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Qutline: BrainScaleS's Demos 1, Task 4

Example 1: Unsupervised learning of natural images

Example 2: Topographic models and association fields

Example 3: Motion-based prediction



Example 1. Unsupervised learning of natural images

Cslx,A) = 5z x = 35,5417 + Alsllo



Example 1. Unsupervised learning of natural images

Cslx,A) = 5. x = 35, 5:A) % + X[Islo
(Perrinet, 2010, Neural Computation)



Example 1. Unsupervised learning of natural images
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(Perrinet, 2010, Neural Computation)
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Example 2: Topographic models and association fields

(Perrinet, Bednar & Fitzpatrick, 2011, SfN)



Example 2. Topographic models and association fields
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(Miikkulainen et al., 2005, Computational Maps in the Visual Cortex)



Example 3: Motion-based prediction
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Example 3: Motion-based prediction
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Example 3: Motion-based prediction




Example 3: Motion-based prediction




Summary
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Task 4. Emerging properties of large-scale networks

In connection with WP1 and WP2, we will link dynamics of spiking networks and neural fields with probabilistic computations
for early sensory processing. Emphasis will be put onto the role of diffusion, in particular within a cortical area through lateral
interactions. In addition, such diffusion is modulated in a context-dependent manner through re-entrant signals from higher
stages along the cortical hierarchy. We have previously elaborated probabilistic (Perrinet & Masson, 2010) or dynamical
(Tlapale et al., 2010; Grimbert et al., 2006) models of motion information diffusion along cortical retinotopic trajectories.
Probabilistic models give a complete representation of the information that is represented by populations of neurons. Particle
filtering methods will be used to investigate how this propagation can solve low-level computational problems such as motion
integration, extrapolation or prediction in visual (Mason & lig, 2010) or somatosensory (Shulz et al. 2006) cortices. Partner TUG
will test his new model for emulating such particle filters in networks of spiking neurons. With Partner INRIA, neural-mass models
will describe this diffusion using analogue values representing the activity at a given point in the field, for instance by using a
tensor representation of texture elements (Chossat & Faugeras, 2009). This will be confronted with an exploration of the
neural activity and behavior using specific stochastic stimuli with controlled complexity as defined in WP4 --- Task 1.
Comparison between these probabilistic and neural-mass approaches will enable us to build local population-based models
and explore their computational properties. We will investigate how the theoretical link between these two classes of models
allows to bridge micro and mesoscopic descriptions of the same neuronal dynamics as observed in a few dedicated tasks
such as confour and motion infegrations and extrapolation (see WP1). Using the existing integration of these implementations
within PyNN, we will next implement these models in the networks developed in Task 2 in order fo test them in HPC and HMF.
Using this architecture, we will build models testing the emergence of maps of cortical receptive fields optimally tuned to
elaborate sparse, multi-scale representations of the visual or tactile world. The challenging question is whether functional
models of self-organization can be translated in large-scale networks of spiking neurons (Perrinet, 2010). We will investigate
how spatio-temporal receptive fields and higher-order feature detectors (such as curve contours) can emerge through
learning of statistical regularities in the images and study how hierarchic structures can arise as a self-organized emerging
property.

P Deliverable D5-4.1: Implementation of models showing emergence of cortical fields and maps

P Due in month 48, 2014/09/30 https:
//brainscales.kip.uni-heidelberg.de/jss/Deliverables?m=showDeliverable&bk_deliverableID=25

P link with WP 5 Task 5: Multi-scale and hierarchical neural representation and Gestalf processing in modular cortical
networks
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