Next-generation neural computations
Next-generation neural computations
Home
Latest
Events
Projects
People
Publications
Talks
Grants
BlogBook
Contact
Spike
Testing the odds of inherent vs. observed overdispersion in neural spike counts
The repeated presentation of an identical visual stimulus in the receptive field of a neuron may evoke different spiking patterns at …
Wahiba Taouali
,
Giacomo Benvenuti
,
Pascal Wallisch
,
Frédéric Chavane
,
Laurent U Perrinet
Cite
DOI
URL
HAL
Anisotropic connectivity implements motion-based prediction in a spiking neural network
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the …
Bernhard a Kaplan
,
Anders Lansner
,
Guillaume S Masson
,
Laurent U Perrinet
Cite
DOI
URL
Adaptive Sparse Spike Coding : applications of Neuroscience to the compression of natural images
If modern computers are sometimes superior to cognition in some specialized tasks such as playing chess or browsing a large database, …
Laurent U Perrinet
Cite
arXiv
What adaptive code for efficient spiking representations? A model for the formation of receptive fields of simple cells
Laurent U Perrinet
PDF
Cite
Dynamical Neural Networks: modeling low-level vision at short latencies
The machinery behind the visual perception of motion and the subsequent sensori-motor transformation, such as in ocular following …
Laurent U Perrinet
PDF
Cite
DOI
Efficient Source Detection Using Integrate-and-Fire Neurons
Laurent U Perrinet
Cite
DOI
URL
Coding static natural images using spiking event times: do neurons cooperate?
To understand possible strategies of temporal spike coding in the central nervous system, we study functional neuromimetic models of …
Laurent U Perrinet
,
Manuel Samuelides
,
Simon Thorpe
PDF
Cite
DOI
URL
arXiv
Feature detection using spikes : the greedy approach
A goal of low-level neural processes is to build an efficient code extracting the relevant information from the sensory input. It is …
Laurent U Perrinet
Cite
DOI
URL
arXiv
Comment déchiffrer le code impulsionnel de la vision ? Étude du flux parallèle, asynchrone et épars dans le traitement visuel ultra-rapide
Le jury était consistué (de gauche à droite) de Jeanny Hérault (Rapporteur), Michel Imbert (Président), Yves Burnod (Rapporteur, absent de la photo), Manuel Samuelides (Directeur de thèse) et Simon Thorpe (Co-directeur de thèse).
Laurent U Perrinet
Cite
URL
PDF
Coherence detection in a spiking neuron via Hebbian learning
It is generally assumed that neurons in the central nervous system communicate through temporal firing patterns. As a first step, we …
Laurent U Perrinet
,
Manuel Samuelides
PDF
Cite
DOI
URL
Cite
×