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(hello) Hi, | am Bernhard A. Kaplan and | am Laurent U. Perrinet . Today we will speak
about the role of predictive coding in neural computations and demonstrate an
application at different levels from theory to biology and hardware simulations.

(akeno) This is joint work between INT and KTH. Thanks to FACETS-ITN and the
BrainScaleS project for funding this project.
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I—Outline: WP5 - Demo 1.3 : Spiking model of
motion-based prediction S ——

1. first, Laurent U. Perrinet will present the biological motivation and a theoretical
formulation

2. then, Bernhard A. Kaplan will present an existing implementation on the ESS

3. Finally, Bernhard A. Kaplan will present ongoing work on the BCPNN rule.
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Motion-based anticipation

Experiment Abstract, Spiking neural
probabilistic model network
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L Introduction: Motion-anticipation

()

(xxx)

Problem statement: optimal motor control under axonal delays. The central
nervous system has to contend with axonal delays, both at the sensory and the
motor levels.

... For instance, in the human visuo-oculomotor system, it takes approximately
7s = 50 ms for the retinal image to reach the visual areas implicated in motion
detection, and a further 7, = 40 ms to reach the oculomotor muscles. As a
consequence, for a tennis player trying to intercept a ball at a speed of

20 m.s~1, the sensed physical position is 1 m behind the true position (as
represented here by s - \7) while the position at the moment of emitting the
motor command will be .8 m ahead of its execution (7m - V).
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L Introduction: Motion-anticipation

(xxx) Note that while the actual position of the ball when its image formed on the
photoreceptors of the retina hits visual read is approximately at 45 degrees of
eccentricity (red dotted line), the player’'s gaze is directed to the ball at its
present position (red line), in anticipatory fashion. Optimal control directs action
(future motion of the eye) to the expected position (red dashed line) of the ball
in the future — and the racket (black dashed line) to the expected position of
the ball when motor commands reach the periphery (muscles).
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I—Introduction: Motion-anticipation
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So, how do we handle that?
e markov chain: dynamical system
e diagonal model from Nihjawan: pushing to the future present

e equivalent formulation pulling from the past
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L Introduction: Motion-anticipation

So, how do we handle that?
e results for a delayed dot with simple trajectory: PX vs MBP
e catching up the real trajectory

e time travel
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So, how do we handle that?
e let's look at one neuron as a function of time
e PX vs MBP
e Flash-lag effect
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L Introduction: Motion-anticipation

So, how do we handle that?
e diagonal pull model

e Neurobiologically, the application of delay operators just means changing
synaptic connection strengths to take different mixtures of generalized sensations
and their prediction errors.

e application to a SNN?



Connectivity for motion-based anticipation
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L Introduction: Motion-anticipation

I—Connectivity for motion-based anticipation

Intermediate summary
e biology
e theory
e ESS

Connectivity for motion-based anticipation




Motion-based anticipation

Experiment Abstract, Spiking neural
probabilistic model network

Response aligned to stimulus arrival at 7

§§ °
Stimulus =2 MBP- Model.
2 0.03 04
20 ge
28 E2on
7} £g
3§ 0.02 %01
>c 5%
ZE 2 3 00sf
ag oo 8800
. 3 g
ALLNEURONS - ALL ORIENTATIONS 8% -
a 0.
§ 15 -10 -5 0 5 10 15 20 25 30 o0
cc -
| 28 PX- Model 0906 600 400 200 0200 400 600 800
£2 0.03 Time (ms] with respect to arrival at 1
23 0116 Response aligned to stimulus arrivel ot
ca
s 5 —
23002 o1
S5 8205
ZE g2
o5 S+ 0.01 R 010
S 58
g s T 3 0.8
o5 €35
= 00 8%,
=15 -10 -5 0 5 10 15 20 25 30 °g§°%
Time after arrival of stimulus (N_frame) So04
007
0.0 o

0600400300 0 200100 600
‘Time [ms] with respect to arrival at z,

This work has been accepted for presentation at the International Joint
Conference on Neural Networks 2014:

“Signature of an anticipatory response in area V1 as modelled by a
probabilistic model and a spiking neural network” B.Kaplan* M.Khoei*
A.Lansner L.Perrinet; * BK & MK contributed equally
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Motion-based extrapolation

Input spike train and L(t)
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Net conductance analysis: Towards the ESS
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Towards the ESS: Conclusions

HMF requires specific model changes

Parameter changes towards ESS regimes — qualitative changes in behavior
Model requires fine tuning

Unlikely to function on the HMF under given constraints

— Learning instead of hard-wiring connectivity!

vVvyvyyvyy
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Self-organized connectivity for motion-extrapolation

one dimensional model
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Self-organized connectivity for motion-extrapolation
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Self-organized connectivity for motion-extrapolation

Neuron GIDs: 79 (3.0e-01, 1.9e-01) - 128 (4.9e-01, 2.3e-01) 7, =2000 ms, 7. =10 ms
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Testing the system with blank phases
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WP5 - Task 5: Multi-scale and hierarchical neural
representation and Gestalt processing in modular cortical
networks
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Summary & Plans for Year 4

| Simulation | HMF | SpiNNaker
Motion-anticipation accepted | Will be done | Will be done
Motion-extrapolation (ME) | published ? Will be done
Self-organized M.E in progress X Will be done

Modelling:

» Publish the work on self-organized motion-extrapolation
Hardware:

» Work in progress, Continue parameter search to run
motion-extrapolation on the HMF

> Verify that trajectory-dependent anticipation signature can be seen
using the HMF

» Run motion extrapolation with BCPNN trained connectivity on
SpiNNaker
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I—Seh“-organized connectivity for motion-extrapolation

I—Summary & Plans for Year 4

Training:
e Presentation of different stimuli (different start position, different speeds)

e Plastic all-to-all connectivity between excitatory cells (BCPNN) develops, but
weights are updated after the training; no online training

e Testing: Can the learned connectivity implement motion-based prediction, when
test stimuli contain a blank-phase?

e work in progress — learning important, because imposing the connectivity is very
difficult
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