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Example 1: Unsupervised learning of natural images

C(s|x,A) = 1
2.σ2 .‖x −

∑
j sj.Aj‖2 + λ.‖s‖0

[Perrinet, 2010, Neural Computation]
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Example 2: Topographic models and association fields
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Example 2: Topographic models and association fields
5.3 Orientation Maps 103
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Fig. 5.12. Long-range lateral connections in the orientation map. The lateral inhibitory
connection weights of four sample neurons from the marked regions in Figure 5.9 are shown
in the top row, situated in the orientation map as shown in the bottom row. The small white
square in both figures identifies the neuron; the black outline on top indicates the extent of
these connections before self-organization, and the white outline on the map plot shows their
extent after self-organization and pruning. On top, the color coding represents the connected
neuron’s orientation, selectivity, and connection strength, as in Figure 5.7; the map encodes
orientation and selectivity as in Figure 5.9c. The connection histogram (CH) in the middle
shows how many connections come from neurons of each orientation. For every neuron, the
strongest connections originate from the neuron’s nearby neighbors, as indicated by the large,
bright central area in each weight plot. The long-range connection patterns differ depending
on where the neuron is located in the orientation map. (a) Neurons in the middle of an OR
patch receive connections from neurons with similar preferences, aligned along the orientation
preference of the neuron (for this neuron, about 65�, i.e. blue). (b) At pinwheel centers, the
connections come from all directions and orientations and are nearly isotropic. The histogram
is nearly flat, with small peaks near orientations that happen to be overrepresented in the
pinwheel. (c) Connections at saddle points extend along the two orientations of the saddle,
in this case red (0�) and blue (65�). The neuron also makes connections with intermediate
orientations and directions; these connections match its own OR preference (30�, purple), and
result in one broad peak in the histogram. (The connections of this neuron are cut off along
the bottom because it is located near the bottom of the map.) (d) Connections of neurons at
fractures are also elongated along the two directions of the neighboring orientation patches.
The neuron plotted in (d) is on a fracture between yellow–green (130�) and blue–purple (40�),
and makes connections with both of these orientations. In contrast to saddle points, it does not
connect with intermediate orientations and directions, resulting in two distinct peaks in the
orientation histogram. While the connection patterns in iso-orientation patches have already
been confirmed in biology, the patterns at the other map features are predictions for future
experiments.

[Miikkulainen et al., 2005, Computational Maps in the Visual Cortex]



Example 3: Motion-based prediction
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Summary
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Task 4. Emerging properties of large-scale networks

In connection with WP1 and WP2, we will link dynamics of spiking networks and neural fields with probabilistic computations
for early sensory processing. Emphasis will be put onto the role of diffusion, in particular within a cortical area through lateral
interactions. In addition, such diffusion is modulated in a context-dependent manner through re-entrant signals from higher
stages along the cortical hierarchy. We have previously elaborated probabilistic (Perrinet & Masson, 2010) or dynamical
(Tlapale et al., 2010; Grimbert et al., 2006) models of motion information diffusion along cortical retinotopic trajectories.
Probabilistic models give a complete representation of the information that is represented by populations of neurons. Particle
filtering methods will be used to investigate how this propagation can solve low-level computational problems such as motion
integration, extrapolation or prediction in visual (Mason & Ilg, 2010) or somatosensory (Shulz et al. 2006) cortices. Partner TUG
will test his new model for emulating such particle filters in networks of spiking neurons. With Partner INRIA, neural-mass models
will describe this diffusion using analogue values representing the activity at a given point in the field, for instance by using a
tensor representation of texture elements (Chossat & Faugeras, 2009). This will be confronted with an exploration of the
neural activity and behavior using specific stochastic stimuli with controlled complexity as defined in WP4 --- Task 1.
Comparison between these probabilistic and neural-mass approaches will enable us to build local population-based models
and explore their computational properties. We will investigate how the theoretical link between these two classes of models
allows to bridge micro and mesoscopic descriptions of the same neuronal dynamics as observed in a few dedicated tasks
such as contour and motion integrations and extrapolation (see WP1). Using the existing integration of these implementations
within PyNN, we will next implement these models in the networks developed in Task 2 in order to test them in HPC and HMF.
Using this architecture, we will build models testing the emergence of maps of cortical receptive fields optimally tuned to
elaborate sparse, multi-scale representations of the visual or tactile world. The challenging question is whether functional
models of self-organization can be translated in large-scale networks of spiking neurons (Perrinet, 2010). We will investigate
how spatio-temporal receptive fields and higher-order feature detectors (such as curve contours) can emerge through
learning of statistical regularities in the images and study how hierarchic structures can arise as a self-organized emerging
property.

I Deliverable D5-4.1: Implementation of models showing emergence of cortical fields and maps
I Due in month 48, 2014/09/30 https:

//brainscales.kip.uni-heidelberg.de/jss/Deliverables?m=showDeliverable&bk_deliverableID=25

I link with WP 5 Task 5: Multi-scale and hierarchical neural representation and Gestalt processing in modular cortical
networks

https://brainscales.kip.uni-heidelberg.de/jss/Deliverables?m=showDeliverable&bk_deliverableID=25
https://brainscales.kip.uni-heidelberg.de/jss/Deliverables?m=showDeliverable&bk_deliverableID=25
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