Novel visual computations
Novel visual computations
Home
Featured
Events
Projects
Publications
People
Talks
Grants
BlogBook
Contact
Light
Dark
Automatic
Comment déchiffrer le code impulsionnel de la vision ? Étude du flux parallèle, asynchrone et épars dans le traitement visuel ultra-rapide
Laurent U Perrinet
2003-01-01
Preprint
PDF
Cite
Type
Thesis
Le jury était consistué (de gauche à droite) de Jacky Hérault (Rapporteur), Michel Imbert (Président), Yves Burnod (Rapporteur, absent de la photo), Manuel Samuelides (Directeur de thèse) et Simon Thorpe (Co-directeur de thèse).
lateral connections
rank-order-coding
sparse coding
spike
stdp
Laurent U Perrinet
Researcher in Computational Neuroscience
My research interests include Machine Learning and computational neuroscience applied to Vision.
Related
Dynamical Neural Networks: modeling low-level vision at short latencies
Coherence detection in a spiking neuron via Hebbian learning
Sparse Coding Of Natural Images Using A Prior On Edge Co-Occurences
Adaptive Sparse Spike Coding : applications of Neuroscience to the compression of natural images
What adaptive code for efficient spiking representations? A model for the formation of receptive fields of simple cells
Cite
×