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a b s t r a c t

We study cortical network dynamics for a spatially embedded network model. It represents, in terms of
spatial scale, a large piece of cortex allowing for long-range connections, resulting in a rather sparse con-
nectivity. The spatial embedding also permits us to include distance-dependent conduction delays. We
use two different types of conductance-based I&F neurons as excitatory and inhibitory units, as well as
specific connection probabilities. In order to remain computationally tractable, we reduce neuron den-
sity, modelling part of the missing internal input via external poissonian spike trains. Compared to pre-
vious studies, we observe significant changes in the dynamical phase space: Altered activity patterns
require another regularity measures than the coefficient of variation. Hence, we compare three different
regularity measure on the basis of artificial inter-spike-interval distributions. We identify two types of
mixed states, where different phases coexist in certain regions of the phase space. More notably, our
boundary between high and low activity states depends predominantly on the relation between excit-
atory and inhibitory synaptic strength instead of the input rate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Studying cortical network dynamics on the basis of artificial
neural networks requires an appropriate simplification of the sys-
tem. The latter should be adapted to cortical reality but remain
tractable for simulations. There is a plethora of detailed informa-
tion about how to model a cortical network, in addition to a set
of appropriate analysis tools. For example, Brunel (2000) examined
the phase space of sparsely connected neuronal networks with cur-
rent-based synapses, Kumar et al. (2008a) advanced to conduc-
tance-based synapses, and Roxin et al. (2005) focussed on
synaptic delays. The benefits of such studies are, for example, the
detection of stable ground states, showing which dynamical states
occur under what conditions, and they are most advantageous in
identifying the most sensitive parameters. We present an elaborate
analysis of the dynamical states of a 2D spatially embedded corti-
cal network. Compared to previous studies on the dynamics of ran-
domly connected cortical networks (Brunel, 2000; Kumar et al.,
2008a; Roxin et al., 2005) we focus on a biologically realistic spatial
embedding. It is the aim of this paper to provide first insights into
the behavior of such a network.

Despite the fact that cortical connectivity is distance-dependent
(Binzegger et al., 2007; Voges, 2007), we still consider random net-
works, but with three important modifications.

First, we assume a much sparser connectivity than most models
(see Kumar et al., 2008b; Mehring et al., 2003). These studies are
ll rights reserved.
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focused on a local scale of about 1 mm side length, where around
10% of all possible connections are realized. In reality, however,
approximately half of the synapses of most pyramidal neurons
are established to cells that are located at a distance more than
0.5 mm away (Binzegger et al., 2007; Buzas et al., 2006). We en-
larged the spatial scale, so that each neuron is connected to a much
smaller fraction of all other neurons within the network. Assuming
a spatial scale of 5 mm side length results in a connectivity of
about 1% instead of 10. The spatial base enables us to consider dis-
tance-dependent conduction delays. The disadvantage of such a
setting is a strongly reduced and therefore unrealistic neuron
density which must be compensated for by external input
assumptions.

Second, we consider specific connection probabilities for the
synapses established between excitatory (exc.) and inhibitory
(inh.) neurons. In purely randomly wired networks (Brunel,
2000; Kumar et al., 2008a) the numeric relation between the num-
ber of exc.–exc. (ee), exc.–inh. (ei), inh.–exc. (ie) and inh.–inh. (ii)
synapses is merely defined by the corresponding frequencies of
exc. and inh. neurons. We base our network model on the realistic
connection probabilities provided by Binzegger et al. (2004), which
describes layers 2/3 in cat primary visual cortex.

Third, with respect to cortical physiology (Muller, 2003; Nowak
et al., 2003), we consider two different types of conductance-based
integrate-and-fire (I&F) neurons, namely fast spiking inh. and reg-
ular spiking exc. neurons. Since most of the quantities characteriz-
ing the phase space are directly related to the dynamical properties
of a neuron, e.g. the mean firing rate, we calculate them separately
for the two populations. We examine if the two populations exhibit
of networks based on biologically realistic parameters. J. Physiol. (2009),
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Table 1
List of parameters that define exc. and inh. neurons. Identical for both populations are the resting membrane potential Vrest , the reset potential Vreset , and the spiking threshold V h .
Differing parameters are the synaptic time constants se;i , the reversal potentials Ve;i

rev , the membrane capacitances Ce;i
m , and the membrane conductances at rest Ge;i

rest . The latter two
reflect the passive electrical properties of the membrane at rest leading to the membrane time constants se;i

rest ¼ Ce;i
m =Ge;i

rest , i.e., fast spiking inh. and regular spiking exc. neurons.

Type Vrest ; Vreset (mV) Vh (mV) s (ms) Vrev (mV) Cm (pF) Grest (nS) srest (ms)

Exc. �70 �55 1.5 0 289.5 29 10
Inh. �70 �55 10 �80 141 21.2 6.7
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significantly different activities which would prevent averaging
over exc. and inh. neurons.

Following Brunel (2000) and Kumar et al. (2008a), we systemat-
ically vary the excitation–inhibition ratio together with the exter-
nal input rate every neuron receives. The question is whether the
resulting phase space differs from previously published ones: what
are the changes in terms of possible activity patterns? Do new crit-
ical parameters emerge due to the new assumptions? In particular,
we investigate the effect of our modifications on the transitions be-
tween different activity states.

Characterizing the resulting network activities, we realized that
the typical measure to describe regularity in neuronal spiking, the
coefficient of variation, CV, is not appropriate for much of our sim-
ulated data. To handle the occurrence of multimodal inter-spike-
interval distributions and very low firing rates we evaluate two
additional quantities, the so-called ‘local CV’, and a measure that
is based on the Kullback–Leibler information, CVKL (Kostal and Lan-
sky, 2006; Koyama and Shinomoto, 2007). In order to justify and
validate the use of CVKL, we compare the results of these three reg-
ularity measures for several artificial distributions. We also esti-
mate the number of samples needed to correctly describe the
irregularity of a poissonian spike train. The necessity of this analy-
sis is based on the limited simulation time which, in a sense, cor-
responds to limited trial times in biological experiments.

In the next section, we introduce and explain the network and
the simulations that are based on it. Then, we define the measures
we use to characterize the dynamical states in network activity. Fi-
nally, we elaborate and discuss the simulation results: the advan-
tage of using CVKL, the changes in network activity compared to
previous studies, and, in particular, the relation between specific,
cortically inspired parameters and the real cortical network.

2. Methods

We consider N ¼ 49;163 I&F neurons (Gerstner and Kistler,
2002; Tuckwell, 1988) that are quasi-randomly distributed in a
2D quadratic domain with periodic boundary conditions.1 Follow-
ing Binzegger et al. (2004) we assume 22% inh. cell types (1042 neu-
rons arranged on jittered lattice positions), and 78% exc. pyramidal
cells (ð1042=0:22Þ � 0:78 neurons with uniformly distributed spatial
positions). The global connectivity of this model is c ¼ �k=N �
0:0153, with an average number �k ’ 752 in- and out-going synapses
per neuron. Instead of assuming merely random connections (60.84%
ee, 17.16% ei and ie, and 4.84% ii synapses), our networks comprise
71.1% ee, 9.96% ei, 16.14% ie and 2.8% ii synapses. Compared to
Kumar et al. (2008a) and Mehring et al. (2003) the spatial region cov-
ered here represents a larger piece of cortex than the usually as-
sumed 1� 1 mm2: at the expense of an unrealistically small
neuron density, we model a cortical sheet of 5� 5 mm2.

Differing from Brunel (2000) we use conductance-based I&F
neurons similar to those in Kumar et al. (2008a,b), but with two
different types of neurons: regular spiking exc. cells and fast spik-
ing inh. cells, similar to Brunel and Wang (2003), Muller (2003),
and Nowak et al. (2003). The two neuron populations and their
synaptic time constants are defined by the parameters listed in
1 Using this number and type of neuron, we can easily compare our results with
(Kumar et al., 2008a).
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Table 1. The strength of a synapse is given by its peak amplitude
Je; Ji of the conductance transient. All internal synapses have a dis-
tance-dependent conduction delay calculated for an average con-
duction velocity of 1.5 m/s for neurons closer than 0.15 mm and
3 m/s for larger distances (representing myelinated axons). In addi-
tion, we assume a general synaptic conduction delay, randomly
and uniformly chosen from [1.2,1.5] ms.

Each exc. neuron receives external poissonian input at a rate mext

while inh. neurons receive rates reduced by a factor fi ¼ 0:66, such
that mi ¼ mext � fi. The exc. synaptic weights are drawn from a Gauss-
ian distribution (r ¼ 10% of l) to produce EPSPs of on average
0.11 mV peak amplitude in exc. and 0.28 mV peak amplitude in
inh. neurons at Vrest . Inh. synaptic weights are determined by the
factor g:

g ¼
Jisi Vrest � Vi

rev

���
���

Jese Vrest � Ve
rev

�� �� :

For g ¼ 1, the peak amplitude of an IPSP at resting potential of exc.
neurons is 0.055 mV and 0.088 mV for inh. neurons.

We explore the dynamical phase space via numerical network
simulations. Simulations were performed for mext ranging from 9
to 12 KHz (in steps of 0.5 KHz), and g ranging from 2.5 to 6 (in steps
of 0.5), see Figs. 4 and 5. For each pair ðmext; gÞ a simulation compre-
hends 2 s simulated time. To avoid transient effects, the first
500 ms are excluded from the analysis. Temporal precision of inte-
gration is 0.1 ms, all simulations are performed with NEST/PyNN
(Gewaltig and Diesmann, 2007).
2.1. Phase space analysis

To describe and analyze the activity dynamics of the network,
we compute the following observables and measures: the mean
firing rate per neuron FR (based on time bins of 1 ms length), the
mean free membrane potential Vm (Kuhn et al., 2004), and the
mean change in total conductance G. These observables provide a
general description of the neurons’ activities and their dynamical
state, they are directly related to the dynamical properties of a
neuron. Due to the fact that we deal with different types of neu-
rons, these quantities are calculated separately with respect to
exc. and inh. neurons.

The correlation coefficient CC and Fano factor FF characterize
the amount of synchrony in neuronal spiking patterns. The former,
for a pair of neurons i; j, is defined as

CCðni;njÞ ¼ covðni;njÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðniÞvarðnjÞ

q.
;

where ni; nj are the spike counts of neuron i and j; cov denotes their
covariance, and var the variance. We estimate CC for time bins of
2 ms, averaging over as many (disjoint, randomly chosen) pairs as
there are spiking neurons in the simulation. FF is calculated from
the population activity, i.e., the variance of the firing rate divided
by its mean (see e.g., Kumar et al., 2008b). For the Fano factor, we
distinguish between the exc. and inh. population. We simplify the
comparison of these two synchrony measures by computing
ðFF � 1Þ=ðN � 1Þ which is identical to CC for a population of N inde-
pendent poisson processes in the limit of infinite observation time.
of networks based on biologically realistic parameters. J. Physiol. (2009),

http://dx.doi.org/10.1016/j.jphysparis.2009.11.004


N. Voges, L. Perrinet / Journal of Physiology - Paris xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
2.1.1. Regularity measures
To describe the irregularity in neuronal spiking we calculate the

coefficient of variation

CV ¼ stdðISIÞ=lðISIÞ;

where ISI stands for the inter-spike-interval distribution (based on
time bins of 1 ms), and std and l are the corresponding standard
deviation and mean, respectively. For a regularly spiking neuron,
we expect CV ¼ 0, whereas CV ¼ 1 for irregular poissonian spiking.
In addition, we compute a local version of the coefficient of varia-
tion (Holt et al., 1996), CVloc . This means computing the quotient
of the standard deviation and mean of every two adjacent inter-
spike-intervals and then averaging over all spike times of all neu-
rons. Therefore, contrary to CV ; CVloc is relatively independent of
slow variations in the mean spike rate.

The third measure to characterize the (ir)regularity in spiking is
based on the Kullback–Leibler divergence (Kostal and Lansky,
2006; Koyama and Shinomoto, 2007):

CVKL :¼ expð�KLÞ with KL ¼
X

PðISIÞ lnðPðISIÞ=QðISIÞÞ ð1Þ

The idea is to estimate the difference between an unknown ISI dis-
tribution P(ISI) and a reference distribution Q(ISI). We use an expo-
nential Q(ISI) as generated by poissonian spike trains with a mean
lðISIÞ. This again results in CVKL ¼ 1 for irregular poissonian spiking
and CVKL ¼ 0 for regular spikes. Inserting an exponential distribu-
tion we can reduce Eq. (1) to

KL¼�Hisiþ lnðlðISIÞÞþ1 with entropy Hisi¼�
X

PðISIÞ lnðPðISIÞÞ:

For any Gaussian P(ISI) this yields CVKL ¼
ffiffiffiffiffiffiffiffiffiffiffi
2p=e

p
CV � 1:5CV . Note

that, instead of calculating CVKL for each single neuron and then
averaging, we use a ‘collapsed’ version (Fig. 5), i.e. we determine
CVKL from P(ISI) estimated from all neurons. Therefore, this measure
characterizes the regularity of the population activity rather than
the regularity in the spike trains of single neurons.

Finally, we calculate the spike entropy in time, H ¼
�
P

PðFRÞ lnðPðFRÞÞ. In general, entropy characterizes the amount
of information present in a signal, or alternately, the disorder pres-
ent in a system. Here, H is used as another estimate of the disorder
in spiking, supplementary to the CV measures. It is computed sep-
arately for the exc. and inh. populations. We expect to see values
that correspond to the CV measures: a small H for ordered spike
times (H ¼ 0 if only one bin is occupied, or for no spikes at all)
and a larger H for random spiking (Hmax ¼ 7:3 for a uniform PðFRÞ).

2.1.2. Comparison of excitatory and inhibitory activities
The correlation coefficient, as well as the regularity measures

are computed from all neurons. As it might be not appropriate to
average over exc. and inh. neurons, we additionally calculate
FFe; FFi to capture possible differences in terms of synchrony, as
well as the spike entropies He; Hi to account for distinct regulari-
ties.2 In order to investigate whether the two populations exhibit
significantly different activities, we compare normalized differences
between exc. and inh. neurons. Given a measure X, we determine
maxðXeÞ and maxðXiÞ with respect to all input parameter pairs, and
then calculate

DXðmext;gÞ :¼
Xeðmext ;gÞ
maxðXeÞ

����
�����

Xiðmext;gÞ
maxðXiÞ

�����

����� ) DnormðXÞ :¼
1
n

X
mext ;g

DXðmext ;gÞ;
2 The high number of samples necessary to compute the CVKL suggests avoiding the
separation between exc. and inh. for this quantity.

Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
doi:10.1016/j.jphysparis.2009.11.004
where n is the number of all ðmext; gÞ pairs. This normalized differ-
ence DnormðXÞ gives a qualitative indication if Xe and Xi develop dif-
ferently with respect to changes in (mext; g).
3. Comparison of different regularity measures

In order to compare the three regularity measures described
above, we generated several artificial ISI distributions and com-
puted the corresponding CV ; CVloc, and CVKL values. We consider
unimodal Gaussians representing ISI distributions of nearly regular
spiking neurons, i.e. similar inter-spike-intervals. In addition, we
test with bimodal distributions, each generated by a simple mix-
ture of two equally weighted single Gaussians. For these bimodal
distributions, we examine the difference in the regularity measures
for a varying distance between the single Gaussians that constitute
them, as well as the effect of varying the relative heights of the sin-
gle Gaussian peaks (Fig. 1).

Furthermore, we investigate the effect of the sample size on the
three regularity measures. In the ideal case, there is an infinite
number of samples for statistical analysis. In reality, however, a
limited simulation (or experimental trial) time can result in very
few spikes, i.e. very few inter-spike-interval values per neuron.
We calculated CV ; CVloc and CVKL for an exponential distribution
in dependence of the number of samples used in generating the
distribution (Fig. 2).
3.1. Results of comparing different regularity measures

The results of computing different regularity measures for the
artificial ISI distributions are presented prior to the phase space
analysis because of inconsistencies concerning these measure-
ments. The bottom left part of Fig. 1 shows CVloc and CVKL for three
artificial Gaussian ISI distributions with given CV : l ¼ 100 and
r1;2;3 ¼ l=50; l=25; l=12:5. This plot is representative for any
other unimodal Gaussian with identical r/l relations. Increasing
r for a given l leads to a proportional increase in all CV measures,
as desired, indicating more irregular firing. CVKL gives consistently
higher values than the usual CV (due to CVKL � 1:5CV , see Sec-
tion 2.1.1) while CVloc is only slightly larger than CV.

In case of bimodal artificial ISI distributions this general agree-
ment vanishes. The top plot in Fig. 1 shows the results of calculat-
ing CV ; CVloc and CVKL for two bimodal Gaussians with l1 ¼ 50 and
l2 ¼ 150 combined to l ¼ 100 on the left, and l1 ¼ 150 and
l2 ¼ 250 combined to l ¼ 200 on the right. Here, the usual CV
yields incongruously large values. It is easy to see that r2 ¼
½2r2

1 þ 2r2
2 þ ðl1 � l2Þ

2�=4. For r1;2 � l, this leads to CV �
jl1 � l2j=ðl1 þ l2Þ. Thus, CV is practically independent of the
r1;2/l1;2 quotients, where l1;2 and r1;2 denote the means and stan-
dard deviations of the two single mode P(ISI) that are combined to
the bimodal one. Instead, CV is mainly inversely proportional to the
distribution’s mean, l ¼ ðl1 þ l2Þ=2 (and proportional to the dis-
tance between the two peaks at l1 and l2). It does not capture
the fact that the bimodal distribution has two well-separated sharp
peaks, which we consider as regular spiking. In contrast, the other
two measures yield small values that proportionally increase with
r1;2/l1;2, but are independent of l. Such behavior appropriately re-
flects the underlying point process: a neuron with two preferred
ISIs still fires regularly if the single mode P(ISI) are narrow enough.

The bottom right part of Fig. 1 indicates that the usual CV, con-
trary to CVloc and CVKL, strongly depends on the gap d between the
peaks at l1;2 of the bimodal distribution (d ¼ 130;160;190). Like-
wise, only the CV values differ with respect to the weights of the
single Gaussians: If the first peak at l1 ¼ 50 provides 75% of all
samples (while l2 ¼ 150 provides 25%) the resulting mean of com-
bined distribution is l ¼ 75. If, vice versa, l1 ¼ 50 provides 25% of
of networks based on biologically realistic parameters. J. Physiol. (2009),
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Fig. 1. Comparison of three regularity measures for several Gaussian distributions. On the x-axis a ‘1’ represents the usual CV, a ‘2’ is CVloc and a ‘3’ stands for CVKL . The top
row shows the results of calculating these measures for two bimodal distributions. Each of them is a combination of two Gaussians with a distance of 100 between the two
peaks of the single distributions at l1 and l2. For comparison, the left bottom figure shows CV ; CVloc ; CVKL of unimodal Gaussian distributions. The right bottom figure shows
the measures for bimodal distributions with different distances between the peaks of their single Gaussians. In addition, it compares the regularity measures for two bimodal
distributions with equal distance between their peaks but different heights. Each data point is determined from an ensemble of 30 realizations.

Fig. 2. Mean and standard deviation of three regularity measures for an exponential distribution (l ¼ 100) in dependence of the number of samples n used to generate the
distribution: The results for few samples are shown on the left (logarithmic x-axes); the right part shows the results for larger sample sizes (linear x-axes). Top row displays
the usual CV, middle and bottom row the results of computing CVloc and CVKL . Each data point is determined from an ensemble of 30 realizations.
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all samples, it is l ¼ 125 and thus CV is 5/3 times larger in the first
case. Such behavior is inappropriate in terms of characterizing the
Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
doi:10.1016/j.jphysparis.2009.11.004
regularity in spiking neurons: neither the distance between the
preferred ISIs nor their weights should matter.
of networks based on biologically realistic parameters. J. Physiol. (2009),
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Fig. 2 shows the resulting CV ; CVloc and CVKL values for artificial
exponential ISI distributions typical for poissonian spike trains, i.e.,
ideally, all measures should be equal to one. The most striking
observation is CVKL � 1 for n K 3000, where CVKL ¼ 0:9. Thus, we
determine P(ISI) from the ensemble of all neurons to compute
the CVKL measure. Likewise, but clearly less pronounced, the stan-
dard CV exhibits values smaller than one in case of smaller sample
sizes n K 100, and CVloc < 1 for n K 4. Concerning the standard
deviations (computed from 30 realizations), CVKL exhibits the
smallest variations while CVloc and CV show comparably large fluc-
tuations, in particular for n K 100.
4. Results of the phase space analysis

The phase space of a network characterizes its activity dynam-
ics depending on the input parameters. Varying the external input
rate, mext , and the ratio between the strength of exc. and inh. synap-
tic weights, g, we now describe the results derived from the net-
work simulations elaborated in Section 2. First, we show a choice
of exemplary raster plots that captures the possible activity states.
Second, we present the phase space, i.e., the results of calculating
the observables and measures introduced in Section 2.1 for all
parameters. On the basis of our findings, we classify different
dynamical states and compare them to those described in previous
studies.
3 The corresponding plots for the inh. population are not shown, but are very
similar.
4.1. Characterization of possible dynamical states

Fig. 3 shows exemplary raster plots (each row of dots represents
the spike times of a certain neuron) of nine carefully chosen points
in the phase space, marked by roman numerals in Figs. 4 and 5. For
each raster plot we additionally present the mean firing rate over
time FRðtÞ and the corresponding ISI distribution, both from the
population of all neurons. Here, a distinction between exc. and
inh. neurons is not necessary because their raster plots exhibit
(nearly) identical spike patterns. On the top left (I: small g, large
mext) all neurons fire synchronously at very high rates leading to
thin vertical stripes. The ISI distribution shows a narrow, very pro-
nounced peak at very short inter-spike-intervals, indicating regular
firing. We adopt, here and in the following, the notation in Brunel
(2000) and Kumar et al. (2008a) where this behavior is called ‘SR’
state, for synchronous regular spiking. More specifically, this is a
‘SRfast’ state. For slightly lower mext (IV) or slightly larger g (V) the
raster plots exhibit broad vertical stripes corresponding to the
maxima in the firing rate. The corresponding ISI distributions are
bimodal, again with a pronounced peak for very small ISI lengths,
but a second peak at about 100 ms (from the periodicity in
FRðtÞ). We classify this spike pattern as ‘SRslow’ (Brunel, 2000; Ku-
mar et al., 2008a). Characteristic for both SR states is the occur-
rence of a time interval with no spikes at all. The length of this
interval is approximately 8 ms in SRfast and up to 50 ms in SRslow.

In contrast, on the bottom right (IX: large g, small mext), all neu-
rons fire at fairly low rates with uncorrelated spike times and an
exponential ISI distribution. Such behavior is called ‘AI’ state, i.e.,
asynchronous irregular spiking. Increasing mext combined with com-
parably high inhibition (III, less so in VI) leads to synchronous irreg-
ular firing patterns, a state called ‘SI’. The corresponding ISI
distributions are perturbed exponential ones. Compared to SR
states the firing rates are low, and the neurons fire significantly less
synchronously.

Various mixtures exist between these states, e.g., VII, VIII or II,
which we classify into the following two categories: For intermedi-
ate values of g and mext the network dynamics may change from AI
to SRslow and then, after a period of no spikes, back to AI and so
forth (V, VII), not necessarily periodically. The smaller mext and
Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
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the higher g, the longer are the AI periods. Generally, it takes 20
up to 40 ms until the AI spiking accumulates to a SRslow activity
burst which usually lasts for approximately 25–45 ms. In some
cases (VIII) AI firing dominates, and is only occasionally disrupted
by a SRslow burst. Another mixed state occurs for g ¼ 2:5 and, more
pronounced, for g ¼ 4. Here, we observe mainly SRslow firing, but at
the end of some activity maxima, one (IV, for g ¼ 2:5) or several (II,
for g ¼ 4) SRfast bursts appear. For g ¼ 4 in combination with
mext > 11 KHz some SRfast intervals last for 20–100 ms.
4.2. Results of the phase space measures

Figs. 4 and 5 present an overview of the whole phase space.
The labels in Fig. 4, top-left, refer to the states described above.
The observables in Fig. 4 and two of the measures in Fig. 5 are
determined for exc. neurons.3 In general, the mean firing rate,
the mean free membrane potential, the changes in conductances,
and their standard deviations exhibit a similar behavior with re-
spect to the input parameters. Maximal values occur for low inhi-
bition combined with high input rates, and minimal values for
large g and small mext . Ve;i

m is exceptional for (g 	 3; mext P 10:5 KHz)
with minimal values but maximal fluctuations. Probably, this
behavior is caused by the relatively long quiet periods and the fol-
lowing transition to high firing rates, typical for the SRslow state. In
case of mext K 10 KHz and also for (g > 3:5; mext P 10:5 KHz), the re-
gime classified as AI state, Ve;i

m weakly fluctuates (small stdðVmÞ)
about 5 mV below the threshold Vh. This is in good agreement with
(Kumar et al., 2008a). Membrane conductances are increased by a
factor 1.2–6 relative to the membrane conductance at rest for
exc. neurons. For inh. neurons the factor is in the range of 1.2–5.
Correspondingly, this leads to a reduction of se

rest ¼ 10 ms to 2–
8 ms and of si

rest ¼ 6:7 ms to 1.2–5.6 ms. These values are also not
too far from Kumar et al. (2008a).

The SRfast state only exists for very high mext J 10:25 KHz in
combination with very low g 6 2:5. It has an exceptionally high
FRe;i, a free membrane potential very close to the threshold, and a
huge increase in Ge;i. Likewise, the corresponding fluctuations are
large, see Fig. 4, bottom. Our SRfast state corresponds to the SRslow

state in Kumar et al. (2008a) with about 11 maxima in FRðtÞ per
100 ms. The SRslow state in Kumar et al. (2008a), however, differs
from our results: Both time intervals of high firing and intervals
with no spikes are much longer in our simulations. In addition,
prior to the maxima in FRðtÞ, we often observe irregular spiking
which then switches into a burst of activity, e.g., in raster plots
IV, V, VII and VIII. Likewise, the spike pattern of what we call SI
state (plots III, VI) is very different from Kumar et al. (2008a). In
our simulations the synchrony of SRslow and SI is at a much larger
time scale, around 80 ms rather than 9 ms.

Fig. 5 shows the results of measuring synchrony and regularity
in neuronal spiking. CC and FFe are in good agreement and confirm
the findings described above: maximal values CC > 0:4 in the SRfast

state (g ¼ 2:5; mext � 10:5 or mext J 11:25 KHz), a range with
CC J 0:1 indicating synchronous activity in the SRslow state, and a
large region with asynchronous firing in case of low input rates
or high inhibition. To identify what we called an SI state for
(g J 4:5; mext J 10:75 KHz), we have to consider a higher resolution,
see Fig. 6, left. A horizontal border ranging from mext ¼ 10:75 KHz at
g ¼ 4:5 up to mext ¼ 11:5 KHz at g ¼ 6 separates the AI from the SI
state. Compared to the SR states, however, CC J 0:01 is rather
small. Thus, other than reported in Kumar et al. (2008a), our SI
state is not as well-defined.
of networks based on biologically realistic parameters. J. Physiol. (2009),
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Fig. 3. Representative network simulations (I)–(IX): raster plot sections (top) with corresponding firing rates (middle, last 1.5 s of simulation time), and ISI probability density
distributions (bottom, semilogarithmic plots with a zoom-in with linear axes). In the raster plots, gray dots represent inh. spikes, and black dots represent exc. spike times
while the other two plots do not distinguish between exc. and inh. neurons. The plots are ordered and numbered according to their occurrence in the phase space: On the top
left synchronous regular firing dominates due to low inhibition (small g) and high input rates. On the bottom right, there is asynchronous irregular firing due to a higher
inhibition (large g) and lower input rates. The corresponding Vm; G; FR; CC; FF; CV values are marked by roman numerals in Figs. 4 and 5.
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The regularity measures presented in Fig. 5 yield inconsistent
results: We expected CV 	 CVloc � 1 for the AI state but found
mostly 0:6 K CV K 0:8 or even CV � 0:4 for mext < 9:5 KHz, and
CVloc � 0:8. In this latter range, the firing rates are very low,
FR < 5 Hz, resulting in on average less than 7 spikes per neuron
per 1.5 s simulation time. This led to the analysis presented in Sec-
tion 3 (Fig. 2) which confirms the underestimation of CV in case of
too few events. For the SRfast state, all regularity measures clearly
indicate regular spiking neurons (CV 	 CVloc 	 CVKL < 0:1). For
the SRslow state we find CV > 1. This clearly contradicts the regular
Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
doi:10.1016/j.jphysparis.2009.11.004
appearance of the spike patterns in the raster plots, as well as the
shape of the corresponding ISI distributions. They sport a bimodal
P(ISI) with one strongly preferred small inter-spike-interval, and a
second, larger and less frequent one. A well-known solution for bi-
modal P(ISI) is to calculate CVloc instead of CV (Holt et al., 1996), see
Section 2.1.1. This works quite well for the artificial P(ISI) in Sec-
tion 3.1, but not for the simulated data as presented in Fig. 5. Fur-
thermore, as expected from Section 3.1, stdðCVlocÞ is large (see
Fig. 6, middle-left) compared to stdðCVÞ < 0:1 for most input
parameters and stdðCVÞmax � 0:26. Therefore, we additionally cal-
of networks based on biologically realistic parameters. J. Physiol. (2009),
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Fig. 4. Phase space analysis, part one: Shown are the mean FR (FRe
max ¼ 105:6 Hz), the mean free Vm and the mean change from resting to total conductance G of the exc.

population for varying g (x-axis) and mext (y-axis). The bottom row shows the corresponding standard deviations: stdðFReÞmax ¼ 55:8, stdðGeÞ describes the variations in the
measured Ge values Ge

min ¼ 4:8 nS; Ge
max ¼ 153:5 nS

� �
. The corresponding values for the inh. population are: FRi

max ¼ 66:4 Hz; Vi
m;min ¼ �61 mV; Vi

m;max ¼ �58 mV, and the
mean change from resting to total conductance of the inh. population ranges from 1.15 to 5.1. The inh. standard deviations are
stdðFRiÞmax ¼ 19:5; std Vi

m

� �
max
¼ 5:4; stdðGiÞmax ¼ 53:9 Gi

min ¼ 3:14 nS; Gi
max ¼ 86:9 nS

� �
. The roman numerals indicate the specific (mext ; g) pairs for which the corresponding

raster plots, firing rates, and ISI distributions are shown in Fig. 3.
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culated CVKL. As this measure needs a large sample size (Fig. 2), we
determine it from the P(ISI) of the population of all neurons (‘col-
lapsed’). These results finally agree with our expectation from the
exemplary raster plots and ISI distributions in Fig. 3 for the phase
space: irregular spiking occurs for low input rates, as well as for
high mext combined with high inhibition.

4.3. Comparison to previously described phase spaces

We are now in a position to compare our phase space to previ-
ously published work. In networks with current-based synapses
(Brunel, 2000) the transition from high to low activity states takes
place for a certain amount of recurrent inhibition and is indepen-
dent of the input rate. This corresponds to a vertical boundary in
the corresponding phase space at g ¼ 4. Kumar et al. (2008a) state
that, for conductance-based synapses, the phase boundary
changes. The range of interest for the recurrent inhibition is shifted
to g 2 ½1;3�. High activity states (SR) with more than 60 spikes/s
per neuron, occur only for high mext nearly independent of g. This
corresponds to a horizontal boundary in the phase space. Their bor-
der between SRfast and SRslow is approx. 2 K g K 2:5. Their SI state
appears only in case of mext slightly lower than that for SR states
combined with g J 2:5. Moreover, Kumar et al. (2008a) found, in
contrast to Brunel (2000), no state with asynchronous regular (AR)
activity – neither did we.

In terms of the mere occurrence of SR, AI and SI states, our re-
sults agree with (Kumar et al., 2008a). Yet, our SR and SI activities
exhibit a larger time scale, as well as lower FR in case of SRslow

activity. The phase space of our network model comprises
Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
doi:10.1016/j.jphysparis.2009.11.004
g 2 ½2:5; 6�, i.e., larger values than in Kumar et al. (2008a), more
similar to Brunel (2000). We found a sharp vertical boundary at
g < 3 separating the range where a pure SRfast state can exist from
the SRslow state. In contrast to Kumar et al. (2008a) we observe no
direct transition from AI to SRfast. Likewise, Figs. 4 and 5 show no
extended horizontal boundary, as indicated by Kumar et al.
(2008a). The occurrence of synchronous regular spiking depends
on both g and mext: the higher the external input rate the more inhi-
bition is necessary to stay in the AI state. In particular, for g J 4:5
we observe no regular spiking and no high firing rates, indepen-
dent of mext . At about mext J 11 KHz the network dynamics turns
into the SI state with FR K 10 Hz, i.e., a low activity state.

As mentioned before, we observe ‘mixed’ states. The network
activity changes within one simulation run between AI and SRslow.
This indicates a gradual transition from SRslow to AI instead of a
sharp boundary. Likewise, the SRslow state may contain bursts of
SRfast activity patterns. Nevertheless, the transition from pure SRfast

activity to SRslow is much sharper than the AI to SRslow one. Such
mixed states, or the coexistence of different phases, especially in a
dynamic sense, have not been mentioned before.

4.4. Comparison of excitatory and inhibitory activities

The observables G; FR and Vm are computed separately for the
exc. and inh. population. In the SRfast state, FRe may become
approximately twice as large as FRi. The same statement holds
for the directly measured Ge;i, but not in terms of the change from
resting to total conductance. The maximum increase (for SRfast) is
6.2 for exc. neurons versus 5.1 for inh. ones. Ve

m is, in general, closer
of networks based on biologically realistic parameters. J. Physiol. (2009),
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Fig. 5. Dynamical state space analysis, part two: The top row shows three measures of the regularity in neuronal spiking: the mean CVKL; CVloc , and CV, averaged over the exc.
and inh. populations. The bottom row indicates two measures for synchrony in neuronal spiking: The correlation coefficient CC (averaged over exc. and inh. neurons) and the
Fano factor FF of the exc. population (normalized to be comparable to CC). The plot on the bottom right indicates the spiking entropy H of the exc. population. The
corresponding values for the inh. population are: FFi

max ¼ 0:41;Hi
min ¼ 4:86; Hi

max ¼ 7:26. Again, all measures are given for varying g (x-axis) and mext (y-axis). The roman
numerals indicate the specific (mext ; g) pairs for which the corresponding raster plots, firing rates, and ISI distributions are shown in Fig. 3.

Fig. 6. Details of the phase space analysis. Left: CC for a limited range of g and a cut-off in the color scale. Middle-left: Standard deviation of CVloc . The two plots on the right
show the normalized difference between the exc. and inh. population for the Fano factor DFF and the entropy DH , again for varying g (x-axis) and mext (y-axis).
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to the firing threshold than Vi
m, at maximum about 2.5 mV above

Vi
m. The obvious conflict between considering fast spiking inh. neu-

rons (vs. regular spiking exc. ones) and measuring higher exc. firing
rates is reconciled by reducing the input rates for inh. neurons. This
will be discussed in more detail in Section 5. The measures
CC; CV ; CVloc and CVKL do not distinguish between the two popu-
lations. In order to capture possible differences in terms of syn-
chrony and/or regularity in spiking, we additionally calculated
FFe; FFi and the spike entropies He; Hi. Fig. 6 shows the normalized
differences introduced in Section 2.1.2 for the Fano factor, for
which DnðFFÞ ¼ 0:04, and for the spike entropy with
DnðHÞ ¼ 0:03. The other measures yield even smaller normalized
differences: DnðFRÞ ¼ 0:014; DnðVmÞ ¼ 0:015, and DnðGÞ ¼ 0:011.
Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
doi:10.1016/j.jphysparis.2009.11.004
Thus, in principle, the exc. and inh. populations exhibit a very sim-
ilar behavior with respect to variations of (mext ; g), even though
their absolute FRe; FRi values are (very) different.
5. Discussion

We analyzed the changes in the activity dynamics of a cortical
network with conductance-based synapses that are induced by
the following assumptions: a spatially extended network architec-
ture with distance dependent delays, the distinction between fast
spiking inh. and regular spiking exc. neurons, and a very sparse
global connectivity that comprehends specific connection proba-
of networks based on biologically realistic parameters. J. Physiol. (2009),
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bilities for different synaptic types. These changes lead to both, dif-
ferent activity patterns and modified phase transitions.

The general appearance of high SR activity for large input rates
combined with low inhibition and weak AI activity for low m and
small g matches the observations of previous studies. The general
properties of the AI state, e.g., a membrane potential that fluctuates
a few millivolts below threshold, are in line with (Kumar et al.,
2008a). They are also in good agreement with in vivo intracellularly
recorded neurons (Destexh et al., 2003). Likewise, our changes in
membrane conductances and the corresponding reduction of mem-
brane time constants in the AI state are in line with in vivo physiolog-
ical observations (Destexh et al., 2003). Other than reported in
Kumar et al. (2008a) and Brunel (2000) the occurence of strongly
oscillating SRfast states is limited to a small parameter range. Note
that such highly synchronized and regular firing is far from physio-
logical observations in healthy animals. Instead, we mainly observe
distinct activity patterns with slower changes in the firing rate and
bimodal ISI distributions, i.e., SRslow states. In particular, our phase
space reveals a parameter range where the network activity may
dynamically switch from AI to SRslow and then back to AI, and so forth.
Likewise, there is a certain parameter range where SRslow bursts con-
tain SRfast fast oscillations. This behavior can be considered as the
coexistence of two states, a bistable regime, which has not been re-
ported in Kumar et al. (2008a) and Brunel (2000). Alternately, the
SRslow state may simply represent the transition from AI to SRfast.
Note that Roxin et al. (2005) show that the phase diagram of a sim-
pler 1D network model strongly depends on both conduction delays
and spatial modulation of synaptic weights. Including the latter two
features gives rise to various new activity patterns. Recalling the
large distance-dependent conduction delays in our model, this
might explain the coexistence of phases we described.

In addition, we found other phase boundaries between high and
low activity states: Contrary to the predominantly m-dependent
horizontal boundary in Kumar et al. (2008a) our simulation results
reveal a prevailing vertically oriented border, i.e., g-dependent, be-
tween SR and AI activity. This is rather typical for networks with
current-based synapses (Brunel, 2000) where the border separat-
ing SR from AI is gcrit ’ 4. In Kumar et al. (2008a), mext;crit determines
the transition from low to high activity: If the input is larger than
mext;crit the network switches into SRfast (g K 2) or SRslow (g J 2). We
found no direct transition from AI to SRfast, instead, we observe the
following three boundaries: one at g < 3, separating the possibility
of pure SRfast from SRslow activity, and another one at about
3:5 K g K 5 capturing the transition range between SRslow and AI
or SI states. For mext K 10 KHz only AI or SI activity occurs.
5.1. The ratio between external and internal connections

We did not address the absolute values of mext , neither the cor-
responding number of input synapses, nor their firing rates. Like-
wise, we used a reduced input rate for inh. neurons without
further explanation. Recall that Mehring et al. (2003), Kumar
et al. (2008a,b) focus on local connections within a small cortical
patch (around 1 mm side length), where approx. 10% of all possible
connections are realized. Then, the external input rate mext repre-
sents synapses from neurons outside the model. We consider a lar-
ger piece of cortex (25 mm2) with fewer internal connections
(c � 0:0153). On one hand, we are thus not limited to local dynam-
ics, but on the other hand, we have an unrealistically low density of
neurons. Therefore, while one fraction of mext represents synapses
from neurons outside the network model, another fraction of our
external input rate compensates for the missing internal synapses.4
4 Similar to Kumar et al. (2008a,b), and Brunel (2000) we neglect inh. inputs and
assume them integrated into the external exc. rate.

Please cite this article in press as: Voges, N., Perrinet, L. Phase space analysis
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Kumar et al. (2008a) consider approximately 5000 internal syn-
apses and 4000 external input connections per neuron with a firing
rate of 2:5 6 mext 6 7 Hz per input connection. This is difficult to
compare with approx. 750 internal synapses per neuron in our net-
work model. According to Binzegger et al. (2004) the average num-
ber of synapses a pyramidal neuron in layer 2/3 of cat primary
visual cortex receives from other layer 2/3 pyramidal neurons is
approx. 3500. In addition, there are about 1000–1500 external
exc. inputs. Therefore, our external input rate represents around
4000 synapses, 2750 internal and 1250 external ones. For
9 6 mext 6 12 KHz this means an average input firing rate between
2 and 3 Hz per input connection, which seems a bit on the low side.

The internal synapses are based on specific connection proba-
bilities, as described in Section 2. For instance, the probability for
an internal exc. input connection to another exc. neuron is 0.711/
0.78 = 0.911 (due to a higher probability for ee synapses than ex-
pected for purely random connectivity). The probability for an
internal exc. input connection to another inh. neuron is smaller,
namely 0.0996/0.22 = 0.453. Accordingly, inh. neurons should re-
ceive only approx. half of the exc. external input that represents
the missing internal synapses. Concerning the external inputs from
outside the cortical patch (e.g., from another cortical layer or white
matter connections from another cortical area) we assume no pref-
erences, i.e., randomly chosen targets. Depending on the numerical
relation between input from inside and outside the network model,
the factor fi to reduce the input rate of inh. neurons is 0:5 < fi < 1.
We chose fi ¼ 0:66 for practical reasons: Assuming fi < 0:64 results
in strongly synchronized network activity with hardly any AI
dynamics. In contrast, for fi > 0:68 we hardly observed any SR
state. Interestingly, with respect to the discussion above, fi ¼ 0:66
corresponds exactly to reducing the part of mext representing inter-
nal synapses for inh. neurons to 50% of that of exc. neurons.

Since the network dynamics strongly depend on fi, we discuss
another possibility to justify the assumption of fi ¼ 0:66. Obvi-
ously, fi depends on the neuron parameters that determine their
spike rates. As explained in Section 2 the EPSP peak amplitudes
at resting potential for exc. neurons are approx. 0.61 times smaller
than for inh. cells, but have a larger time constant. In order to com-
pare the spike rates of exc. and inh. neurons, we investigated the
number of incoming action potentials necessary to produce a spike
(nspk), in dependence of the integration time: For instance, exc. cells
need 166 spikes and inh. neurons only 90 spikes within 1 ms to
produce a spike. Within 40 ms, exc. cells need 530 spikes and

inh. neurons 380 spikes. Thus, the numeric relation ni
spk=ne

spk

� �
is

between 0.54 and 0.72, a range that contains the factor fi ¼ 0:66.

5.2. Different regularity measures

Due to difficulties in characterizing the regularity in neuronal
spiking, we considered three different measures which we then
compared by means of artificial ISI distributions. The typical CV
malfunctions for bimodal distributions. CVloc performs well for
artificial multimodal distributions. For our simulation data, how-
ever, the CVloc values are not in accordance with what we classify
as (ir)regular – based on a visual inspection of the spike trains
and the corresponding ISI distributions. Moreover, some simula-
tions do not provide enough spikes for statistical analysis. There-
fore, we used another measure, CVKL, and applied it to the ISI
distribution for the population of all neurons. Another possibility
would be to extend the simulation time. We refrain from doing
so, because in biological experiments the recording time is also
limited. Too few spikes are presumably the reason for
CV � CVloc � 0:6 instead of CVloc � 1 in case of AI activity. The
question remains why CVloc � 1 instead of CVloc near zero for SRslow

states. One indication is the comparably high stdðCVlocÞ, another is-
of networks based on biologically realistic parameters. J. Physiol. (2009),
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sue might be the still rather low firing rate. From another point of
view, this could reflect an intrinsic property of our simulation data:
At the population level, spiking is relatively regular, as indicated by
the ISI distributions and CVKL K 0:3, while it might be more irregu-
lar with respect to single neurons.

6. Summary and conclusions

To summarize, our network modifications induce clear changes
in the phase space. We require a new regularity measure to ade-
quately describe different activity states. As the dynamical behav-
ior strongly depends on the network parameters, it is necessary to
identify the most important ones, together with their critical range,
i.e., the phase space region where the network dynamics switch
from one state into another. We found a significantly different crit-
ical range than (Kumar et al., 2008a). In addition, we found ‘mixed’
states, which is presumably important in terms of stability analy-
sis. Assume that the network is tuned to be in the AI state that rep-
resents cortical background activity. Then, providing an external
stimulus, the corresponding information may be processed within
this AI activity, but it may also turn the network into another state,
e.g., a coexistence of AI and SR activity. In particular, the properties
Vm, stdðVmÞ and the changes in G of our AI–SRslow activity are more
similar to the AI than to the SRfast state, i.e., similar to cortical activ-
ity. Only our SRfast state clearly differs from healthy cortical
dynamics.

We conclude that including only a few more realistic parame-
ters to simulate cortical network dynamics significantly affects
the resulting activity patterns. The assumption of local couplings
or a distant dependent connectivity might have an even larger ef-
fect. Thus, this study can only be a first step into the direction of
improving the analysis of cortical network dynamics.
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