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Neurons in the input layer of primary visual cortex in primates develop
edge-like receptive fields. One approach to understanding the emergence
of this response is to state that neural activity has to efficiently represent
sensory data with respect to the statistics of natural scenes. Furthermore,
itis believed that such an efficient coding is achieved using a competition
across neurons so as to generate a sparse representation, that is, where
a relatively small number of neurons are simultaneously active. Indeed,
different models of sparse coding, coupled with Hebbian learning and
homeostasis, have been proposed that successfully match the observed
emergent response. However, the specific role of homeostasis in learning
such sparse representations is still largely unknown. By quantitatively
assessing the efficiency of the neural representation during learning,
we derive a cooperative homeostasis mechanism that optimally tunes
the competition between neurons within the sparse coding algorithm.
We apply this homeostasis while learning small patches taken from nat-
ural images and compare its efficiency with state-of-the-art algorithms.
Results show that while different sparse coding algorithms give simi-
lar coding results, the homeostasis provides an optimal balance for the
representation of natural images within the population of neurons. Com-
petition in sparse coding is optimized when it is fair. By contributing to
optimizing statistical competition across neurons, homeostasis is crucial
in providing a more efficient solution to the emergence of independent
components.

1 Introduction

The central nervous system is a dynamic, adaptive organ that constantly
evolves to provide optimal decisions for interacting with the environment.
The early visual pathways provide a powerful system for probing and
modeling these mechanisms. For instance, it is observed that edge-like re-
ceptive fields emerge in simple cell neurons from the input layer of the
primary visual cortex of primates (Chapman & Stryker, 1992). The devel-
opment of cortical cell orientation tuning is an activity-dependent process,
but it is still largely unknown how neural computations implement this
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type of unsupervised learning mechanisms. A popular view is that such a
population of neurons operates so that relevant sensory information from
the retino-thalamic pathway is transformed (or “coded”) efficiently. Such
efficient representation will allow decisions to be taken optimally in higher-
level layers or areas (Atick, 1992; Barlow, 2001). It is believed that this is
achieved through lateral interactions that remove redundancies in the neu-
ral representation, that is, when the representation is sparse (Olshausen &
Field, 1996). A representation is sparse when each input signal is associ-
ated with a relatively small number of simultaneously activated neurons
within the population. For instance, orientation selectivity of simple cells is
sharper than the selectivity that would be predicted by linear filtering. As a
consequence, representation in the orientation domain is sparse and allows
higher processing stages to better segregate edges in the image (Field, 1994).
Sparse representations are observed prominently with cortical response to
natural stimuli, that is, to behaviorally relevant sensory inputs (Vinje & Gal-
lant, 2000; DeWeese, Wehr, & Zador, 2003; Baudot et al., 2004). This reflects
the fact that at the learning timescale, coding is optimized relative to the
statistics of natural scenes. The emergence of edge-like simple cell receptive
fields in the input layer of the primary visual cortex of primates may thus
be considered as a coupled coding and learning optimization problem. At
the coding timescale, the sparseness of the representation is optimized for
any given input, while at the learning timescale, synaptic weights are tuned
to achieve on average optimal representation efficiency over natural scenes.

Most existing models of unsupervised learning aim at optimizing a cost
defined on prior assumptions on representation’s sparseness. These sparse
learning algorithms have been applied for both images (Fyfe & Baddeley,
1995; Olshausen & Field, 1996; Zibulevsky & Pearlmutter, 2001; Perrinet,
2004; Rehn & Sommer, 2007; Doi, Balcan, & Lewicki, 2007) and sounds
(Lewicki & Sejnowski, 2000; Smith & Lewicki, 2006). For instance, learning
is accomplished in SparseNet (Olshausen & Field, 1996) on patches taken
from natural images as a sequence of coding and learning steps. First, sparse
coding is achieved using a gradient descent over a convex cost derived from
a sparse prior probability distribution function of the representation. At this
step of the learning, it is performed using the current state of the dictionary
of receptive fields. Then, knowing this sparse solution, learning is defined
as slowly changing the dictionary using Hebbian learning. In general, the
parameterization of the prior has major impacts on results of the sparse
coding, and thus on the emergence of edge-like receptive fields, and re-
quires proper tuning. In fact, the definition of the prior corresponds to an
objective sparseness and does not always fit the observed probability dis-
tribution function of the coefficients. In particular, this could be a problem
during learning if we use the cost to measure representation efficiency for
this learning step. An alternative is to use a more generic Ly norm sparseness
by simply counting the number of nonzero coefficients. It was found that
by using an algorithm like Matching Pursuit, the learning algorithm could



1814 L. Perrinet

provide results similar to SparseNet, but without the need of parametric
assumptions on the prior (Perrinet, Samuelides, & Thorpe, 2003; Perrinet,
2004; Smith & Lewicki, 2006; Rehn & Sommer, 2007). However, we observed
that this class of algorithms could lead to solutions corresponding to a lo-
cal minimum of the objective function. Some solutions seem as efficient
as others for representing the signal but do not represent edge-like fea-
tures homogeneously. In particular, during the early learning phase, some
cells may learn “faster” than others. There is a need for a homeostasis mech-
anism that will ensure convergence of learning. The goal of this work is to
study the specific role of homeostasis in learning sparse representations
and to propose a homeostasis mechanism that optimizes the learning of an
efficient neural representation.

To achieve this, we first formulate analytically the problem of representa-
tion efficiency in a population of sensory neurons (see section 2) and define
the class of Sparse Hebbian Learning (SHL) algorithms. For the particular
nonparametric Ly norm sparseness, we show that sparseness is optimal
when average activity within the neural population is uniformly balanced.
Based on a previous implementation, Adaptive Matching Pursuit (AMP)
(Perrinet et al., 2003; Perrinet, 2004), we define in section 3 a homeostatic
gain control mechanism that we will integrate in a novel SHL algorithm.
Finally, we compare in section 4 this novel algorithm with AMP and the
state-of-the-art SparseNet method (Olshausen & Field, 1996). Using quan-
titative measures of efficiency based on constraints on the neural represen-
tation, we show the importance of the homeostasis mechanism in terms of
representation efficiency. We conclude in section 5 by linking this original
method with other sparse Hebbian learning schemes and how these may be
united to improve our understanding of the emergence of edge-like simple
cell receptive fields, drawing the bridge between structure (representation
in a distributed network) and function (efficient coding).

2 Problem Statement

2.1 Definition of Representation Efficiency. Inlow-level sensory areas,
the goal of neural computations is to generate efficient intermediate repre-
sentations to allow efficient decision making. Classically, a representation
is defined as the inversion of an internal generative model of the sensory
world, that is, by inferring the sources that generated the input signal. For-
mally, as in Olshausen and Field (1997), we define a linear generative model
(LGM) for describing natural, static, gray-scale images I (represented by col-
umn vectors of dimension L pixels), by setting a “dictionary” of M images
(or “filters”) as the L x M matrix ® = {®;}1<;<m. Knowing the associated
sources as a vector of coefficients a = {a;}1<;<um, the image is defined using
matrix notation as

I=®a+n, (2.1)
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where n is a decorrelated gaussian additive noise image of variance o?.

The decorrelation of the noise is achieved by applying principal compo-
nent analysis to the raw input images without loss of generality, since this
preprocessing is invertible. Generally the dictionary ¢ may be much larger
than the dimension of the input space (that is, if M > L), and it is then
said to be overcomplete. However, given an overcomplete dictionary, the
inversion of the LGM leads to a combinatorial search, and typically there
may exist many coding solutions a to equation 2.1 for one given input I.
The goal of efficient coding is to find, given the dictionary ® and for any ob-
served signal I, the best representation vector—that is, as close as possible
to the sources that generated the signal. It is therefore necessary to define
an efficiency criterion in order to choose between these different solutions.
Using the LGM, we will infer the best coding vector as the most probable.
In particular, from the physical synthesis of natural images, we know a
priori that image representations are sparse: they are most likely generated
by a small number of features relative to the dimension M of representation
space. Similarly to Lewicki and Sejnowski (2000), this can be formalized in
the probabilistic framework defined by the LGM (see equation 2.1) by as-
suming that we know the prior distribution of the coefficients a; for natural
images. The representation cost of a for one given natural image is then

C@|L ®)=—logP(all, @)

1 2
=log Z + 27”2”1 — da|®> — Zlog P(a; | @), (2.2)

where Z is the partition function, which is independent of the coding, and
| - || is the L, norm in image space. This efficiency cost is measured in bits
if the logarithm is of base 2, as we will assume without loss of generality
thereafter. For any representation a, the cost value corresponds to the
description length (Rissanen, 1978). On the right-hand side of equation 2.2,
the second term corresponds to the information from the image that is
not coded by the representation (reconstruction cost) and thus to the
information that can be at best encoded using entropic coding pixel by
pixel (it is the log likelihood in Bayesian terminology). The third term,
S@a| ®)=—-),logP(a; | ), is the representation or sparseness cost: it
quantifies representation efficiency as the coding length of each coefficient
of aindependently that would be achieved by entropic coding knowing the
prior. In practice, the sparseness of coefficients for natural images is often
defined by an ad hoc parameterization of the prior’s shape. For instance,
the parameterization in Olshausen and Field (1997) yields the coding cost:

1 a?
Cia| I, ®) = E||I—<I>a||2—i—ﬂX:10g <1—|—0—‘2>, (2.3)
n i



1816 L. Perrinet

where B corresponds to the prior’s steepness and o to its scaling (see
Figure 13.2 from Olshausen, 2002). This choice is often favored because it
results in a convex cost for which known numerical optimization methods
such as conjugate gradient may be used.

A nonparametric form of sparseness cost may be defined by considering
that neurons representing the vector a are either active or inactive. In fact, the
spiking nature of neural information demonstrates that the transition from
an inactive to an active state is far more significant at the coding timescale
than smooth changes of the firing rate. This is, for instance, perfectly illus-
trated by the binary nature of the neural code in the auditory cortex of rats
(DeWeese et al., 2003). Binary codes also emerge as optimal neural codes for
rapid signal transmission (Bethge, Rotermund, & Pawelzik, 2003; Nikitin,
Stocks, Morse, & McDonnell, 2009). With a binary event-based code, the
cost is incremented only when a new neuron becomes active, regardless of
the analog value. When it is stated that an active neuron carries a bounded
amount of information of A bits, an upper bound for the representation cost
of neural activity on the receiver end is proportional to the count of active
neurons, that is, to the Ly norm:

1

55311 — @l + Allallo. 24)

C(@lI, @) =

This cost is similar with information criteria such as the AIC (Akaike, 1974)
or distortion rate (Mallat, 1998). This simple nonparametric cost has the
advantage of being dynamic. The number of active cells for one given
signal grows in time with the number of spikes reaching the receiver (see
the architecture of the model in Figure 1, left). But equation 2.4 defines
a harder cost to optimize since the hard Ly norm sparseness leads to a
nonconvex optimization problem that is NP-complete with respect to the
dimension M of the dictionary (Mallat, 1998).

2.2 Sparse Hebbian Learning. Given a sparse coding strategy that op-
timizes any representation efficiency cost as defined above, we may derive
an unsupervised learning model by optimizing the dictionary ¢ over natu-
ral scenes. On the one hand, the flexibility in the definition of the sparseness
cost leads to a wide variety of proposed sparse coding solutions (for a re-
view, see Pece, 2002) such as numerical optimization (Olshausen & Field,
1997; Lee, Battle, Raina, & Ng, 2007), nonnegative matrix factorization (Lee
& Seung, 1999; Ranzato, Poultney, Chopra, & LeCun, 2007), or Matching
Pursuit (Perrinet et al., 2003; Perrinet, 2004; Smith & Lewicki, 2006; Rehn
& Sommer, 2007). On the other hand, these methods share the same LGM
model (see equation 2.1), and once the sparse coding algorithm is chosen,
the learning scheme is similar.

Indeed, after every coding sweep, the efficiency of the dictionary ® may
be increased with respect to equation 2.2. By using the online gradient
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Figure 1: Simple neural model of sparse coding and role of homeostasis.
(Left) We define the coding model as an information channel constituted by
a bundle of linear /nonlinear spiking neurons. (L) A given input image patch is
coded linearly by using the dictionary of filters ®; and transformed by sparse
coding (such as Matching Pursuit) into a sparse vector a. Each coefficient is
transformed into a driving coefficient in the (NL) layer by using a point non-
linearity that (S) drives a generic spiking mechanism. (D) On the receiver end
(e.g., in an efferent neuron), one may then estimate the input from the neural
representation pattern. This decoding is progressive, and if we assume that each
spike carries a bounded amount of information, the representation cost in this
model increases proportionally with the number of activated neurons. (Right)
However, for a given dictionary, the distribution of sparse coefficients a; and
hence the probability of a neuron’s activation is in general not uniform. We show
(lower panel) the log-probability distribution function and (upper panel) the cu-
mulative distribution of sparse coefficients for a dictionary of edge-like filters
with similar selectivity (dotted scatter) except for one filter, which was random-
ized (continuous line). This illustrates a typical situation that may occur during
learning when some components did learn less than others. Since their activity
will be lower, they are less likely to be activated in the spiking mechanism, and
from the Hebbian rule, they are less likely to learn. Instead of comparing sparse
coefficients with respect to a threshold (vertical dashed lines) when selecting an
optimal sparse set for a given input, it should instead be done on the signifi-
cance value z; (horizontal dashed lines). In this particular case, the less selective
neuron (a1 < 4,) is selected by the homeostatic cooperation (z; > z,). The role
of homeostasis during learning is that even if the dictionary of filters is not ho-
mogeneous, the point nonlinearity in (NL) modifies sparse coding in (L) such
that the probability of a neuron’s activation is uniform across the population.

descent approach given the current sparse solution, learning may be
achieved using Vi,

®; «— D; + na;(I — da), (2.5)
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where 7 is the learning rate. Similarly to equation 17 in Olshausen and
Field (1997) or to equation 2 in Smith and Lewicki (2006), the relation is a
linear Hebbian rule (Hebb, 1949) since it enhances the weight of neurons
proportionally to the correlation between pre- and postsynaptic neurons.
Note that there is no learning for nonactivated coefficients. The novelty of
this formulation compared to other linear Hebbian learning rule, such as
Oja (1982) is to take advantage of the sparse representation—hence, the
name Sparse Hebbian Learning (SHL).

SHL algorithms are unstable without homeostasis. In fact, starting with
a random dictionary, the first filters to learn are more likely to correspond
to salient features (Perrinet, Samuelides, & Thorpe, 2004) and are therefore
more likely to be selected again in subsequent learning steps. In SparseNet,
the homeostatic gain control is implemented by adaptively tuning the norm
of the filters. This method equalizes the variance of coefficients across neu-
rons using a geometric stochastic learning rule. The underlying heuristic
is that this introduces a bias in the choice of the active coefficients. In fact,
if a neuron is not selected often, the geometric homeostasis will decrease
the norm of the corresponding filter, and therefore—from equation 2.1 and
the conjugate gradient optimization—this will increase the value of the as-
sociated scalar. Finally, since the prior functions defined in equation 2.3
are identical for all neurons, this will increase the relative probability that
the neuron is selected with a higher relative value. The parameters of this
homeostatic rule have a great importance for the convergence of the global
algorithm. We will now try to define a more general homeostasis mecha-
nism derived from the optimization of representation efficiency.

2.3 Efficient Cooperative Homeostasis in SHL. The role of homeosta-
sis during learning is to make sure that the distribution of neural activity
is homogeneous. In fact, neurons belonging to a same neural ensemble
(Hebb, 1949) form a competitive network and should a priori carry simi-
lar information. This optimizes the coding efficiency of neural activity in
terms of compression (van Hateren, 1993) and thus minimizes intrinsic
noise (Srinivasan, Laughlin, & Dubs, 1982). Such a strategy is similar to
introducing an intrinsic adaptation rule such that the prior firing probabil-
ity of all neurons has a similar Laplacian probability distribution (Weber
& Triesch, 2008). Dually, since neural activity in the ensemble actually rep-
resents the sparse coefficients, we may understand the role of homeostasis
as maximizing the average representation cost C(a | ®) at the timescale of
learning. This is equivalent to saying that homeostasis should act such that
at any time, invariantly to the selectivity of features in the dictionary, the
probability of selecting one feature is uniform across the dictionary.

This optimal uniformity may be achieved in all generality for any given
dictionary by using point nonlinearities z; applied to the sparse coefficients:
In fact, a standard method to achieve uniformity is to use an equalization
of the histogram (Atick, 1992). This method may be easily derived if we
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know the probability distribution function dP; of variable a; by choosing
the nonlinearity as the cumulative distribution function transforming any
observed variable d; into

zi(@;) = Pi(a; < a;) = /g dap;(a;). (2.6)

This is equivalent to the change of variables that transforms the sparse
vector a to a variable with uniform probability distribution function in
[0, 1]M. The transformed coefficients may thus be used as anormalized drive
to the spiking mechanism of the individual neurons (see Figure 1, left). This
equalization process has been observed in the neural activity of a variety of
species and is, for instance, perfectly illustrated in the salamander’s retina
(Laughlin, 1981). It may evolve dynamically to slowly adapt to varying
changes in luminance or contrast values, such as when the light diminishes
at twilight (Hosoya, Baccus, & Meister, 2005).

This novel and simple nonparametric homeostatic method is applica-
ble to SHL algorithms by using this transform on the sparse coefficients.
Let us imagine, for instance, that one filter corresponds to a feature of low
selectivity, while others correspond to similarly selective features. As a con-
sequence, this filter will correspond on average to lower sparse coefficients
(see Figure 1, right). However, the respective gain control function z; will
be such that all transformed coefficients have the same probability den-
sity function. Using the transformed coefficients to evaluate which neuron
should be active, the homeostasis will therefore optimize the information
in the representation cost defined in equation 2.4. We will now illustrate
how it may be applied to Adaptive Matching Pursuit (Perrinet et al., 2003;
Perrinet, 2004) and measure its role on the emergence of edge-like simple
cell receptive fields.

3 Methods

3.1 Matching Pursuit and Adaptive Matching Pursuit. We first define
Adaptive Matching Pursuit. We saw that optimizing the efficiency by min-
imizing the Lo norm cost leads to a combinatorial search with regard to the
dimension of the dictionary. In practice, it means that for a given dictionary,
finding the best sparse vector according to minimizing Co(a | I, @) (see equa-
tion 2.4) is hard, and thus that learning an adapted dictionary is difficult.
As Perrinet, Samuelides, and Thorpe (2002), proposed, we may solve this
problem using a greedy approach. In general, a greedy approach is applied
when finding the best combination of elements is difficult to solve globally.
A simpler solution is to solve the problem progressively, one element at a
time.

Applied to equation 2.4, it corresponds to first choosing the single el-
ement a;d; that best fits the image. From the definition of the LGM, we
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know that for a given signal I, the probability P({a;} | I, ®) corresponding
to a single source a;®; for any i is maximal for the dictionary element i*
with maximal correlation coefficient:

| d;
i* = ArgMax.(p;), with p; = <— ! > 3.1
gMax;(p1) P\ e 6D

This formulation is slightly different from equation 21 in Olshausen and
Field (1997). It should be noted that p; is the L-dimensional cosine (L is
the dimension of the input space) and that its absolute value is therefore
bounded by 1. The value of ArcCos(p;) would therefore give the angle of
I with the pattern ®;, and, in particular, the angle (modulo 27) would be
equal to zero if and only if p; = 1 (full correlation), 7 if and only if p; = —1
(full anticorrelation), and £ /2 if p; = 0 (both vectors are orthogonal; there
is no correlation). The associated coefficient is the scalar projection

D,
=1, ——). 3.2
. < ||<1>1-*||2> (3.2)

Second, knowing this choice, the image can be decomposed in
1= ajx Cbz'* + R, (33)

where R is the residual image. We then repeat this two-step process on the
residual (i.e., with I < R) until some stopping criterion is met.

Hence, we have a sequential algorithm that permits reconstructing the
signal using the list of choices; we call it sparse spike coding (Perrinet et al.,
2002). The coding part of the algorithm produces a sparse representation
vector a for any input image. Its Ly norm is the number of active neurons.
Note that the norm of the filters has no influence in this algorithm on
the choice function or on the cost. For simplicity and without loss of
generality, we will thereafter set the norm of the filters to 1: Vi, || 4;|| = 1.
It is equivalent to the MP algorithm (Mallat & Zhang, 1993), and we have
proven previously that this yields an efficient algorithm for representing
natural images. Using MP in the SHL scheme defined in section 2.2 defines
Adaptive Matching Pursuit (AMP) (Perrinet et al., 2003; Perrinet, 2004)
and is similar to other strategies such as those of Smith and Lewicki
(2006) and Rehn and Sommer (2007). This class of SHL algorithms offers
a nonparametric solution to the emergence of simple cell receptive fields,
but compared to SparseNet, the results often appear to be qualitatively
nonhomogeneous. Moreover, the heuristic used in SparseNet for the home-
ostasis may not be used directly, since in MP, the choice is independent of
the norm of the filter. The coding algorithm’s efficiency may be improved
using Optimized Orthogonal MP (Rebollo-Neira & Lowe, 2002) and be
integrated in an SHL scheme (Rehn & Sommer, 2007). However, this
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optimization is separate from the problem that we try to tackle here by
optimizing the representation at the learning timescale. We will now study
how we may use cooperative homeostasis in order to optimize the overall
coding efficiency of the dictionary learned by AMP.

3.2 Competition-Optimized Matching Pursuit. In fact, we may now
include cooperative homeostasis into AMP. At the coding level, it is im-
portant to note that if we simply equalize the sparse output of the MP
algorithm, transformed coefficients will indeed be uniformly distributed,
but the sequence of chosen filters will not be changed. However, the MP al-
gorithm is nonlinear, and the choice of an element at one step may influence
the rest of the choices. This sequence is therefore crucial for the representa-
tion efficiency. In order to optimize the competition of the choice step, we
may instead choose at every matching step the item in the dictionary corre-
sponding to the most significant value computed, thanks to the cooperative
homeostasis (see Figure 1, right). In practice, it means that we select the best
match in the vector corresponding to the transformed coefficients z, that is,
in the vector of the residual coefficients weighted by the nonlinearities de-
fined by equation 2.6. This scheme thus extends the MP algorithm that we
used previously by linking it to a statistical model that optimally tunes the
ArgMax operator in the matching step. Over natural images, for any given
dictionary—and thus independent of the selectivity of the different items
from the dictionary—the choice of a neuron is statistically equally prob-
able. Thanks to cooperative homeostasis, the efficiency of every match in
MP is thus maximized—hence the name Competition-Optimized Matching
Pursuit (COMP).

We now explicitly describe the COMP coding algorithm step by step.
Initially, given the signal I, we set up for all i an internal activity vector
a as the linear correlation using equation 3.2. The output sparse vector is
set initially to a zero vector: a = 0. Using the internal activity a, the neural
population will evolve dynamically in an event-based manner by repeating
the two following steps. First, the “matching” step is defined by choosing
the address with the most significant activity:

i* = ArgMax,[z;(a;)]. (3.4)

Then we set the winning sparse coefficient at address i* with a;« < ;». In
the second “pursuit” step, as in MP, the information is fed back to correlated
dictionary elements by

a; < a; — ajq(dj«, D;). (35)

Note that after the update, the winning internal activity is zero—4a;+ = 0—
and that, as in MP, a neuron is selected at most once. Physiologically, as
previously described, the pursuit step could be implemented by a lateral,
correlation-based inhibition. The algorithm is iterated with equation 3.4
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until some stopping criterion is reached, such as when the residual error
energy is below the noise level o.2. As in MP, since the residual is orthogonal
to ®@;:, the residual error energy E = ||/I||> may be easily updated at every
step as

E <« E —a?. (3.6)

COMP transforms the image I into the sparse vector a at any precision
VE. As in MP, the image may be reconstructed using: I = > ai®;, which
thus gives a solution for equation 2.1. COMP differs from MP only by
the “matching” step and shares many properties with MP, such as the
monotonous decrease of the error (see equation 3.6) or the exponential
convergence of the coding. However, the decrease of E will always be faster
in MP than in COMP from the constraint in the matching step.

Yet for a given dictionary, we do not know a priori the functions z; since
they depend on the computation of the sparse coefficients. In practice, the z;
functions are initialized for all neurons to similar arbitrary cumulative dis-
tribution functions (COMP is then equivalent to the MP algorithm since
choices are not affected). Since we have at most one sparse value a; per
neuron, the cumulative histogram function for each neuron for one coding
sweep is P(a; < d;) = 8(a; < d;), where variable 4; is the observed coeffi-
cient to be transformed and § is the Dirac measure: §(B) = 1 if the Boolean
variable B is true and 0 otherwise. We evaluate equation 2.6 after the end
of every coding using an online stochastic algorithm, Vi, Va;:

zi(@;) < (L —nu)zi(@;) + nud(a; < a;), (3.7)

where #; is the homeostatic learning rate. Note that this corresponds to
the empirical estimation and assumes that coefficients are stationary on a
timescale of nll learning steps. The timescale of homeostasis should therefore
in general be less than the timescale of learning. Moreover, due to the
exponential convergence of MP, for any set of components, the z; functions
converge to the correct nonlinear functions as defined by equation 2.6.

3.3 Adaptive Sparse Spike Coding. We may finally apply COMP to
SHL (see section 2.2). Since the efficiency is inspired by the spiking na-
ture of neural representations, we call this algorithm adaptive Sparse Spike
Coding (aSSC). From the definition of COMP, we know that whatever the
dictionary, the competition between filters will be fair because of the coop-
erative homeostasis. We add no other homeostatic regulation. We normalize
the energy of the filters since it is a free parameter in equation 3.1.

In summary, the learning algorithm is given by the following nested
loops in pseudo-code:
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1. Initialize the point nonlinear gain functions z; to similar cumulative
distribution functions and the components ®; to random points on
the unit L-dimensional sphere,

2. Repeat until learning converged:

(a) draw a signal I from the database, its energy is E = |I|%,
(b) set sparse vector a to zero, initialize 4; = (I, ;) for all i,
(c) while the residual energy E is above a given threshold do:
i. select the best match: i* = ArgMax,[z;(@;)],
ii. set the sparse coefficient: a;+ = a;-,
iii. update residual coefficients: Vi, d; <— a@; — a;-(®jx, D),
iv. update energy: E < E —a?.
(d) when we have the sparse representation vector a, apply Vi:
i. modify dictionary: ®; < ®; + na;(I — ®a),
ii. normalize dictionary: ®; <« ®;/| ;||
iii. updatehomeostasis functions: z;(-) < (1 — n,)zi(-) + md(a; < ).

4 Results on Natural Images

The aSSC algorithm differs from the SparseNet algorithm by the MP sparse
coding algorithm and by the cooperative homeostasis. Using natural im-
ages, we evaluate the relative contribution of these different mechanisms
to the representation efficiency.

4.1 Receptive Field Formation. We first compare the dictionaries of
filters obtained by both methods. We use a similar context and architecture
as the experiments described in Olshausen and Field (1997) and specifically
the same database of image patches as the SparseNet algorithm. These
images are static, gray scale, and whitened according to the same param-
eters to allow a one-to-one comparison of both algorithms. Here we show
the results for 16 x 16 image patches (so that L = 256) and the learning of
M = 324 filters, which are replicated as ON and OFF filters. Assuming this
symmetry in the aSSC algorithm, we use the absolute value of the coefficient
in equations 3.4 and 3.7, the rest of the algorithm being identical.! Results
replicate the original results of Olshausen and Field (1997) and are compa-
rable for both methods: dictionaries consist of edge-like filters similarly to
the receptive fields of simple cells in the primary visual cortex (see Figure 2).
Study of the evolution of receptive fields during learning shows that they
first represent any salient feature (such as sharp corners or edges) because
these correspond to larger Lipschitz coefficients (Perrinet et al., 2004). If a
receptive field contains multiple singularities, only the most salient remains
later during learning: due to the competition between filters, the algorithm

IThat is, following section 3.3, step 2-c-i becomes i* = ArgMax;[z;(| @;])], and step
2-d-iii is changed to z;(-) <= (1 — n)zi (-) + mud(l ai| < -).
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Figure 2: Comparison of the dictionaries obtained with SparseNet and aSSC.
We show the results of SHL using two different sparse coding algorithms at
convergence (20,000 learning steps). (Left) Conjugate gradient function (CGF)
method as used in SparseNet (Olshausen & Field, 1997) with (right) COMP as
used in aSSC. Filters of the same size as the image patches are presented in a
matrix (separated by a black border). Note that their position in the matrix is
arbitrary, as in ICA.

eliminates features that are duplicated in the dictionary. Filters that already
converged to independent components will be selected sparsely and with
high associated coefficients, but inducing slower learning since the corre-
sponding error is small (see equation 2.5). We observe for both algorithms
that when considering very long learning times, the solution is not fixed,
and edges may slowly drift from one orientation to another while global ef-
ficiency remains stable. This is due to the fact that there are many solutions
to the same problem (note, for instance, that solutions are invariant up to
a permutation of neurons’ addresses). It is possible to decrease these de-
grees of freedom by including, for instance, topological links between filters
(Bednar, Kelkar, & Miikkulainen, 2004). Qualitatively, the main difference
between both results is that filters produced by aSSC look more diverse and
broad (so that they often overlap), while the filters produced by SparseNet
are more localized and thin.

We also perform robustness experiments to determine the range of learn-
ing parameters for which these algorithms converged. One advantage of
aSSCis that it is based on a nonparametric sparse coding and a nonparamet-
ric homeostasis rule and is entirely described by two structural parameters
(L and M) and two learning parameters (n and 75;,), while parameteriza-
tion of the prior and of the homeostasis for SparseNet requires five more
parameters to adjust (three for the prior, two for the homeostasis). By ob-
serving at convergence the probability distribution function of selected
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filters, homeostasis in aSSC converges for a wide range of 1, values (see
equation 3.7). Furthermore, we observe that at convergence, the z; functions
become very similar (see the dotted lines in Figure 1, right) and that home-
ostasis does not favor the selection of any particular neuron as strongly
as at the beginning of the learning. Therefore, thanks to the homeosta-
sis, equilibrium is reached when the dictionary homogeneously represents
different features in natural images, that is, when filters have similar selec-
tivities. Finally, we observe the counterintuitive result that nonlinearities
implementing cooperative homeostasis are important for the coding only
during the learning period but that it may be ignored for the coding after
convergence since at this point, nonlinearities are the same for all neurons.

Both dictionaries appear to be qualitatively different and, for instance,
parameters of the emerging edges (frequency, length, width) are distributed
differently. In fact, it seems that rather than the shape of each dictionary
element taken individually, it is their distribution in image space that yields
different efficiencies. Such an analysis of the filters” shape distribution was
performed quantitatively for SparseNet in Lewicki and Sejnowski (2000).
The filters were fitted by Gabor functions (Jones & Palmer, 1987). A re-
cent study compares the distribution of fitted Gabor functions” parameters
between the model and receptive fields obtained from neurophysiologi-
cal experiments conducted in primary visual cortex of macaques (Rehn &
Sommer, 2007). It has shown that their SHL model based on Optimized Or-
thogonal MP better matches to physiological observations than SparseNet
does. However, there is no theoretical basis for the fact that receptive fields’
shape should be well fitted by Gabor functions (Saito, 2001), and the variety
of shapes observed in biological systems may, for instance, reflect adaptive
regulation mechanisms when reaching different optimal sparseness levels
(Assisi, Stopfer, Laurent, & Bazhenov, 2007). Moreover, although this type
of quantitative method is certainly necessary, it is not sufficient to under-
stand the role of each individual mechanism in the emergence of edge-like
receptive fields. To assess the relative role of coding and homeostasis in
SHL, we compare these different dictionaries quantitatively in terms of
representation efficiency.

4.2 Coding Efficiency in SHL. To address this issue, we first compare
the quality of both dictionaries (from SparseNet and aSSC) by comput-
ing the mean efficiency of their respective coding algorithms (respectively,
CGF and COMP). Using 10° image patches drawn from the natural im-
age database, we perform the progressive coding of each image using both
sparse coding methods. When the probability distribution function of the
sparse coefficients is plotted, one observes that distributions fit well the bi-
variate model introduced in Olshausen and Millman (2000), where a subset
of the coefficients is null (see Figure 3, left). Log-probability distributions
of nonzero coefficients are quadratic with the initial random dictionaries.
At convergence, nonzero coefficients fit well to a Laplacian probability
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Figure 3: Coding efficiency of SparseNet versus aSSC. We evaluate the quality
of both learning schemes by comparing the coding efficiency of their respec-
tive coding algorithms, that is, CGF and COMP, with the respective dictionary
that was learned (see Figure 2). (Left) We show the probability distribution
function of sparse coefficients obtained by both methods with random dictio-
naries (respectively, SN-init and aSSC-init) and with the dictionaries obtained
after convergence of respective learning schemes (respectively, SN and aSSC).
At convergence, sparse coefficients are more sparsely distributed than initially,
with more kurtotic probability distribution functions for aSSC in both cases.
(Right) We plot the average residual error (L, norm) as a function of the relative
number of active (nonzero) coefficients. This provides a measure of the coding
efficiency for each dictionary over the set of image patches (error bars are scaled
to one standard deviation). The Ly norm is equal to the coding step in COMP.
Best results are those providing a lower error for a given sparsity (better com-
pression) or a lower sparseness for the same error (Occam’s razor). We observe
similar coding results in aSSC despite its nonparametric definition. This result
is also true when using the two different dictionaries with the same OOMP
sparse coding algorithm: the dictionaries still have similar coding efficiencies.

distribution function. Measuring mean kurtosis of resulting sparse vectors
proves to be very sensitive and a poor indicator of global efficiency, in partic-
ular at the beginning of the coding, when many coefficients are still strictly
zero. In general, COMP provides a sparser final distribution. Dually, plot-
ting the decrease of the sorted coefficients as a function of their rank shows
that coefficients for COMP are first higher and then decrease more quickly
due to the link between the z; functions and the function of sorted coeffi-
cients (see equation 2.6). As a consequence, a Laplacian bivariate model for
the distribution of sparse coefficient emerges from the statistics of natural
images. The advantage of aSSC is that this emergence is not dependent on
a parametric model of the prior.
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In a second analysis, we compare the efficiency of both methods while
varying the number of active coefficients (the Ly norm). We perform this in
COMP by simply measuring the residual error (L, norm) with respect to the
coding step. To compare this method with the conjugate gradient method,
we use a two-pass sparse coding: a first pass identifies best neurons for a
fixed number of active coefficients, while a second pass optimizes the coef-
ficients for this set of active vectors. This method was also used in Rehn and
Sommer (2007) and proved to be fair when comparing both algorithms. We
observe in a robust manner that the greedy solution to the hard problem
(i.e., COMP) is as efficient as conjugate gradient as used in SparseNet (see
Figure 3, right). We also observe that aSSC is also slightly more efficient for
the cost defined in equation 2.3, a result that may reflect the fact that the L
norm defines a stronger sparseness constraint than the convex cost. More-
over, we compare the coding efficiency of both dictionaries using OOMP.
Results show that OOMP provides a slight coding improvement but also
confirms that both dictionaries are of similar coding efficiency, independent
of their respective coding algorithm.

These results prove that without the need of a parameterization of the
prior, coding in aSSC is as efficient as SparseNet. In addition, a number
of other advantages stern from this approach. First, COMP simply uses
a feedforward pass with lateral interactions, while conjugate gradient is
implemented as the fixed point of a recurrent network (see Figure 13.2
from Olshausen, 2002). Moreover, we have already seen that aSSC is a non-
parametric method controlled by fewer parameters. Therefore, applying a
“higher-level” Occam razor confirms that for a similar overall coding ef-
ficiency, aSSC is better since it is of lower structural complexity.> Finally,
in SparseNet and in algorithms defined in Lewicki and Sejnowski (2000),
Smith and Lewicki (2006), and Rehn and Sommer (2007), representation is
analog without explicitly defining a quantization. This is not the case in the
aSSC algorithm, where cooperative homeostasis introduces a regularity in
the distribution of sparse coefficients.

4.3 Role of Homeostasis in Representation Efficiency. In the context
of an information channel such as implemented by a neural ensemble, one
should rather use the coefficients that could be decoded from the neural
signal in order to define the reconstruction cost (see Figure 1, left). As was
described in section 2.1, knowing a dictionary &, it is indeed better to
consider the overall average coding and decoding cost over image patches

2A quantitative measure of the structural complexity for the different methods is
given by the minimal length of a code that would implement them, this length being
defined as the number of characters of the code implementing the algorithm. It would
therefore depend on the machine on which it is implemented, and there is, of course, a
clear advantage of aSSC on parallel architectures.
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C(a| I, @) (see equation 2.2), where a corresponds to the analog vector of co-
efficients inferred from the neural representation. The overall transmission
error may be described as the sum of the reconstruction and the quantiza-
tion error. This last error will increase with both intertrial variability but
also with the nonhomogeneity of the represented features. It is, however,
difficult to evaluate a decoding scheme in most sparse coding algorithms
since this problem is generally not addressed. Our objective when defining
Co(a | I, @) (see equation 2.4) was to define sparseness as it may be repre-
sented by spiking neural representations. Using a decoding algorithm on
such a representation will help us to quantify overall coding efficiency.

An effective decoding algorithm is to estimate the analog values of the
sparse vector (and thus reconstruct the signal) from the order of neurons’
activation in the sparse vector (Perrinet, 2007). In fact, knowing the address
of the fiber i® corresponding to the maximal value, we may infer that it
has been produced by an analog value on the emitter side in the highest
quantile of the probability distribution function of a;0. We may therefore
decode the corresponding value with the best estimate, which is given as
the average maximum sparse coefficient for this neuron by inverting z;o (see
equation 2.6): a;0 = zl._ol(l).3 This is also true for the following coefficients.
We write as ; the relative rank of the rth and o the order function that gives
the address of the winning neuron at rank 7. Since zo) = 1 — 4; = Zo) (@o(r)),
we can reconstruct the corresponding value as

N _ r
Aory = ZO(:) (1 — M) . (41)

Physiologically, equation 4.1 could be implemented using interneurons,
which would “count” the number of received spikes, and by modulating
efficiency of synaptic events on receiver efferent neurons—for instance,
with shunting inhibition (Delorme & Thorpe, 2003). Recent findings show
that this type of code may be used in cortical in vitro recurrent networks
(Shahaf et al., 2008). This corresponds to a generalized rank coding scheme.
However this quantization does not require that neural information explic-
itly carries rank information. In fact, this scheme is rather general and is
analogous to scalar quantization using the modulation function z; ! as a
look-up table. It is very likely that fine temporal information such as in-
terspike intervals also plays a role in neural information transmission. As
in other decoding schemes, the quantization error directly depends on the
variability of the modulation functions across trials (Perrinet et al., 2004).
This scheme thus shows a representative behavior for the retrieval of infor-
mation from spiking neural activity.

3Mathematically, the z; are not always strictly increasing, and we state here that z;” Y2
is defined in a unique way as the average value of the coefficients a; such that z;(a;) = z.
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Figure 4: Cooperative homeostasis implements efficient quantization.
(Left) When switching off the cooperative homeostasis during learning, the
corresponding SHL algorithm, AMP, converges to a set of filters that contain
some less localized filters and some high-frequency Gabor functions that corre-
spond to more textural features (Perrinet et al., 2003). One may wonder if these
filters are inefficient and capturing noise or if they correspond to independent
features of natural images in the LGM model. (Right, inset) In fact, when resid-
ual energy is being plotted as a function of Ly norm sparseness with the MP
algorithm (as plotted in Figure 3, right), the AMP dictionary gives a slightly
worse result than aSSC. (Right) Moreover, one should consider representation
efficiency as the overall coding and decoding algorithm. We compare the effi-
ciency for these dictionaries thanks to same coding method (SSC) and the same
decoding method (using rank-quantized coefficients). Representation length for
this decoding method is proportional to the Ly norm, with A = @ ~ 0.032
bits per coefficient and per pixel, as defined in equation 2.4. We observe that the
dictionary obtained by aSSC is more efficient than the one obtained by AMP,
while the dictionary obtained with SparseNet (SN) gives an intermediate re-
sult thanks to the geometric homeostasis. Introducing cooperative homeostasis
globally improves neural representation.

To evaluate the specific role of cooperative homeostasis, we compare
previous dictionaries (see Figure 2) with the one obtained by AMP. In fact,
SparseNet and aSSC differ at the level of the homeostasis but also for the
sparse coding. The only difference between aSSC and AMP is the intro-
duction of cooperative homeostasis. To obtain the solution to AMP, we use
the same sparse coding algorithm but switch off the cooperative home-
ostasis during learning (1, = 0 in equation 3.7). We observe at convergence
that the dictionary corresponds qualitatively to features that are different
from aSSC and SparseNet (see Figure 4, left). In particular, we observe
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the emergence of Gabor functions with broader width, which better match
textures. These filters correspond to lower Lipschitz coefficients (Perrinet
et al., 2004), and because of their lower saliency, these textural filters are
more likely to be selected with lower correlation coefficients. They fit more
to the Fourier filters that are obtained using principal component analysis
(Fyfe & Baddeley, 1995) and are still optimal to code arbitrary image patches
such as noise (Zhaoping, 2006). When we plot the L, norm with respect to
the Lo norm for the different dictionaries with the same MP coding algo-
rithm averaged over a set of 10° image patches from natural scenes (see
Figure 4, right inset), the resulting dictionary from AMP is less efficient
than those obtained with aSSC and SparseNet. This is not an expected be-
havior since COMP is more constrained than MP (MP is the “greediest”
solution), and using both methods with a similar dictionary would nec-
essarily give an advantage to MP: the AMP thus reached a local minima
of the coding cost. To understand why, recall that in the aSSC algorithm,
the cooperative homeostasis constraint, by its definition in equation 2.6,
plays the role of a gain control and that the point nonlinearity from equa-
tion 3.4 ensures that all filters are selected equally. Compared to AMP,
textured elements are boosted during learning relative to a more generic
salient edge component and are thus more likely to evolve (see Figure 1,
right). This explains why they would end up being less probable and that
at convergence, there are no textured filters in the dictionary obtained with
aSSC.

Finally, we test quantitatively the representation efficiency of these dif-
ferent dictionaries with the same quantization scheme. At the decoding
level, we compute in all cases the modulation functions as defined in equa-
tion 4.1 on a set of 10° image patches from natural scenes. Since addresses’
choices may be generated by any of the M neurons, the representation cost
is defined as A = log(M) bits per chosen address (see equation 2.4). Then,
when the quantization is used (see equation 4.1), the AMP approach dis-
plays a larger variability, reflecting the lack of homogeneity of the features
represented by the dictionary. There is a much larger reconstruction error
and a slower decrease of error’s energy (see Figure 4, right). The aSSC,
on the contrary, is adapted to quantization thanks to cooperative home-
ostasis, and consequently it yields a more regular decrease of coefficients
as a function of rank, that is, a lower quantization error. The dictionary
obtained with the SparseNet algorithm yields an intermediate result. This
shows that the heuristic implementing the homeostasis in this algorithm
regulates relatively well the choices of the elements during the learning. It
also explains why the three parameters of the homeostasis algorithm had
to be properly tuned to fit the dynamics of the heuristics. Results therefore
show that homeostasis optimizes the efficiency of the neural representation
during learning and that the cooperative homeostasis provides a simple
and effective optimization scheme.



Role of Homeostasis in Learning Sparse Representations 1831

5 Discussion

We have shown in this letter that homeostasis plays an essential role in
sparse Hebbian learning (SHL) schemes and thus on our understanding of
the emergence of simple cell receptive fields. First, using statistical infer-
ence and information theory, we have proposed a quantitative cost for the
coding efficiency based on a nonparametric model using the number of ac-
tive neurons, that is, the Ly norm of the representation vector. This allowed
the design of a cooperative homeostasis rule based on neurophysiological
observations (Laughlin, 1981). This rule optimizes the competition between
neurons by simply constraining the choice of every selection of an active
neuron to be equiprobable. This homeostasis defined a new sparse coding
algorithm, COMP, and a new SHL scheme, aSSC. Then we confirmed that
the aSSC scheme provides an efficient model for the formation of simple
cell receptive fields, similar to other approaches. The sparse coding algo-
rithms in these schemes are variants of conjugate gradient or of Matching
Pursuit (MP). They are based on correlation-based inhibition since this is
necessary to remove redundancies from the linear representation. This is
consistent with the observation that lateral interactions are necessary for
the formation of elongated receptive fields (Bolz & Gilbert, 1989). With a
correct tuning of parameters, all schemes show the emergence of edge-like
filters. The specific coding algorithm used to obtain this sparseness appears
to be of secondary importance as long as it is adapted to the data and yields
sufficiently efficient sparse representation vectors. However, the resulting
dictionaries vary qualitatively among these schemes, and it was unclear
which algorithm is the most efficient and what was the individual role
of the different mechanisms that constitute SHL schemes. At the learning
level, we have shown that the homeostasis mechanism had a great influ-
ence on the qualitative distribution of learned filters. In particular, using the
comparison of the coding and decoding efficiency of aSSC with and with-
out this specific homeostasis, we have proven that cooperative homeostasis
optimized overall representation efficiency. This efficiency is comparable to
that of SparseNet, but with the advantage that our unsupervised learning
model is nonparametric and does not need to be properly tuned.

This work might be advantageously applied to signal processing prob-
lems. First, we saw that optimizing the representation cost maximizes the
independence between features and is related to the goal of ICA. Since we
have built a solution to the LGM inverse problem that is more efficient than
standard methods such as the SparseNet algorithm, it is thus a good can-
didate solution to blind source separation problems. Second, at the coding
level, we optimized in the COMP algorithm the efficiency of MP by includ-
ing an adaptive cooperative homeostasis mechanism. We proved that for
a given compression level, image patches are more efficiently coded than
in the MP algorithm. Since we have shown previously that MP compares
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favorably with compression methods such as JPEG with a fixed log-Gabor
filter dictionary (Fischer, Redondo, Perrinet, & Cristdbal, 2007), we can
predict that COMP should provide promising results for image represen-
tation. An advantage over other sparse coding schemes is that it provides
a progressive dynamical result, while the conjugate gradient method has
to be recomputed for every different number of coefficients. The most rel-
evant information is propagated first, and progressive reconstruction may
be interrupted at any time. Finally, a main advantage of this type of neuro-
morphic algorithm is that it uses a simple set of operations: computing the
correlation, applying the point nonlinearity from a look-up table, choosing
the ArgMax, doing a subtraction, and retrieving a value from a look-up
table. In particular, the complexity of these operations, such as the ArgMax
operator, in theory would not depend on the dimension of the system in
parallel machines and the transfer of this technology to neuromorphic hard-
ware such as aVLSIs (Schemmel, Gruebl, Meier, & Mueller, 2006; Briiderle
et al., 2009) will provide a supralinear gain of performance.

In this letter, we focused on transient input signals and of relatively ab-
stract neurons. This choice was made to highlight the powerful function of
the parallel and temporal competition between neurons in contrast to tra-
ditional analog and sequential strategies using analog spike frequency rep-
resentations. This strategy allowed a comparison of the proposed learning
scheme with state-of-the-art algorithms. One obvious extension to the al-
gorithm is to implement learning with more realistic inputs. In fact, sparse-
ness in image patches is only local while it is also spatial and temporal
in whole-field natural scenes. For instance, it is highly probable in whole
natural images that large parts of the space, such as the sky, are flat and
contain no information. Our results should thus be taken as a lower bound
for the efficiency of aSSC in natural scenes. This also suggests the exten-
sion to representations with some built-in invariances, such as translation
and scaling. A gaussian pyramid, for instance, provides a multiscale rep-
resentation where the set of learned filters would become a dictionary of
mother wavelets (Perrinet, 2007). Such an extension leads to a fundamental
question: How does representation efficiency evolve with the number M
of elements in the dictionary, that is, with the complexity of the representa-
tion? In fact, when increasing the overcompleteness in aSSC, one observes
the emergence of different classes of edge filters: at first different positions,
then different orientations of edges, followed by different frequencies, and
so on. This specific order indicates the existence of an underlying hierarchy
for the synthesis of natural scenes. This hierarchy seems to correspond to
the level of importance of the different transformations that are learned
by the system—respectively, translation, rotation, and scaling. Exploring
the efficiency results for different dimensions of the dictionary in aSSC
will thus give a quantitative evaluation of the optimal complexity of the
model needed to describe images in terms of a trade-off between accu-
racy and generality. But it may also provide a model for the clustering of
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the low-level visual system into different areas, such as the emergence of
position-independent representations in the ventral visual pathway versus
motion-selective neurons in the dorsal visual pathway.
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