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Precise spiking motifs in neurobiological and neuromorphic
data [1]
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Figure 1. Reproducibility of the spiking response of a biological neuron. The timing of the spikes

produced following the repetition of a step stimulus is less reproducible than that to a noisy stimulus.

The stimulus current value over time for a step stimulus (top left) and for a noisy one (top right). Trial

repetitions of a leaky integrate-and-fire neuron stimulated by the stimulus on the upper row (middle

row). Membrane potential is represented by dark blue color when low and with yellow colors when

depolarized andwe show the average firing rate across trials (lower row). While this seems paradoxical

at first sight, it highlights the consequence of using the same frozen noise at each repetition and

highlights the highly reproducible pattern of spikes when it is driven by a highly dynamic input. Run

this online notebook for a replication of the results from [2] using a simple LIF model.
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Figure 2. Core mechanism of polychrony detection [3]. (Left) In this example, three presynaptic neu-

rons denoted b, c and, d are fully connected to two post-synaptic neurons a and e, with different

delays of respectively 1, 5, and 9 ms for a and 8, 5, and 1 ms for e. (Middle) If three spikes are emitted

synchronously from the presynaptic neurons, this will generate post-synaptic potentials that will reach

a and e asynchronously because of the heterogeneous delays, and they may not be sufficient to reach

the membrane threshold in either of the post-synaptic neurons; therefore, no spike will be emitted.

(Right) If the pulses are emitted from presynaptic neurons such that, taking into account the delays,

they reach the post-synaptic neuron a at the same time (here, at t = 10 ms), the post-synaptic poten-
tials evoked by the three pre-synaptic neurons sum up, causing the voltage threshold to be crossed

and thus to the emission of an output spike (red color), while none is emitted from post-synaptic neu-

ron e.
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Heterogeneous Delays Spiking Neural Network (HD-SNN) [4]
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Figure 3. Event-based cameras. Aminiature ATIS sensor. Contrary to a classical frame-based camera

for which a full dense image representation is given at discrete, regularly spaced timings, the event-

based camera provideswith events at themicro-second resolution. These are sparse as they represent

luminance increments or decrements (ON and OFF events, respectively).
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Figure 4. Motion Detection Task. To generate realistic event-based dynamic scenes, we mimic the

effect of minute saccadic eye movements on a large natural scene (1024×1024) by extracting an image

(128 × 128) which center is moving dynamically according to a jagged random walk. (Left) We show

an instance of this trajectory (with a length of 200 ms, green line) superimposed on the luminance

contrasts observed at time step t = 15 ms. (Right) The dynamics of this image, translated according to

the saccadic trajectory, produces a naturalistic movie, which is then transformed into an event-based

representation. We show snapshots of the resulting synthetic event stream at different time steps

(from t = 15 ms to t = 19 ms, these frames are marked on the trajectory by a white and black dot,

respectively). Mimicking the response of ganglion cells in the retina, this representation encodes at

each pixel all-or-none increases or decreases in luminance, i.e., ON (red) and OFF (blue) spikes. In

the lower left corner of the snapshots, we show the corresponding instantaneous motion vector (red

arrow).
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Figure 5. Representation of the weights for 8 di-

rections for a single speed (among the 12 × 3 dif-

ferent kernels of the model) as learned on the

dataset of naturalistic scenes. The directions are

shown as red arrows in the left insets, where the

disks correspond to the set of different possible

motions. The spatiotemporal kernels are shown

as slices of spatial weights at different delays. De-

lays vary along the horizontal axis from the far

right (delay of one step) to the left (up to a de-

lay of 12 steps, the remaining synapses being not

represented).
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Figure 6. Accuracy as a function of computa-

tional load for the HD-SNN model (blue dots)

with error bars indicating the 5% - 95% quan-

tiles. The relative computational load (on a log-

arithmic axis) is controlled by changing the per-

centage of nonzero weights relative to the dense

convolution kernel. If we use only the weights at

the shortest delays, the accuracy quickly drops.

However, if we prune the lowest coefficients,

we observe a stable accuracy value, with a half-

saturation observed at ≈ 670 less computations.

Detection of Spiking Motifs by Learning a HD-SNN [5]
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Figure 7. From generating raster plots to inferring spiking motifs. We derive a detection model

as the optimal inversion of a generative model for spike generation. (a) As an illustration for the

generative model, we draw a multiunit raster plot synthesized from 4 different spiking motifs (SMs)

and for 10 presynaptic neurons. (b) We show these motifs, each identified at the top by a different

color. The evidence of activation (red) or deactivation (blue) is assigned to each presynaptic neuron

and 31 different possible delays. (c) The activation in time of the different motifs (denoted by stars) is

drawn at random and then used to generate a raster plot on the multi-unit address space (see panel

a). By inverting this model, an inference model can be defined for their efficient detection, outputting

an evidence value (continuous line) fromwhich the identity and timing of SMs can be inferred (vertical

bars). (d) The original raster plot can be annotated with each identified spiking motif (as represented

by the respective colors).
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