Probabilistic models of the low-level visual system: the role of prediction in detecting motion

Abstract

Sensory informations such as visual images are inherently variable. We use probabilistic models to describe how the low-level visual system could describe superposed and ambiguous information. This allows to describe the interactions of neighboring populations of neurons as inference rules that dynamically build up the overall description of the visual scene. We focus here on temporal prediction, that is by the transport of information based on an estimate of local motion in the image.

Date
Dec 17, 2010 12:00 AM
Event
LADISLAV TAUC and GDR MSPC NEUROSCIENCES CONFERENCE, From Mathematical Image Analysis to Neurogeometry of the Brain

An event ranging “From Mathematical Image Analysis to Neurogeometry of the Brain” LADISLAV TAUC & GDR MSPC NEUROSCIENCES CONFERENCE. * related publication from Mina Khoei @ TAUC 2012 * see this more recent talk @ UCL, London

Avatar
Laurent U Perrinet
Researcher in Computational Neuroscience

My research interests include Machine Learning and computational neuroscience applied to Vision.

Related