (“What”) pathways, whose output is 146

combined to infer optimal eye displacements and subsequent identification of the target. 147

Our agent, equipped with a foveated sensor, should learn an optimal behavior strategy 148

to actively scan the visual image. Implementation details are provided in the methods 149

section, giving ways to reproduce our results, showing in particular how to simplify the 150

learning using accuracy-driven action maps. Numerical simulations are presented in the 151

results section, demonstrating the applicability of this framework to different task 152

complexity levels. The last section finally summarizes the results, showing its relative 153

advantages in comparison with other frameworks, and providing ways toward possible 154

improvements. 155

Principles 156

For biological vision is the result of a continual optimization under strong material and 157

energy constraints, we need to understand both its ground principles and its specific 158

computational and material constraints in order to implements effective biomimetic 159

vision systems. 160
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Fig 1. Problem setting: In generic, ecological settings, the visual system faces a
tricky problem when searching for one target (from a class of targets) in a cluttered
environment. It is synthesized in the following experiment: (A) After a fixation period
FIX of 200 ms, an observer is presented with a luminous display DIS showing a single
target from a known class (here digits) and at a random position. The display is
presented for a short period of 500 ms (light shaded area in B), that is enough to
perform at most one saccade on the potential target (SAC, here successful). Finally, the
observer has to identify the digit by a keypress ANS. NB : the target contrast is here
enhanced for a better readability. (B) Prototypical trace of a saccadic eye movement to
the target position. In particular, we show the fixation window FIX and the temporal
window during which a saccade is possible (green shaded area). (C) Simulated
reconstruction of the visual information from the (interoceptive) retinotopic map at the
onset of the display DIS and after a saccade SAC, the dashed red box indicating the
foveal region. In contrast to an exteroceptive representation (see A), this demonstrates
that the position of the target has to be inferred from a degraded (sampled) image. In
particular, the configuration of the display is such that by adding clutter and reducing
the contrast of the digit, it may become necessary to perform a saccade to be able to
identify the digit. The computational pathway mediating the action has to infer the
location of the target before seeing it, that is, before being able to actually identify the
target’s category from a central fixation.

In order to do so, we provide a simplified visual environment toward which a visual 161

agent can act on. The search experience is formalized and simplified in a way 162

reminiscent to classical psychophysic experiments: an observer is asked to classify digits 163

(for instance as taken from the MNIST database) as they are shown on a computer 164

display. However, these digits can be placed at random positions on the display, and 165

visual clutter is added as a background to the image (see Figure 1-A). In order to vary 166

the difficulty of the task, different parameters are controlled, such as the target 167

eccentricity, the background noise period and and the signal/noise ratio (SNR). The 168

agent initially fixates the center of the screen. Due to the peripheral clutter, he needs to 169

explore the visual scene through saccades to provide the answer. He controls a foveal 170

visual sensor that can move over the visual scene through saccades (see Figure 1-B). 171

When a saccade is actuated, the center of fixation moves toward a new location, which 172

updates the visual input (see Figure 1-C). The lower the SNR and the larger the initial 173

target eccentricity, the more difficult the identification. There is a range of eccentricities 174

for which it is impossible to identify the target from a single glance, so that a saccade is 175

July 30, 2019 5/19



necessary to issue a proper response. This implies in general that the position of the 176

object may be detected in the first place in the peripheral clutter before being properly 177

identified. 178

This setup provides the conditions for a separate processing of the visual 179

information. Indeed, in order to analyze a complex visual scene, there are two types of 180

processing that need to be done. On the one side, you need to analyze in detail what is 181

at the center of fixation, that is the region of interest currently processed. On the other 182

side, you also need to analyze the surrounding part, even if the resolution is low, in 183

order to choose what is the next center of fixation. This basically means making a 184

choice of “what’s interesting next”. You do not necessarily need to know what it is, but 185

you need to that it’s interesting enough, and of course you need to know what action to 186

take to move the center of fixation at the right position. This is reminiscent of the 187

What/Where separate visual processing separation observed in monkeys and humans 188

ventral and dorsal visual pathways [?]. 189

Active inference 190

This kind of reasoning can be captured by a statistical framework called a partially 191

observed Markov Decision Process (POMDP), where the cause of a visual scene is 192

couple made of a viewpoint and scene elements. Changing the viewpoint will conduct to 193

a different scene rendering. A generative model tells how typically looks the visual field 194

knowing the scene elements and a certain viewpoint. In general, active inference 195

assumes a hidden external state e, which is known indirectly through its effects on the 196

sensor. The external state corresponds to the physical environment. Here the external 197

state is assumed to split in two (independent) components, namely e = (u, y) with u the 198

interoceptive body posture (in our case the gaze orientation, or “viewpoint”) and y the 199

object shape (or object identity). The visual field x is the state of the sensors, that is, a 200

partial view of the visual scene, measured through the generative process : x ∼ p(X|e). 201

Using Bayes rule, one may then infer the scene elements from the current view point
(model inversion). The real physical state e being hidden, a parametric model θ is
assumed to allow for an estimate of the cause of the current visual field through model
inversion thanks to Bayes formula, in short:

p(E|x) ∝ p(x|E; θ)

It is also assumed that a set of motor commands A = {..., a, ...} (here saccades) may 202

control the body posture, but not the object’s identity, so that y is invariant to a. 203

Actuating a command a changes the viewpoint to u′, which feeds the system with a new 204

visual sample x′ ∼ p(X|u′, y). The more viewpoints you have, the more certain you are 205

about the object identity through a chain rule sequential evidence accumulation. 206

In an optimal search setup however [?], you need to choose the next viewpoint that 207

will help you the most to disambiguate the scene. In a predictive setup, the consequence 208

of every saccade should be analyzed through model inversion over the future 209

observations, that is, predicting the effect of every action to choose the one that may 210

optimize future inferences. The benefit of each action should be quantified through a 211

certain metric (future accuracy, future posterior entropy, future variational free energy, 212

...), that depend on the current inference p(U, Y |x). The saccade a that is selected thus 213

provides a new visual sample from the scene statistics. If well chosen, it should improve 214

the understanding of the scene (here the target position and category). However, 215

estimating in advance the effect of every action over the range of every possible object 216

shapes and body postures is combinatorially hard, even in simplified setups, and thus 217

infeasible in practice. 218

The predictive approach necessitates in practice to restrain the generative model in 219

order to reduce the range of possible combinations. One such restriction, known as the 220
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“Näıve Bayes” assumption, considers the independence of the factors that are the cause 221

of the sensory view. The independence hypothesis allows considering the viewpoint u 222

and the category y being independently inferred from the current visual field, i.e 223

p(U, Y |x) = p(U |x)p(Y |x). This property is strictly true in our setting and is very 224

generic in vision for simple classes (such as digits) and simple displays (but see [?] for 225

more complex visual scene grammars). 226

Metric training 227

Next, the effect of a saccade is to shift the visual field from one place to another. 228

Concretely, each saccade provokes a new visual field x′ and a new subjective position u′, 229

while the target identity y remains unchanged. Choosing the next saccade thus means 230

using a model to predict how accurate p(U |x) and p(Y |x) will be after the saccade 231

realization. In detail, modeling the full sequence of operations that lead to both 232

estimate p(U ′|x′) and p(Y |x′) means predicting the future visual field x′ over all 233

possible saccades, that may yet be too costly in case of large visual fields. Better off 234

instead is to form a statistics over the (scene understanding) benefit obtained from past 235

saccades in the same context, that is forming an accuracy map from the current view. 236

This is the essence of the sampling-based metric prediction that we develop here. The 237

putative effect of every saccade should be condensed in a single number, the accuracy, 238

that quantifies the final benefit of issuing saccade a from the current observation x. If a 239

is a possible saccade and x′ the corresponding future visual field, the result of the 240

categorical classifier over x′ can either be correct (1) or incorrect (0). If this experiment 241

is repeated many times over many visual scenes, the probability of correctly classifying 242

the future visual field x′ from a forms a probability, i.e. a number between 0 and 1, that 243

reflects the proportion of correct and incorrect classifications. To sum up, a main 244

assumption here is that instead of trying to detect the actual position of the target, 245

better off for the agent is to estimate how accurate the categorical classifier will be after 246

moving the eye. Extended to the full action space A, this forms an accuracy map that 247

may be learned through trials and errors, by actuating saccades and taking the final 248

classification success or failure as a teaching signal. Our main assumption here is that 249

such a predictive accuracy map is at the core of a realistic saccade-based vision systems. 250

Compared with a baseline approach that would predict for all possible gaze directions 251

over an image, this map should moreover be organized radially to preserve the 252

retinotopic compression. 253

Finally, the independence assumption allows to separate the scene analysis in two 254

independent tasks. Each task is assumed to be realized in parallel through distinct 255

computational pathways, that will be referred as the “What” and the “Where” 256

pathways by analogy with the ventral and dorsal pathways in the brain (see figure 2). 257

Each pathway is here assumed to rely on different sensor morphologies. By analogy 258

with biological vision, the target identification is assumed to rely on the very central 259

part of the retina (the fovea), that comes with higher density of cones, and thus higher 260

spatial precision. In contrast, the saccade planning should rely on the full visual field, 261

with peripheral regions having a lower sensor density and a lesser sensitivity to high 262

spatial frequencies. The operations that transform the initial primary visual data should 263

preserve the initial retinotopic organization, so as to form a final retinotopic accuracy 264

map (see figure 2C). Accordingly with the visual data, the retinotopic accuracy map 265

may thus provide more detailed accuracy predictions in the center, and coarser accuracy 266

predictions in the periphery. Finally, each different initial visual field may bring out a 267

different accuracy map, indirectly conveying information about the target retinotopic 268

position. A final action selection (motor map) should then overlay the accuracy map 269

through a winner-takes-all mechanism, implementing the saccade selection in 270

biologically plausible way, as it is thought to be done in the superior colliculus, a brain 271
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Fig 2. Computational graph. Two streams of information are separated from the
visual primary layers, one stream for processing the central pixels only, the other for
processing the periphery with a logpolar encoding. The two streams converge toward a
decision layer that compares the central and the peripheral acuracy, in order to decide
wether to issue a saccadic or a categorical response. If a saccade is produced, then the
center of vision is displaced toward the region that shows the higher accuracy on the
accuracy map. (A) The visual input is constructed the following way: first a 128× 128
natural-like background noise is generated, characterized by noise contrast, mean spatial
frequency and bandwidth [?]. Then a circular mask is put on. Last a sample digit is
selected from the MNIST database (of size 28× 28), rectified, multiplied by a contrast
factor and overlayed on the background at a random position (see an example in
Figure 1-A, DIS). (B) The visual input is then transformed in 2 ways: (i) a 28× 28
central foveal-like snippet is fed to a classification network (“What” pathway) and (ii) a
log-polar set of oriented visual features is fed to the “Where” pathway. This log-polar
input is generated by a bank of filters whose centers are positioned on a log-polar grid
and whose radius increases proportionally with the eccentricity. (C) The “What”
network is implemented using the three-layered LeNet CNN [?], while the “Where”
network is implemented by a three-layered neural network consisting of the retinal input,
two hidden layers with 1000 units each and a collicular-like accuracy map at the output.
This map has a similar retinotopic organization and predicts the accuracy of each
hypothetical position of a saccade. To learn to associate the output of the network with
the ground truth, supervised training is performed using back-propagation with a binary
cross entropy loss. (D) If the predicted accuracy in the output of the “Where” network
is higher than that predicted in the “What” network, the position of maximal activity
in the “Where” pathway serves to generate a saccade which shifts the center of gaze.

region responsible for oculo-motor control [?]. The saccadic motor output showing a 272

similar log-polar compression than the visual input, the saccades should be more precise 273

at short than at long distance (and several saccades may be necessary to precisely reach 274

distant targets). 275
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Detailed implementation 276

Modern parametric classifiers are composed of many layers (hence the term “Deep 277

Learning”) that can be trained through gradient descent over arbitrary input and 278

output feature spaces. The ease of use of those tightly optimized training algorithms 279

allows for the quantification of the difficulty of a task through the failure or success of 280

the training. The simplified anatomy of the agent is composed of two separate pathways 281

whose processing is realized by such a neural network. Each network is trained and 282

tested separately on distinct datasets, before being finally evaluated in a dynamic vision 283

setup (see next section). 284

Images generation 285

We define here the generative model for input display images as shown first in 286

Figure 1-A (DIS) and as implemented in Figure 2-A. 287

Targets. Following a common hypothesis regarding active vision, visual scenes consist 288

of a single visual object of interest. We use the MNIST database of handwritten digits 289

introduced by [?]: Samples are drawn from the database of 60000 grayscale 28× 28 290

pixels images and separated between a training and a validation set (see below the 291

description of the “Where” network). 292

Full-scale images. Each sample position is draw a random in a full-scale image of 293

size 128× 128. To enforce isotropic saccades, a centered circular mask covering the 294

image (of radius 64 pixels) is defined, and the position is such that the embedded 295

sample fits entirely into that circular mask. 296

Background noise setting. To implement a realistic background noise, we generate 297

synthetic textures [?] using a bi-dimensional random process. The texture is designed to 298

fit well with the statistics of natural images. We chose an isotropic setting where 299

textures are characterized by solely two parameters, one controlling the median spatial 300

frequency sf0 of the noise, the other controlling the bandwidth around the central 301

frequency. Equivalently, this can be considered as the band-pass filtering of a random 302

white noise image. The spatial frequency is optimized at 0.1 pixel−1 to fit that of the 303

original digits. This specific spatial frequency occasionally allows to generate some 304

“phantom” digit shapes in the background. Finally, these images are rectified to have a 305

normalized contrast. 306

Mixing the signal and the noise. Finally, both the noise and the target image are 307

merged into a single image. Two different strategies are used. A first strategy emulates 308

a transparent association, with an average luminance computed at each pixel, while a 309

second strategy emulates an opaque association, choosing for each pixel the maximal 310

value. The quantitative difference was tested in simulations, but proved to have a 311

marginal importance. 312

Foveal vision and the “What” pathway 313

At the core of the vision system is the identification module, i.e. the “What” pathway. 314

It consists of a classic convolutional classifier showing some translation invariance. This 315

translation invariance can be measured in the form of a shift-dependent accuracy map. 316

Importantly, it can quantify its own classification uncertainty, that may allow 317

comparisons with the output of the “Where” pathway. 318

July 30, 2019 9/19



Fig 3. (A) Input samples from the “What” training set, with randomly shifted targets
using a Gaussian bivariate spatial offset with a standard deviation of 15 pixels. The
target contrast is randomly set between 0.3 and 0.7. (B) 55× 55 shift-dependent
accuracy map, measured for different target eccentricities on the test set after training.

The foveal input is defined as the 28× 28 grayscale image extracted at the center of 319

gaze (see dashed red box in Figure 1-C). This image is passed unmodified to the agent’s 320

visual categorical pathway (the “What” pathway), that is realized by a convolutional 321

neural network, here the known “LeNet” classifier [?]. The network structure, that 322

processes the input to identify the target category, is provided (and unmodified) by the 323

pyTorch library [?]. It is made of a 3 convolution layers followed by two fully-connected 324

layers. The network output is a vector representing the probability of detecting each of 325

the 10 digits. The argument of the output neuron with maximum probability provides 326

the image category. 327

A specific dataset is constructed to train the network. It is made of randomly 328

shifted/randomly attenuated digits overlayed over a noisy background, as defined above. 329

Both the offset, the contrast and the background noise render the task more difficult 330

than the original MNIST classification. The relative contrast of the digit is randomly set 331

between 0.3 and 0.7. The network is trained incrementally by progressively increasing 332

the offset variability (of a bivariate central gaussian) by increasing the standard 333

deviation from 0 to 15 (with a maximal offset set at 25 pixels). The network is trained 334

on a total of 75 epochs, with 60000 examples generated at each epoch from the MNIST 335

original training set. The shifts and backgrounds are re-generated at each epoch. The 336

shift standard deviation increases of one unit every 5 epochs. Note that at the end of 337

the training, many digits fall outside the center of the fovea, so that many examples are 338

close to impossible to classify, either because of a low contrast or a too large eccentricity. 339

At the end of the training process, the average accuracy is thus of 34% (though it had a 340

91% accuracy after the 5th epoch, when the digits were only at the center). 341

After training, a shift-dependent accuracy map is computed by systematically 342

testing the network accuracy on every horizontal and vertical offset, each on a set of 343

1000 samples generated from the MNIST test set, within a range of +/−27 pixels (see 344

figure 3). This forms a 55× 55 accuracy map showing higher accuracy at the center, 345

and a slow decreasing accuracy with target eccentricity (with over 70% accuracy plateau 346

showing a shift invariance on a 7-8 pixels eccentricity radius). This significant shift 347

invariance is a known effect of convolutional computation, that is obtained here at the 348
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cost of a lesser central recognition rate (around 80%), remembering the classification 349

task is here harder by construction. The accuracy fastly drops for greater than 10 pixels 350

eccentricity, reaching the baseline 10% chance level at around 20 pixels offset. 351

Peripheral vision: from log-polar feature vectors to log-polar 352

action maps 353

The “Where” pathway is devoted to choosing the next saccade. Here we assume the 354

“Where” implements the following action selection: where to look next in order to reduce 355

the uncertainty about the target identity? This implies moving the eye such as to 356

increase the “What” classifier accuracy. For a given visual field, each possible future 357

saccade has an expected accuracy, that can be trained from the “What” pathway 358

output. To accelerate the training, we use a shortcut that is training the network on a 359

translated accuracy map. The ouput is thus an accuracy map, that tells for each 360

possible visuo-motor displacement the value of the future accuracy. 361

Primary visual representation: log-polar orientation filters For to reduce the 362

processing cost, and in accordance with observations [?,?], a similar log-polar 363

compression pattern is assumed to be conserved from the retina up to the primary 364

motor layers. The non-uniform sampling of the visual space is adequately modeled as a 365

log-polar conformal mapping, as it provides a good fit with observations in mammals [?] 366

which has a long history in computer vision and robotics. Both the visual features and 367

the output accuracy map are to be expressed in retinal coordinates. On the visual side, 368

local visual features are extracted as oriented edges as a combination of the retinotopic 369

transform with primary visual cortex filters [?]. The centers of these first and second 370

order orientation filters are radially organized around the center of fixation, with small 371

and tightened receptive fields at the center and more large and scarce receptive fields at 372

the periphery. The size of the filters increases proportionally to the eccentricity. The 373

filters are organized in 10 spatial eccentricity scales (respectively placed at around 2, 3, 374

4.5, 6.5, 9, 13, 18, 26, 36.5 , and 51.3 pixels from the center) and 24 different azimuth 375

angles allowing them to cover most of the original 128× 128 image. At each of these 376

position, 6 different edge orientations and 2 different phases (symmetric and 377

anti-symmetric) are computed. This finally implements a (fixed) bank of linear filters 378

which model the receptive fields of the input to the primary visual cortex. 379

To ensure the balance of the coefficients across scales, the images are first whitened 380

and then linearly transformed into a “primary visual” feature vector x. The length of 381

this vector is 2880, such that the retinal filter compresses the original image by about 382

83%, with high spatial frequencies preserved at the center and only low spatial 383

frequencies conserved at the periphery. In practice, the bank of filters is pre-computed 384

and placed into a matrix for a rapid transformation of input batches into feature 385

vectors. This matrix transformation allows also the evaluation of a reconstructed visual 386

image given a retinal activity vector thanks to a pseudo-inverse of the forward 387

transform matrix. In summary, the full-sized images are transformed into a primary 388

visual feature vector which is fed to the “Where” pathway. 389

Visuo-motor representation: “Collicular” accuracy maps The output of the 390

“Where” pathway is defined as an accuracy map representing the recognition probability 391

after moving the eye, independently of its identity. Like the primary visual map, this 392

target accuracy map is also organized radially in a log-polar fashion, making the target 393

position estimate more precise at the center and fuzzier at the periphery. This modeling 394

choice is reminiscent of the approximate log-polar organization of the superior colliculus 395

(SC) motor map [?]. In ecological conditions, this accuracy map should be trained by 396
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sampling, i.e. by ”trial and error”, using the actual recognition accuracy (after the 397

saccade) to grade the action selection. In practice, as we generate the visual display, the 398

position of the target (which is hidden to the agent) is known. Under an ergodic 399

assumption, knowing both the translational shift imposed to the visual field by a 400

saccade of known amplitude, and the shift-dependent accuracy map of the “What” 401

classifier (Figure 3-B), the full accuracy map at each pixel can be predicted for each 402

visual sample by shifting the central accuracy map on the true position of the target. 403

Such a computational shortcut is allowed by the independence of the categorical 404

performance with position. This full accuracy map is log-polar projected to provide the 405

expected accuracy of each hypothetical saccade in a retinotopic space. In practice, we 406

use the energy of the filters at each position as a proxy to quantify the projection from 407

the metric space to the retinotopic space. This generates a filter bank at 10 spatial 408

eccentricity scales and 24 different azimuth angles, i.e. 240 output filters. Each filter is 409

normalized such that the value at each log-polar position is the average of the values 410

which are integrated in visual space. Applied to the full sized ground truth accuracy 411

map computed in metric space, this gives an accuracy map at different location of a 412

retinotopic motor space. Such transform is again implemented by a simple matrix 413

multiplication which can be pre-computed to fasten calculations. Practically, this also 414

allows to compute an inverse transform using the pseudo-inverse matrix of the forward 415

transform. In particular, that inverse transform is used to represent the accuracy 416

predicted by any given visual feature vector, but also to compute the position of 417

maximal accuracy in metric space to set up the sensor displacement. 418

Classifier training Consider the retinal transform x as the input and a log-polar 419

retinotopic vector a made of n Bernouilli probabilities (success probabilities) as the 420

output. The network is trained to predict the distribution a knowing the retinal input 421

x by comparing it to the known ground truth distribution computed over the motor 422

map. The loss function that comes naturally is the Binary Cross-Entropy (negative 423

term of the Kullback-Leibler divergence) between the ground truth and the predicted 424

map (assuming the independence of the output map features). 425

The parametric neural network consists of a primary visual input layer, followed by 426

two fully connected hidden layers of size 1000 with rectified linear activation, and a final 427

output layer with a sigmoid nonlinearity to ensure that the output is compatible with a 428

likelihood. The network is trained on 60 epochs of 60000 samples, with a learning rate 429

equal to 10−4 and the Adam optimizer [?]. The full training takes about 1 hours on a 430

laptop. The code is written in Python (version 3.7.6) with pyTorch library [?] (version 431

1.1.0). The full scripts for reproducing the figures and extending the results to a full 432

range of parameters is available at 433

https://github.com/laurentperrinet/WhereIsMyMNIST. 434

Results 435

Open loop setup 436

After training, the “Where” pathway is now capable to predict an accuracy map, whose 437

maximal argument drives the eye toward a new viewpoint. There, a central snippet is 438

extracted, that is processed through the “What” pathway, allowing to predict the digit’s 439

label. Examples of this simple open loop sequence are presented in figure 4, when the 440

digits contrast parameter is set to 0.7 and the digits eccentricity varies between 0 and 441

40 pixels. The presented examples correspond to strong eccentricity cases, when the 442

target is hardly visible on the display (fig. 4a), and almost invisible on the 443

reconstructed input (fig. 4b). The radial maps (fig. 4c-d) respectively represent the 444
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a. b. c. d. e.

(A)

(B)

(C)

(D)

(E)
Fig 4. (A) – (E) Active vision samples after training. (A) – (B) classification
success samples. (C) – (E) classification failure samples. Digit contrast set to 0.7.
From left to right : a. The initial 128×128 visual display, with blue cross giving the
center of gaze. The visual input is retinotopically transformed and sent to the
multi-layer neural network implementing the “Where” pathway. b. Magnified
reconstruction of the visual input, as it shows off from the primary visual features
through an inverse log-polar transform. c.-d. Color-coded radial representation of the
output accuracy maps, with dark violet for the lower accuracies, and yellow for the
higher accuracies. The network output (’Predicted’) is visually compared with the
ground truth (’True’). e. 28× 28 central snippet as extracted from the visual display
after doing a saccade, with label prediction and success flag in the title.

actual and the predicted accuracy maps. The final focus is represented in fig. 4e, with 445

cases of classification success (fig. 4A-B) and cases of classification failures (fig. 4C-E). 446

In the case of successful detection (fig. 4A-B), the accuracy prediction is not perfect 447

and the digit is not perfectly centered on the fovea. This “close match” however allows 448

for a correct classification for the digit’s pixels are fully present on the fovea. The case 449

of fig. 4B and 4C is interesting for it shows two cases of a bimodal prediction, indicating 450

that the network is capable of doing multiple detections at a single glance. The case of 451
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Fig 5. Effect of contrast and target eccentricity. The active vision agent is
tested for different target eccentricities (in pixels) and different contrasts to estimate a
final classification rate. Orange bars: accuracy of a central classifier (’No saccade’) with
respect to the target’s eccentricity, averaged over 1,000 trials per eccentricity. Blue bars:
Final classification rate after one saccade.

4C corresponds to a false detection, with the true target detected still, though with a 452

lower intensity. The case of fig. 4D is a “close match” detection that is not precise 453

enough to correctly center the visual target. Not every pixel of the digit being visible on 454

the fovea, the label prediction is mistaken. The last failure case (fig. 4E) corresponds to 455

a correct detection that is harmed by a wrong label prediction, only due to the “What” 456

classifier inherent error rate. 457

To test the robustness of our framework, the same experiment was repeated at 458

different signal-to-noise ratios (SNR) of the input images. Both pathways being 459

interdependent, it is crucial to disentangle the relative effect of of both sources of errors 460

in the final accuracy. By manipulating the SNR and the target eccentricity, one can 461

precisely monitor the network detection and recognition capabilities, with a detection 462

task ranging from ‘easy” (small shift, strong contrast) to “almost impossible” (large 463

shift, low contrast). The digit recognition capability is systematically evaluated in 464

Figure 5 for different eccentricities and different contrasts. For 3 target contrasts 465

conditions ranging from 0.3 to 0.7, and 10 different eccentricities ranging from 4 to 40 466

pixels, the final accuracy is tested on 1, 000 trials both on the initial central snippet and 467

the final central snippet (read at the landing of the saccade). The orange bars provide 468

the initial classification rate (without saccade) and the blue bars provide the final 469

classification rate (after saccade) – see figure 5. As expected, the accuracy decreases 470

with the eccentricity, for the targets become less and less visible in the periphery. The 471

decrease is rapid in the central classifier case: the accuracy drops to the baseline level at 472

approximately 20 pixels away from the center of gaze. The saccade-driven accuracy has 473

a much wider range, with a slow decrease up to the border of the visual display (40 474

pixels away from the center). When varying the target contrast, the initial accuracy 475

profile is scaled by the reference accuracy (obtained with a central target), whose values 476

are approximately 53%, 82% and 92% for SNRs of 0.3, 0.5 and 0.7. The saccade-driven 477

accuracy profile is also similar at the different SNRs values, yet with the scaling 478

imposed by the “What” pathway. This contrast-dependent scaling shows the robustness 479

of our framework to the different factors of difficulty. 480

The high contrast case (fig. 5A) provides the greatest difference between the two 481

profiles, with an accuracy approaching 0.9 at the center and 0.6 at the periphery. This 482

allows to recognize digits after one saccade in a majority of cases, up to the border of 483

the image, from a very scarce peripheral information. This full covering of the 128×128 484

image range is done at a much lesser cost than would be done by a systematic image 485

scan, as in classic computer vision. With decreasing target contrast, a general decrease 486

of the accuracy is observed, both at the center and at the periphery, with about 10% 487

decrease with a contrast of 0.5, and 40% decrease with a contrast of 0.3. In addition, 488
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Fig 6. Multi-saccades case. (A) Example of a corrective saccade on a 3-saccades
trial. The subjective visual field is reconstructed from the log-polar visual features, with
red square delineated 28× 28 foveal snippet, after 0, 1, 2 and 3 saccades (from left to
right). (B) Average classification accuracies measured for different target eccentricities
(in pixels) and a different number of saccades. Target contrast set to 0.7. Orange bars:
initial central accuracy (’0 saccade’) in function of the eccentricity, averaged over 1,000
trials per eccentricity. Blue bars: Final classification rate after one, two and three
saccades (from left to right).

the proportion of false detections also increases with contrast decrease. At 40 pixels 489

away from the center, the false detection rate is approximately 30% for a contrast of 0.7, 490

50% for a contrast of 0.5 and 70% for a contrast of 0.3 (with a recognition close to the 491

baseline at the periphery in that case). The accuracy gain (difference between the initial 492

and the final accuracy) is maximal for eccentricities ranging from 15 to 30 pixels. This 493

optimal range reflects a peripheral region around the fovea where the target detection is 494

possible, but not its identification. The visual agent knows where the target is, without 495

exactly knowing what it is. More generally, this accuracy difference, that quantifies the 496

benefit of active inference with respect to a central prior, can be interpreted as an 497

approximation of the information gain provided by the “Where” pathway1. 498

Closed-loop setup 499

The most peripheral targets are difficult to detect in one round, resulting in degraded 500

performances at the periphery. Even when correctly detected, our log polar action maps 501

also precludes precise centering. The peripheral targets are generally poorly centered 502

after one saccade, as shown in figure 4, resulting in classification errors. Sequential 503

search is thus needed to allow for a better recognition. Multi-saccades visual search 504

results are thus presented in figure 6 505

An example of a corrective saccade is shown on figure 6A. A hardly visible 506

peripheral digit target is first approximetely shifted to the foveal zone. A second 507

saccade allows to improve the target centering. A third saccade only marginally 508

improves the centering. As shown in figure 6B, such corrective saccades, that generally 509

only slightly shift the target, still provide a significant improvement in the classification 510

accuracy. Except at the center, the accuracy rises of about 10% both for the mid-range 511

and the most peripheral eccentricities. Most of the improvement however is provided by 512

the first corrective saccade. The second corrective saccade only shows a barely 513

significant 2-3 % improvement, only visible at the periphery. The following saccades 514

would mostly implement target tracking, without providing additional accuracy gain. A 515

1with the true label log-posterior seen as a sample of the posterior entropy – see eq.(1).
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3-saccades setup finally allows a wide covering of the visual field, providing a close to 516

central recognition rate at all eccentricities. The residual peripheral error may 517

correspond to “opposite side” target misses cases (figure 4C), when the target is shifted 518

away from the visual field horizon, and the agent can not recover from its initial error. 519

Concurrent action selection 520

Finally, when both pathways are assumed working in parallel, each one may be used 521

concurrently to choose the most appropriate action. Two concurrent accuracies are 522

indeed predicted through separate processing pathways, namely the central pixels 523

recognition accuracy through the “What” pathway, and the log-polar accuracy map 524

through the “Where” pathway. The central accuracy may thus be compared with the 525

maximal accuracy as predicted by the “Where” pathway. 526

From the information theory standpoint, each saccade comes with fresh visual
information about the visual scene that can be quantified by an information gain,
namely:

IGmax = max
u′

log p(y|u′, x′, x, u)− log p(y|x, u)

' max
u′

log p(y|x′)− log p(y|x) (1)

with the left term representing the future accuracy (after the saccade is realized) and 527

the right term representing the current accuracy as it is obtained from the ’what’ 528

pathway. The accuracy gain may be averaged over many saccades and many initial 529

eccentricities (so that the information gain may be close to zero when the initial u is 530

very central). For the saccade is subject to predictions errors and execution noise, the 531

actual u′ may be different from the initial prediction. The final accuracy, as instantiated 532

in the accuracy map, contains this intrinsic imprecision, and is thus necessary lower 533

than the optimal one. The consequence is that in some cases, the approximate 534

information gain may become negative, when the future accuracy is actually lower than 535

the current one. This is for instance the case when the target is centered on the fovea. 536

In our simulation results, the central accuracy is found to overtake the maximal 537

peripheral accuracy when the target is close to the center of gaze. When closely 538

inspecting the 1-10 pixels eccentricity range (not shown), a decision frontier between a 539

positive and a negative information gain is found to lie at 2-3 pixels away from the 540

center. Inside that range, no additional saccade is expected to be produced, and a 541

categorical response should be given instead. While this frontier is not attained, 542

micro-saccades may be pursued in the close vicinity of the target in search of a perfect 543

centering. In the opposite case, when the central accuracy estimate is very poor, the 544

comparison can still be considered helpful, for it may allow to “explain away” the 545

current center of gaze and its neighborhood, encouraging to actuate long-range saccades 546

toward less salient peripheral positions, making it easier to escape from initial 547

prediction errors. This should encourage the agent to select a saccade “away” from the 548

central position, which is reminiscent of a well-known phenomenon in vision known as 549

the “inhibition of return” [?]. Combining accuracy predictions from each pathway may 550

thus allow to refine saccades selection in a way that complies with biological vision. In 551

particular, we predict that such a mechanism is dependent on the class of inputs, and 552

would be different for searching for faces as compared to digits. 553

Quantitative role of parameters 554

In addition, we controlled that these results are robust to changes in an individual 555

experimental or network parameters from the default parameters (see Figure 7). From 556
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Fig 7. Quantitative role of parameters: We show here variations of the average
accuracy as a function of some free parameters of the model. All parameters of the
presented model were tested, from the architecture of image generation, to the
parameters of the neural network implementing the “Where” pathway (including
meta-parameters of the learning paradigm). We show here the results which show the
most significative impact on average accuracy. (A) First, we tested some properties of
the input, respectively from left to right: noise level (noise), mean spatial frequency of
clutter sf 0 and bandwidth B sf of the clutter noise. This shows that average accuracy
evolves with noise (see also Figure 5 for an evolution as a function of eccentricity), but
also to the characteristics of the noise clutter. In particular, there is a drop in accuracy
whenever noise is of similar wavelength as digits, but which becomes less pronounced as
the bandwidth increases. (B) The accuracy also changes with the architecture of the
foveated input as shown here by changing the number N azimuth of azimuth directions
which are sampled in visual space. This shows a compromise between a rough azimuth
representation and a large precision, which necessitates a longer training phase, such
that the optimal number is around 20 azimuth directions. (C) Finally, we scanned
parameters of the Deep Learning neural network. It shows that accuracy quickly
converged after a characteristic time of approximately 25 epochs. We then tested
different values for the dimension of respectively the first (dim1) and second (dim2)
hidden layers, showing weak changes in accuracy.

the scan of each of these parameters, the following observations were remarkable. First 557

we verified that accuracy decreased when noise increased and while the bandwidth of 558

the noise imported weakly, the spatial frequency of the noise was an important factor. 559

In particular, final accuracy was worst for sf 0 ≈ 0.07, that is when the characteristic 560

textures elements were close to the characteristic size of the objects. Second, we saw 561

that the dimension of the “Where” network was optimal for a dimensionality similar to 562

that of the input but that this mattered weakly. The dimensionality of the log-polar 563

map is more important. The analysis proved that an optimal accuracy was achieved 564

when using a number of 24 azimuthal directions. Indeed, a finer log-polar grid requires 565

more epochs to converge and may result in an over-fitting phenomenon hindering the 566

final accuracy. Such fine tuning of parameters may prove to be important in practical 567

applications and to optimize the compromise between accuracy and compression. 568
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Relation with other models 569

Our model is, to our best knowledge, the first case of a bio-realistic log-polar 570

implementations of an active vision framework. We have thus provided a proof of 571

concept that a log-polar encoding retina can efficiently serve object detection and 572

identification over wide visual displays. 573

There are however lots of model that reflect to some degree the biological principles 574

of sequential visual processing. First, active vision is of course an important topic in 575

mainstream computer vision. In the case of image classification, it is considered as a 576

way to improve object recognition by progressively increasing the definition over 577

identified regions of interest, referred as “recurrent attention” [?,?]. Standing on a 578

similar mathematical background, recurrent attention is however at odd with the 579

functioning of biological systems, with a mere distant analogy with the retinal principles 580

of foveal-surround visual definition. 581

Phenomenological bio-realistic models, such as the one proposed in Najemnik and 582

Geisler’s seminal paper [?], rely on a rough simplification, with foveal center-surround 583

acuity modeled as a response curve. Despite providing a bio-realistic account of 584

sequential visual search, the model owns no foveal image processing implementation. 585

Stemming on Najemnik and Geisler’s principles, a trainable center-surround processing 586

system was proposed in [?], with a sequential scan of an image in a face-detection task, 587

however the visual search task here relies on a systematic scan over degraded image, 588

with visual processing delegated to standard feature detectors. 589

Denil at al’s paper [?] is probably the one that shows the closest correspondence 590

with our setup. It owns an identity pathway and a control pathway, in a What/Where 591

fashion, just as ours. Interestingly, only the “what” pathway is neurally implemented 592

using a random foveal/multi-fixation scan within the fixation zone. The “Where” 593

pathway, in contrast, mainly implements object tracking, using particle filtering with a 594

separately learned generative process. The direction of gaze is here chosen so as to 595

minimize the target position, speed and scale uncertainty, using the variance of the 596

future beliefs as an uncertainty metric. The control part is thus much similar to a 597

dynamic ROI tracking algorithm, with no direct correspondence with foveal visual 598

search, or with the capability to recognize the target. 599

Discussion 600

In summary, we have proposed a visuo-motor action-selection model that implements a 601

focal accuracy-seeking policy across the image. Our main modeling assumption here is 602

an accuracy-driven monitoring of action, stating in short that the ventral classification 603

accuracy drives the dorsal selection on an accuracy map. The predicted accuracy map 604

has, in our case, the role of a value-based action selection map, as it is the case in 605

model-free reinforcement learning. However, it also owns a probabilistic interpretation 606

that may be combined with concurrent accuracy predictions (such as the one done 607

through the “What” pathway) to bring out more elaborate decision making which are 608

relevant for visual search, such as the inhibition of return [?]. This combination of a 609

scalar drive with action selection is reminiscent of the actor/critic principle proposed for 610

long time in the reinforcement learning community [?]. In biology, the ventral and the 611

dorsolateral division of the striatum have been suggested to implement such an 612

actor-critic separation [?,?]. Consistently with those findings, our central accuracy drive 613

and peripheral action selection map can respectively be considered as the “critic” and 614

the “actor” of an accuracy-driven action selection scheme, with foveal 615

identification/desambiguation taken as a “visual reward”. 616

Moreover, one crucial aspect of vision highlighted by our model is the importance of 617
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centering objects in recognition. Despite the robust translation invariance observed on 618

the “What” pathway, there is small radius of 2-3 pixels around the target’s center that 619

needs to be respected to maximize the classification accuracy. This relates to the idea of 620

finding an absolute referential for an object, for which the recognition is easier. If the 621

center of fixation is fixed, the log-polar encoding of an object has the notable properties 622

to map object rotations and scalings toward translations in the radial and angular 623

directions of the visual domain [?]. The translation invariance found in convolutional 624

processing may thus be extended to both rotation and scale invariance in the log-polar 625

domain. Incorporating this scale and rotation invariance may thus extend the 626

generalization capabilities of the model. 627

Despite its simplicity, the generative model used to generate our visual display 628

allowed to assess the effectiveness and robustness of our learning scheme, that should be 629

extended to more complex displays and more realistic closed-loop setups. On the one 630

side, the restricted 28×28 input used for the foveal processing is a mere placeholder, 631

that should be replaced by more elaborate image processing frameworks, such as 632

Inception [?] or VGG-19 [?], that can handle natural image classification. The main 633

advantage of our peripheral image processing is its energy-efficiency. Our full log-polar 634

processing pathway consistently conserves the high compression rate performed by 635

retina and V1 encoding up to the action selection level. The organization of both the 636

visual filters and the action maps in concentric log-polar elements, with radially 637

exponentially growing spatial covering, can thus serve as a baseline for a future 638

sub-linear (logarithmic) visual search in computer vision. This may allow to detect an 639

object in large visual environments at little cost, which should be particularly beneficial 640

when the computing resources are under constraint, such as for drones or mobile robots. 641

Finally, our model relies on a strong idealization, assuming the presence of a unique 642

target. The presence of many targets in a scene should be addressed, which amounts to 643

sequentially select targets, in combination with implementing an inhibition of return 644

mechanism. This would generate more realistic visual scan-paths over images. Actual 645

visual scan path over images could also be used to provide priors over action selection 646

maps that should improve realism. Identified regions of interest may then be compared 647

with the baseline bottom-up approaches, such as the low-level feature-based saliency 648

maps [?]. Maximizing the Information Gain over multiple targets needs to be envisioned 649

with a more refined probabilistic framework, including mutual exclusion over overt and 650

covert targets. How the brain may combine and integrate these various probabilities is 651

still an open question, that amounts to the fundamental binding problem. 652
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