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Abstract

The machinery behind the visual perception of motion and the subsequent sensori-motor transformation, such as in ocular following
response (OFR), is confronted to uncertainties which are efficiently resolved in the primate’s visual system. We may understand this
response as an ideal observer in a probabilistic framework by using Bayesian theory [Weiss, Y., Simoncelli, E.P., Adelson, E.H.,
2002. Motion illusions as optimal percepts. Nature Neuroscience, 5(6), 598–604, doi:10.1038/nn858] which we previously proved to
be successfully adapted to model the OFR for different levels of noise with full field gratings. More recent experiments of OFR have
used disk gratings and bipartite stimuli which are optimized to study the dynamics of center–surround integration. We quantified
two main characteristics of the spatial integration of motion: (i) a finite optimal stimulus size for driving OFR, surrounded by an antag-
onistic modulation and (ii) a direction selective suppressive effect of the surround on the contrast gain control of the central stimuli [Bart-
hélemy, F.V., Vanzetta, I., Masson, G.S., 2006. Behavioral receptive field for ocular following in humans: dynamics of spatial summation
and center–surround interactions. Journal of Neurophysiology, (95), 3712–3726, doi:10.1152/jn.00112.2006]. Herein, we extended the
ideal observer model to simulate the spatial integration of the different local motion cues within a probabilistic representation. We pres-
ent analytical results which show that the hypothesis of independence of local measures can describe the spatial integration of the motion
signal. Within this framework, we successfully accounted for the contrast gain control mechanisms observed in the behavioral data for
center–surround stimuli. However, another inhibitory mechanism had to be added to account for suppressive effects of the surround.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Local motion signals are often noisy and ambiguous. To
elaborate an accurate perception of the spatio-temporal
layout of our environment or to direct our actions towards
a particular object of interest, the biological system respon-
sible for the visual perception of motion must integrate
these piecewise measurements in a selective way. The
machinery behind this dynamical integration process has
been scrutinized at different levels, from single neurons to
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behavior. However, one still lacks an integrative view of
motion integration.

Probabilistic representations of motion are useful tools
to understand these mechanisms. In these representations,
all the information extracted from the image is coded as
probability distribution functions (PDFs) of the different
possible velocities of translation. As is inspired by the
architecture of visual cortical area MT, spatio-temporal
distributions of activity within large populations of units
broadly tuned for direction selectivity build maps of the
local motion information (Nowlan and Sejnowski, 1995),
these distributed representations may be interpreted as
maps of PDFs. An ideal decision process could then be
used to infer the most plausible interpretation of the image
from this distributed probabilistic representation using
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standard operations from probability theory in order to
trigger and control adaptive behavioral responses.

We use such an approach to model how motion informa-
tion is quickly integrated in order to drive reflexive eye move-
ments involved in tracking object motion in primates.
Because the aim of these responses is to stabilize onto the ret-
inas the images of a single object of interest, they are an ideal
candidate to probe both the low-level motion mechanisms
that single-out this object and compute its motion and the
decision process that triggers a motor response in the appro-
priate direction and at the correct speed.
Fig. 1. Basic properties of human OFR. Several properties of motion integratio
A leftward drifting grating elicits a brief acceleration of the eye in the leftward d
and latency are affected by the contrast of the sine-wave grating, given by num
motor transformation are given by measuring the response amplitude (i.e.
Relationships between (b) response latency or (c) initial amplitude and contras
the contrast response function (CRF) of the sensori-motor transformation and
et al., 2007)). (d) At fixed contrast, the size of the circular aperture can be varied
linearly grows up with stimulus size before reaching an optimal size, the inte
(reprinted from (Barthélemy et al., 2006)). (e) OFR are recorded for center-alon
to measure the contrast response function and compute the contrast gain of t
response onset. Open symbols are data obtained for a center-alone stimulus, sim
see that late (but not early) contrast gain is lowered, as illustrated by a rightw
2. Ocular following responses in primates: a probe of

dynamical motion integration

In human and non-human primates, a brief (<200 ms)
translation of the visual scene elicits reflexive tracking eye
movements at ultra-short latency (�55 ms in monkeys
and �85 ms in humans, see Fig. 1a) (Miles et al., 1986;
Gellman et al., 1990). The responses, also called ocular fol-
lowing responses (OFR), exhibit many of the properties
that are attributed to low-level motion detectors. They
are triggered primarily by a motion energy signal that is
n for driving ocular following as summarized from our previous work. (a)
irection. Mean eye velocity profiles illustrate that both response amplitude
bers at the right-end of the curves. Quantitative estimates of the sensori-
change in eye position) over a fixed time window, at response onset.

t are illustrated for the same grating motion condition. These curves define
are best fitted by a Naka–Rushton function (reprinted from (Barthélemy
to probe the spatial summation of OFR. Clearly, response amplitude first

gration zone. For larger stimulus sizes, response amplitudes are lowered
e and center–surround stimuli. The contrast of the center stimulus is varied
he sensori-motor transformation at both an early and a late phase during
ilar to those illustrated in (c). When adding a flickering surround, ones can
ard shift of the contrast response function (Barthélemy et al., 2006).
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extracted from the spatio-temporal luminance distribution
in the image (Miles et al., 1986; Masson et al., 2002; Sheliga
et al., 2005). For instance, reversing the contrast of a high
density dot-pattern during a one-step apparent motion
results in a reversed ocular response, following the direc-
tion of the first-order motion signal (Masson et al.,
2002). These reflexive responses are best driven by motion
signals extracted in the low spatial (<1 cpd) and high tem-
poral (>10 Hz) frequency range. Moreover, latency of ocu-
lar following depends on the temporal frequency of the
local change in luminance and not the speed of the visual
motion (Miles et al., 1986; Gellman et al., 1990).

Contrast is another important factor for driving ocular
following responses, as it is related to the signal-to-noise
ratio of the mechanism that computes a velocity signal with
appropriate strength and accuracy to drive the sensori-
motor transformation. Both latency and amplitude of the
earliest phase of ocular following were found to be nonlin-
early dependent upon the contrast of moving sine waves
(Fig. 1b,c). When considering the amplitude of the initial
eye acceleration, the contrast response functions mimics
those observed for motion selective neurons: a rapidly
expanding phase at low contrast followed by a saturation
of response amplitude with high contrast (Masson and
Castet, 2002; Sheliga et al., 2005; Barthélemy et al.,
2007). This relationship is best fitted by a Naka–Rushton
function, similar to that used for describing contrast
response functions of neurons at various stages along the
motion pathway (Sclar et al., 1990; Albrecht et al., 2002).
A similar relationship was found between response ampli-
tude and signal-to-noise ratio when varying the percentage
of correlated motion in a dynamic sequence of random-dot
patterns (Masson, Barthélemy and Vanzetta, unpublished).
Latency of ocular following also undergoes a considerable
change when contrast varies from low (<5%) to mid-range
values. Barthélemy et al. (2007) showed in humans that the
relationships between response latency and contrast can be
best described by an inverted Naka–Rushton function.1

Lastly, higher order motion cues can influence the direction
of tracking initiation, albeit with a slightly longer latency,
reflecting the temporal dynamics of motion integration in
the primate visual motion pathway (Masson and Castet,
2002; Masson, 2004).

These short-latency ocular following responses are dri-
ven by a global motion signal built by pooling local motion
over a very large part of the visual field (Masson, 2004;
Barthélemy et al., 2006). Masson and colleagues have
investigated the properties of such spatial integration of
motion in both humans (Barthélemy et al., 2006) and mon-
keys (Barthélemy and Masson, 2006). They found that
motion is linearly integrated over the central 20� of the
visual field. Within this central, driving part of the visual
field, different motion signals are linearly integrated by
1 This suggests a generic monotonous relationship between contrast –
that is signal-to-noise ratio – and time of integration in this early phase of
information integration.
computing a vector average of the local motion directions
(Masson and Castet, 2002; Barthélemy et al., 2006). How-
ever, at high spatial frequency, stretching the stimulus size
above the optimal summation area results in a saturation
followed by a decrease of initial eye velocity. Reductions
in eye velocity with large stimuli were much stronger in
monkeys than in humans. Moreover, hyper-saturation
was seen mostly for long temporal integration window,
reflecting the fact that surround suppression is delayed rel-
ative to the center-driven response onset.

Such an hyper-saturation is generally interpreted as the
signature of an inhibitory surround, driven by motion in
the same direction as the center. Such surround suppres-
sion was originally described by Miles and colleagues in
monkeys (Miles et al., 1986). Using very large random-dots
patterns, they found that drifting the surround (typically
larger than 40� of visual angle) in the same direction low-
ered the responses driven by central motion, a phenome-
non called ‘‘in-phase suppression’’. On the contrary,
antagonistic surround motion boosted the initial eye accel-
eration: ‘‘anti-phase enhancement’’. Both suppression and
enhancement were evident only in the later part of the
responses, i.e. �30 ms after response onset. Similar, albeit
much smaller effects were reported in humans (Gellman
et al., 1990). In monkeys, similar modulatory effects of sur-
round motion has been demonstrated at the level of both
areas MT (Born and Tootell, 1991) and MST (Eifuku
and Wurtz, 1999).

In humans, Barthélemy et al. (2006) found further evi-
dence for such surround inhibition when comparing con-
trast response functions obtained with or without a
dynamical surround at high contrast. They used a flicker-
ing pattern as surround stimulus to disentangle visual
and motor interactions in center–surround conditions. A
flickering sine-wave is a static grating whose contrast is
time modulated and which can be interpreted as the sum
of two similar gratings, drifting in opposite directions.
Thus, no net motion signal was present in the surround
area, which therefore did not elicit ocular responses when
presented alone. Nevertheless, surround flicker lowered
contrast gain for center-driven responses, resulting in flat-
ter and shifted amplitude-contrast response functions (see
Fig. 1e). We have obtained similar results in macaque ocu-
lar following responses. Interestingly, this inhibitory effects
of surround motions was delayed relative to tracking onset
and built up over time in both humans and monkeys. Over-
all, these inhibitory surround effects are very similar to that
observed at the single neuron level (Cavanaugh et al., 2002)
or at population level (Reynaud et al., 2007) in primate
area V1. Similar modulatory surround have been reported
in area MT (Heuer and Britten, 2002) but no data are yet
available for area MST in macaques.

In monkeys, ocular following responses are initiated
shortly after the earliest response onset of neurons in the
medio-temporal (MT) and medial superior (MST) areas
of the dorsal pathway. Kawano (1999) and colleagues have
tracked the temporal dynamics of neuronal information
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flow from cortical to sub-cortical structures, leading to eye
movement onset. Furthermore, complete lesions of areas
MT and MST in the macaque dorsal pathway completely
abolish ocular following as well as other short-latency
tracking responses such as disparity- and radial flow ver-
gence (Takemura et al., 2007). Firing rates of neurons in
both areas MT and MST encode for stimulus direction
and speed when presented with the stimuli driving ocular
following (Kawano et al., 1994). Discharge patterns of
MST neurons reflect the different components of the visual
signal such as image acceleration and velocity. On the other
hand, properties of ocular responses (i.e. eye velocity pro-
files) are best correlated with neuronal discharges in the
ventral paraflocullus (VPFL) lobe of the cerebellum
(Takemura and Kawano, 2002). These simulations suggest
that MST neurons represent global dynamic properties of
the visual stimulus and therefore that the entire popula-
tions of MST neurons encodes visual information for ocu-
lar following responses. MST neurons are often seen as
template neurons that encode global flow informations
by pooling local motion information from MT neurons
(Duffy and Wurtz, 1991). A critical step is therefore to
understand how local motion information is extracted
and pooled at the population level to encode a single vector
related to object direction and speed. Similar population
decoding scheme have been recently proposed to account
of initial eye acceleration for voluntary smooth pursuit
eye movements in macaque (Priebe and Lisberger, 2004).

In summary, ocular following responses are an excellent
opportunity to probe the dynamics of motion integration
at behavioral level. The amplitude of the earliest phase of
ocular following is proportional to initial eye acceleration
which has been shown to be directly related to image veloc-
ity (see (Lisberger et al., 1987)). Moreover, a change in eye
speed or direction would reflect a change in the output of
the visual motion pathway as evidenced by the parallel
dynamics observed for solving the aperture problem at
the neuronal (Pack and Born, 2001; Smith et al., 2005)
and behavioral (Masson et al., 2000; Masson and Castet,
2002) levels. From the properties of the behavioral
responses, we can then infer the basic properties of motion
processing and how a single velocity signal is extracted
from a cascade of neuronal populations from areas V1,
MT and MST. Moreover, since the dynamics of the earliest
part of eye movements reflects the firing rate of output neu-
rons of the cortical visual processing (Osborne et al., 2004),
we might then illustrate the neuronal dynamics at a fine
grain and probe the output of large scale neuronal net-
works implementing a neuronal solution for motion inte-
gration and segmentation.

3. An ‘‘ideal observer’’ model for OFR

We will use here the tools of statistical inference to
model the behavioral results obtained in both human and
non-human primates (Barthélemy and Masson, 2006; Bart-
hélemy et al., 2006, 2007; Masson and Castet, 2002). Our
goal is to model how information is pooled over a large
population of broadly tuned neurons to extract a signal
related to the retinal velocity of the moving object. As in
Barthélemy et al. (2007), we will study the reference signal
given by the model (usually the velocity that is considered
as the most probable) and compare it to the behavioral
data by assuming that the gain of the oculo-motor system
(the observed change in eye position) is proportional to this
velocity. This assumption is reasonable since we restrict
ourselves to ultra-short latencies and that our measure-
ments remain in the open-loop part of the dynamics (infe-
rior than 100 ms in human), that is that due to the latencies
in the visual system, there was no feed-back of the eye’s
motion on the system.

As described in Barthélemy et al. (2007), we model the
ideal response ~vm knowing the given information as the
conditional expectancy:

~vm ¼ Eð~vjIÞ ¼
Z
~vP ð~vjIÞdP ð~vjIÞ ð1Þ

where Eð~vjIÞ is the mean velocity computed from the prob-
ability of the different possible velocities~v knowing the ob-
served image I. A major difficulty is to compute this
probability P ð~vjIÞ globally over the whole field and a solu-
tion which seems to be implemented in the visual system
consists in pooling the information that is extracted locally
and which acts as a distributed probabilistic representation
of the map of local translation velocities. For the purpose
of generality we define these local measurements as differ-
ent nodes n 2 P, where P is the total population of nodes.
Typically in the visual system, the nodes have local recep-
tive fields where P ð~vjI ; nÞ may be more easily computed
(see Fig. 2). In fact, it is then possible to evaluate locally
the probability distribution of the velocity ~v thanks to a
stochastic model of the local translation near n:
Inð~x; tÞ ¼ Inð~x�~vdt; t � dtÞ þ m, where~x is the position in
the receptive field and m is a Gaussian noise image of vari-
ance r2

n. By definition, this noise is inversely proportional
to the Michelson’s Contrast and we note the full contrast
image: I100,n = C�1 Æ In.

Adding a Gaussian prior of variance r2
p;n favoring slow

speed (Weiss et al., 2002), it follows from Bayes’ theorem:

P ð~vjI ; nÞ ¼ 1

Z
� e
�

C2 �D I100;nð~vÞ

2�r2
n � e

� k~vk
2

2�r2
p;n ð2Þ

where DI100,n = C�2 Æ DIn is the contrast-normalized gradi-
ent constraint for the local image in the receptive field:

DI100;nð~vÞ ¼ kI100;nð~x; tÞ � I100;nð~x�~v � dt; t � dtÞk2 ð3Þ
This constraint function is exactly the same as the one used
in image processing when computing the hypothesis of con-
servation of image luminance along different translation
velocities. It is equivalent also to the correlation in the
spectral space with the plane perpendicular to~v (Simoncelli
and Heeger, 2001). However, one has to preprocess images
so that neighboring pixels’ luminance values are decorrelat-
ed and that such an hypothesis still holds.



Fig. 2. Architecture of the model. The model consists in pooling
elementary cues from local information (represented for instance in
neuronal assemblies) to provide a ‘‘global’’ decision which drives the
oculo-motor system and closes the oculo-motor loop by moving the eye’s
position. Every local detector (or node) integrates motion information
from the image on its receptive field so as to provide a local representation
of the possible translation velocity probabilities in the receptive field
(schematized by the circular probability distribution functions in velocity
space (vx,vy)). This distributed information may then pooled across the
different nodes (and hence across space) but also integrated in time and
potentially by other modalities (e.g. proprioception). A decision (or
reference signal) is formed using a statistical inference criterion, usually
either the Maximum A Posteriori (MAP) probability or the conditional
expectancy, and this decision is transformed accordingly by the oculo-
motor system to produce an eye movement.
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In the range of experiments that we describe here, the
whole image will be composed locally by single gratings
with parameters their velocity~vn and spatial frequency fn

2

which may be written:

I100;n ¼ sinð2pfnð~x�~vn � tÞÞ ð4Þ

for which DI100,n is easy to compute analytically: it is well
approached (up to the Nyquist frequency) by a quadratic
function with a minimum constraint at~v ¼~vn. Every node
can thus be characterized by a mean ~vn and a covariance
matrix r2

n such that the density P ð~vjI ; nÞ is Gaussian:

Nð~vn; rnÞ ¼
1

Z
� exp � 1

2
ð~v�~vnÞT r�2

n ð~v�~vnÞ
� �

ð5Þ

with Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2prnÞ

p
. Qualitatively, information is larger

for lower variances.3 It is useful to determine the principal
axis of this distribution so that we have r2

n given by
2 To extend this paradigm to natural images, one should consider that
this composition is composed locally by multiple gratings as is illustrated
in the wavelet representation.

3 This characterizes the aperture problem as r2,n� r1,n: the variance is
higher along the orientation of the line than perpendicular to it.
cosðhnÞ � sinðhnÞ
sinðhnÞ cosðhnÞ

� �
r2

1;n 0

0 r2
2;n

 !
ð6Þ

where hn is the orientation of the grating (or the line) rela-
tive to the vertical (that is relative to a rightward horizon-
tally perceived motion) and r1,n < r2,n are the two
eigenvalues of the distribution. In particular, the solution
to the gain in Eq. (1) for a full-field grating of speed ~vg

as a function of the contrast, that is the contrast response
function (CRF) is thanks to Eq. (2) necessarily a Naka–
Rushton curve (Naka and Rushton, 1966) of slope 2:

~vmðCÞ ¼
C2

C2
50 þ C2

~vg ð7Þ

with ~vm being the reference speed, perpendicular to the
grating and C50 / rp

r1;n
is the contrast at half saturation

(see Fig. 3, left). This curve gives a general account for
the sigmoidal form of the saturation in a wide range of
experiments and proved to efficiently account for the
OFR at different contrasts compared to the computation
with a full field image using Eq. (2) (Barthélemy et al.,
2007) (see also Hurlimann et al. (2002) for a similar analy-
sis). It is described by the contrast of half saturation only,
however with this quadratic hypothesis it is not possible to
fit CRFs which look more or less ‘‘binary’’ (see Fig. 3,
right).

We have recently shown that such a Bayesian model can
accurately account for a large set of contrast response func-
tions such as obtained with different motion stimuli such as
grating, barber-poles (i.e. a grating drifting behind an
elongated, tilted aperture) and plaids (i.e. the sum of two
gratings moving in different directions). We elaborated a
two-pathways version of the inferential model to account
for the independent extraction of 1D (i.e. gratings) and
2D (i.e. local features) motion that drive early and late
component of ocular following (Masson and Castet,
2002). More important, we found that different contrast
gain can be simulated using a shared motion extraction
stage across different stimuli. Best fits are shown in
Fig. 4a–e. This result shows that the dynamic of ocular fol-
lowing responses reflects how motion information is pooled
across different channels extracting grating and feature
motions and reflect the signal-to-noise ratio within each
channel. Each channel has different temporal integration
properties, also fitted to the observed data (Barthélemy
et al., 2007). However, the model cannot explain the differ-
ence in latency observed between early (i.e. 1D-driven) and
late (i.e. 2D-driven) component of ocular following (Mas-
son et al., 2000; Masson and Castet, 2002). This pure delay
is another argument for assuming independent nodes in
extracting motion signals which are progressively taken in
account in the global behavioral signal.

Knowing contrast response functions for a single grat-
ing motion (Fig. 4a), we next asked the question of how
to combine these local, non-linear responses so as to give
a global motion integration. Such a pooling of information
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Fig. 3. Naka–Rushton curves. (Left) A typical response to OFR as a function of contrast is shown as a Naka–Rushton curve according to Eq. (7). These
curves are totally described by their saturation at half contrast and show a typical sigmoidal shape: the gain is zero at zero contrast, it smoothly increases
to reach a linear regime at half saturation contrast and then saturates to one. A property of these curves is that the tangent of the curve at half contrast
meets the origin. (Right) Using Naka–Rushton curves with powers of n instead of 2 (here with C50 = 1), one could produce a richer set of curves which
have different slopes at half-contrast, from a ‘‘sloppy’’ response (n = 1) to a more ‘‘binary’’ response (n = 4).

Fig. 4. Contrast response function of OFR. Amplitude of (a,b,c) horizontal and (d,e) vertical ocular following responses plotted against contrast of 1D
(i.e. gratings) or 2D (i.e. features such as line-endings or blobs) motion cues. Different contrast gain are observed for each stimulus (i.e. grating, barber-
pole and plaid motion) but all relationships can be simulated using a single probabilistic model such as is developed herein. The only modification is the
introduction of a second, parallel pathway that extracts 2D feature motions. Re-plotted from Barthélemy et al. (2007).
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across space is a key aspect of motion integration for
reducing noise or normalizing driving inputs with context
information. We have investigated how ocular following
depends upon this spatio-temporal integration in two series
of experiments. First, we asked what is the optimal stimu-
lus size for driving ocular following responses, using grat-
ing stimuli of different spatial frequencies. Second, we
probed how the contrast response function of OFRs driven
by a central moving patch would be affected by surround-
ing motion signals. These experiments have been conducted
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both in humans (Barthélemy et al., 2006) and monkeys and
we will first give a general analytical formulation before
applying it to the spatial integration of motion.

4. Integration of independent information for the OFR

A first analytical solution is given thanks to the hypoth-
esis of independence of the measure of velocity on these dif-
ferent nodes (Weiss et al., 2002) which permits to write:

log P ð~vjIÞ ¼
X
n2P

log P ð~vjI ; nÞ ð8Þ

This ensures that from Eq. (2), as a product of Gaussian,
the resulting distribution is also a Gaussian:
P ð~vjIÞ ¼ PnPð~vjI ; nÞ ¼Nð~vm;rÞð~vÞ. In that case, the Maxi-
mum A Posteriori will again correspond to the mean (see
Eq. (1)). Solving the polynomial equation of 2 · 2 matrices
in Eq. (8), it follows that the resulting distribution
Nð~vm;rÞð~vÞ obeys:

r�2 ¼
P

r�2
n

r�2 �~vm ¼
P

r�2
n �~vn

(
ð9Þ

with r�2
n given by

cosð�hnÞ � sinð�hnÞ
sinð�hnÞ cosð�hnÞ

� �
r�2

1;n 0

0 r�2
2;n

 !
ð10Þ

This simple relation gives a general formula for the pooling
of information from different nodes with gaussian PDFs
and is a generic tool that we will apply to the different
experimental setups. In fact, knowing that a stimulus is
constituted by different gratings, it is straightforward using
this equation to compute the distribution of the pooled
information. However, this will not apply if the stimulus
is constituted by transparent overlapping gratings where
the probability distribution is multi-modal.

This equation also applies to dynamical integration. In
fact, if one assumes independence in time of the measure-
ment noises (the nodes are now centered in space and at
different instants in time), the pooling of this information
is factorial. In particular, if the probability distribution
function is a steady gaussian, Eq. (9) states that the inverse
variance will increase proportionally to the integration time
(that is from the onset of the integration), so that one may
evaluate the dynamical evolution of integration. This was
confirmed in a previous study (Barthélemy et al., 2007)
and there is thus under this hypothesis a direct equivalence
between the integration time and the contrast of the image
(see Fig. 1e).

It should be stressed that this is a pure feed-forward
model of integration since all information is pooled and
no change occur along loops (for instance one does not
change the content of the information with intermediate
computations as in a recurrent model). It is therefore easy
to imagine neuronal implementations, for instance by using
divisive normalization (Simoncelli and Heeger, 2001).
However, there may be many implementations for the
same function and in particular it is likely that the distrib-
uted probabilistic representation is not explicitly coded in
the activity of neuronal assemblies. Nevertheless, our gen-
eral model has more predictive power from our knowledge
of the representation and it’s link to statistical inference
and Bayesian theory in general. In general, from the com-
mutativity of Eq. (9), there are many different implementa-
tions of the same distribution of nodes. In particular, the
prior in all nodes can be pooled separately for clarity, as
was done for the full-field stimulus. Even if it is highly
likely that statistical inferences are computed thanks to
more complicated recurrent networks with local, lateral
or feed-back connections, this model allows to understand
a large class of non-linear systems as the simple interaction
of linear local detectors and to test this simple hypothesis.
We will now show that it applies to a large range of exper-
iments involving spatio-temporal integration of motion
information in primate OFR.

5. Spatial summation for OFR: effects of stimulus size

If we only consider a grating of speed ~vg on a central
disk aperture, it follows from Eq. (9) that the reference sig-
nal will be:

~vm ¼
P

n2Pc

1
r2

xP
n2Pc

1
r2

x
þ
P

n2P
1

r2
p;x

�~vg ð11Þ

where Pc is the population of active central nodes (that is
the intersection of P with the disk). It appears first that
the prior may be simply pooled as rp ¼ ð

P
~x2P

1
r2

p;~x
Þ�1=2.

Then, to model the integration over Pc, we may con-
sider that the density (or weight) of nodes pooling
responses for the OFR is a centered Gaussian PDF of
visual space with a width of x. We may thus write that:X
n2Pc

1

r2
x

/ C2 �
Z

06r6d
exp � r2

2 � x2

� �
� 2 � p � r � dr

where d is the diameter and C the contrast. FromZ r¼d

r¼0

exp � r2

2 � x2

� �
� 2 � p � r � dr

¼ 2 � p � x2 � 1� exp � d2

2 � x2

� �� �

it follows that from Eq. (11),

~vmðC; dÞ ¼
1

1þ C2
e

C2�g2ðdÞ

:~vg

with g2ðdÞ ¼ 1� exp � d2

2 � x2

� �
ð12Þ

where Ce is a constant corresponding to the half saturation
contrast to the full-field grating. For a fixed diameter, the
CRF will be again necessarily a Naka–Rushton curve
(Naka and Rushton, 1966) of slope 2 with C50 /
g�1(d) Æ Ce. This formula is to be compared with the



Fig. 5. Effects of size of a disk grating on the monkey’s OFR response. We present here the gain of the oculo-motor response to a central grating (temporal
frequency 10 Hz, see inset in Fig. 1a) as a function of its diameter for the macaque monkey (open circles) and the model (continuous line). Fits were
performed as a function of the diameter d thanks to Eq. (13). (Left) At low frequencies (0.12 cpd) and contrasts, the gain increases monotonically with the
diameter. The curves are well fitted by Eq. (12). (Right) However, in more general conditions (here 0.7 cpd), the initial gain decreases after a given diameter
suggesting a suppressive effect. This corresponds to a surround inhibition which is well captured by Eq. (13), the inhibition being more pronounced when
contrast is higher and contrary to intuition, the diameter x extracted from the fits remains constant across curves.
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Naka–Rushton gain, and shows that even if it similar qual-
itatively, the gain g2 will give a better account of the inte-
gration on the disk.

Even if this family of curves shows a relatively good
behavior for a large range of OFR responses (see low con-
trasts in Fig. 5, left) in particular for humans, they don’t
correspond to some observations, for instance for high
grating frequencies (see Fig. 5, right). In fact, these
responses show a suppression after a specific contrast (Sce-
niak et al., 1999), the so-called super saturation, which
could not be accounted for this integration model. In fact,
it appears clearly that the CRF will have the same varia-
tions as g2(d) and thus that it will be here necessarily
monotonously increasing, i. e. the bigger the integration
field’s diameter, the higher the OFR gain.4

One solution is generally to add another integration
term which accounts for this ‘‘surround suppression’’. As
in the ratio of Gaussian (ROG) model of Cavanaugh
et al. (2002), we may assume that the surround suppression
is initiated by the pooling of information on Pc toward the
null velocity5 on a similar Gaussian distribution but with a
larger size xi. It thus comes

~vm ¼
~vg

1þ
1þC2

C2
i

�g2
i ðdÞ

C2

C2
e
�g2ðdÞ

¼
C2

C2
e
� g2ðdÞ �~vg

1þ C2

C2
i
� g2

i ðdÞ þ C2

C2
e
� g2ðdÞ

with g2
i ðdÞ ¼ 1� exp � d2

2 � x2
i

� �
ð13Þ
4 This is congruous with the ideal observer model since for a given noise,
more information should give a higher estimation of the translation speed.

5 From Eq. (9), this formulation is quite general to explicit that there is a
higher variance at higher eccentricities.
where Ci and xi are similar constants as in Eq. (12). This
relation gives a parsimonious explanation of the ROG
model by explicitly relating the division of the signal by
an increase of pooled measurement variance. This equation
provides a good fit of the behavioral data by tuning the
parameters accordingly to a super-saturation (see Fig. 5,
right). However, this model is still rather descriptive and
further experiments have to be done to explicit the nature
of this suppressive signal.
6. Center–surround integration in the bipartite stimulus

To challenge the possible origin of the surround sup-
pression, we used the bipartite stimuli (see Fig. 6, top)
for the OFR. It is constituted by a central grating as before
but now surrounded by a perturbation of zero net velocity,
the flicker stimulus. This stimulus is defined as the sum of a
grating of speed ~vf plus the same grating in the opposite
direction:

I f
100 ¼ sinð2pf ðx�~vf � tÞÞ þ sinð2pf ðxþ~v � tÞÞ ð14Þ
¼ 2 � sinð2pfxÞ � sinð2pf~v � tÞ ð15Þ

One can see that the corresponding likelihood is a gaussian
centered on the null velocity stretched in the direction per-
pendicular to ~vf (see Fig. 6, left). This signal with null
velocity is similar to the one proposed in the previous sec-
tion for the origin of the suppression. It thus comes that the
integrative probability is a gaussian Nð~vm; rmÞ given by Eq.
(9). It is possible to solve this equation and its analytical
form takes a simpler form assuming that the variances per-
pendicular to the gratings are negligible. It comes for the
vertical velocity:

~vmðCÞ ¼
1

1þ C2
g

C2 ðr�2
p þ cos ðhÞr�2

f Þ
�~vg ð16Þ
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Fig. 6. Center–surround integration in the bipartite stimulus. (Left) To further evaluate the effect of the surround, the bipartite stimuli is defined by a
central grating of diameter dc, surrounded by an annulus of diameter ds filled with a flicker stimulus of orientation h. The flicker corresponds in a first
approximation to a null velocity stimulus but from the aperture problem, it presents an elongated probability profile along this orientation. The grating
varied in contrast, the probability getting broader as noise increased. (Right) Results show that suppression was dependent on the contrast of the grating
and weak for a low flicker contrast. However, the suppression was stronger for a full contrast flicker and shows a dependance of the suppression as a
function of the orientation of the surround as predicted by Eq. (16).
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where h is the angle of the flicker with respect to the central
grating, rf the likelihood’s standard deviation of the flicker,
C the contrast of the central grating and rg its likelihood’s
standard deviation. One verifies that if the flicker is absent,
r�2

f ¼ 0 and the CRF is a standard slope-2 Naka–Rushton
curve as in Eq. (7). A striking aspect of this relation is that
if the contrast of the flicker increases (i.e. r�1

f ), then the
CRF will still be a slope-2 Naka–Rushton but that the only
change is the contrast at half-saturation (as in Fig. 3, left):
the curve will shift to a higher C50 value. This corresponds
to the behavioral data (see the early and late responses in
Fig. 1e) and was observed for various angles h (see
Fig. 6, right).

7. Discussion: beyond the behavioral receptive field

We proposed here a simple formulation for the integra-
tion of elementary information (see Eq. (9)) that we applied
successfully to oculo-motor data for OFR in the primate
(see Figs. 5 and 6). It is based on the normality of the dis-
tribution at the different nodes but more importantly on
the hypothesis of independence for the measurement noise
of the different nodes. This model thus gives a simple model
for the function of spatio-temporal integration in the visual
system as an ideal observer and gives in particular an
account for both subtractive or divisive mechanisms by
relating them respectively to a change across nodes in ~vn

or in variance r2
n. This model is similar to different accounts

on the contrast gain control that appears to be a main fea-
ture of low-level visual areas. First, it is similar to divisive
normalization (Schwartz and Simoncelli, 2001), since it
uses a similar method for computing probabilities, except
that our formulation is more general in terms of the qual-
itative interpretation of the spatio-temporal integration.
Also, this model could be implemented in a simple manner
using a spiking neural network (Perrinet, 2004; Perrinet
et al., 2005) similarly to the feed-forward linear/non-linear
model (Carandini et al., 2005). However, in our case the
non-linearity will be explicitly defined by the nodes’ prob-
abilities and not be set arbitrarily. Finally, this model gives
an account for the results of Cavanaugh et al. (2002) and
are compatible with the ratio of Gaussian (ROG) model
by stating that the ‘‘read-out’’ from the OFR could be seen
as the interaction of two integration fields with different
sizes and polarities. In particular, the introduction of the
surround field is more a descriptive account of the data
and its characteristics may change with the stimulus’ prop-
erties. However, we gave a possible explanation in probabi-
listic terms which may be induced by an increase of noise
with eccentricity.

Nonetheless, the results in the first experiment showing a
super-saturation behavior (e.g. at high frequencies) are
intriguing (see Fig. 5): for a given noise level, after a certain
diameter, integrating on a larger field leads to a decrease of
the response gain. This is in contradiction with the ideal
observer under a general hypothesis, which should always
give a higher gain when more information is present in
the image. To overcome the hypothesis of the existence
of a ‘‘suppressive field’’ as above, which would be more
descriptive than explanatory, we propose that the main
hypothesis of the ideal observer still holds, but that for
these particular stimuli, the information is coded in a differ-
ent way. First, we will explore in future work the influence
of line endings which may have a significant relative impor-
tance, but also the possibility that nodes may propagate
information laterally. As a matter of fact, most natural
motions are rigid and knowing the speed with accuracy
at a certain time, one could predict the accuracy at a latter
time at the predicted change of location. This would break
down the hypothesis of independence that led to Eq. (9) –
where all nodes may be spatially permuted with a random
shuffle – and could account for the fact that for gratings
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with big diameters the mistuning of responses in space, due
to the different selectivity of neurons as a function of eccen-
tricity, would lead to a decrease of total gain.

Reproducible research

Scripts reproducing all figures may be obtained from the
author upon request and on the author’s web-site at http://
incm.cnrs-mrs.fr/LaurentPerrinet.
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