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Coding static natural images using spiking event
times : do neurons cooperate?

Laurent Perrinet, Manuel Samuelides,Simon Thorpe

Abstract— To understand possible strategies of temporal spike
coding in the central nervous system, we study functional
neuromimetic models of visual processing for static images. We
will first present the retinal model which was introduced by
Van Rullen and Thorpe [1] and which represents the multi-
scale contrast values of the image using an orthonormal wavelet
transform. These analog values activate a set of spiking neurons
which each fire once to produce an asynchronous wave of
spikes. According to this model, the image may be progressively
reconstructed from this spike wave thanks to regularities in
the statistics of the coefficients determined with natural images.
Here, we study mathematically how the quality of information
transmission carried by this temporal representation varies over
time. In particular, we study how these regularities can be used
to optimize information transmission by using a form of temporal
cooperationof neurons to code analog values. The original model
used wavelet transforms that are close to orthogonal. However,
the selectivity of realistic neurons overlap, and we propose an
extension of the previous model by adding aspatial cooperation
between filters. This model extends the previous scheme for
arbitrary —and possibly non-orthogonal— representations of
features in the images. In particular, we compared the perfor-
mance of increasinglyover-complete representationsin the retina.
Results show that this algorithm provides an efficient spike coding
strategy for low-level visual processing which may adapt to the
complexity of the visual input.

Index Terms— Vision, ultra-rapid neuronal processing, parallel
and asynchronous computing, temporal spike coding, natural
images statistics, over-complete representation, matching pursuit.

I. A DYNAMIC REPRESENTATION OF A STATIC WORLD

A. The spiking nature of the neural code

SPIKES reveal a paradox in our knowledge of the brain.
Since their discovery, it is known that these brief and

relatively intense peaks of the neuron’s membrane potential
are an almost universal feature of nervous systems. Using the
terminology of signal processing, since they are mostly similar
for all neurons, we may describe spikes as ”all-or-none” events
generated by a non-linear ”explosive” mechanism at the neu-
ronal membrane. Moreover, since the transmission of spikes
between neurons through the synapses is highly reproducible
[2], they are often regarded as the only mechanism for long-
range inter-neuronal communication, the remaining signal in
the membrane potential being ”filtered out”. This neuronal
information, forming a spatio-temporal pattern of spikes, is
then presumably ”decoded” by the neurons’s dendrites —
even along relatively long distances— in a highly parallel
fashion (neurons receive around104 synapses from other
neurons). Finally, these successions of computations are one
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of the core features of the various cognitive processes that
characterize living species. Therefore, spikes seem to provide
a simple universal element for inter-neuronal communication.
But, paradoxically, it is still unclear how these spikes are
interpreted,i.e. what eventual ”neural spiking code” could be
used.
In particular, there is little agreement about the representation
of the information used by the spatio-temporal pattern of
spikes. Following the pioneering work of Adrian [3], classical
theories suggest that each neuron effectively integrates its
inputs by computing a correlation with a previously learned
pattern of synaptic weights and that this analog value is trans-
lated into changes in the frequency of spike firing. Since the
perceptronmodel [4], these models have become increasingly
more complex and now form the very rich and powerful class
of algorithms used in Artificial Neural Networks. These algo-
rithms have many links with other domains from mathematics
to engineering and have been used to solve numerous problems
which were intractable using methods from Artificial Intelli-
gence. However, and in particular in the sub-class of feed-
forward models (i.e. where communication loops are avoided),
remaining information potentially contained in the detailed
spatio-temporal spike patterns of biological neurons is often
ignored. Recently, much progress has been done in focusing
on the temporal course of these complex neuronal systems to
provide dynamic theories of brain functions, particularly by
including feed-back loops [5].
As is revealed by the complex architecture of visual processing
in the cortex of primates, neurons interact through different
dynamic pathways [6] and a growing number of recent theories
of neuronal coding take into account the preciselatency of the
spikesby using dynamic models. These advances are inspired
by recent neurophysiological studies which suggest that the
”deviations” from the classical models may specifically carry
an important part of the information, particularly over short
epochs [7], so that the actual complexity of the response
of biological neuronal populations may in fact mirror more
complex spatio-temporal relations. In fact, some studies have
revealed puzzling aspects of behavior: neurons that form
populations may in some cases keep the same mean firing
frequency but convey different informations by varying the
overall degree of coherency in the population’s spike pattern
[8]. In this paper, we will explore how the cooperation in
time and space of neurons may provide a more efficient
transmission of the information over its temporal evolution,
hence a strategy ofdynamic spike coding.
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B. Constraints on a temporal spike code

One of the most important evolutionary constraints on
the neural code is the need to convey the information in a
fast and robust fashion. In particular, the results of psycho-
physiological experiments which showed the rapidity of cat-
egorization in primates [9] have stimulated the search for
dynamic neuronal models compatible with these temporal
constraints. Therefore, we have developed new paradigms of
neural coding in feed-forward neural networks that include
latency and rank-order based coding [10].
In contrast with detailed neurophysiological models where
spikes are the result of a large number of differential equations
describing the neuron’s behavior, these algorithms focus on the
relative latency of spikes to build a functional temporal code.
To stress this difference, the equations governing neuronal
behavior are reduced to the strict minimum, and we only use
the first ”transient” wave of spikes generated by a parallel
neuronal layer : neurons fire only once and the information is
encoded in the relative latency of spikes of this wave of single
spikes.
In particular, we analyzed the performance of different models
of highly parallel networks of asynchronous neurons. These
neurons consist of simple elementary dynamic ”voting” de-
vices which cooperate to provide on demand a fast or robust
decision. These ideas were implemented in the SPIKENET

model [11] and have proved to be very efficient for pattern
recognition, mimicking the performance of biological process-
ing. Thus, this direction of research proves that a more realistic
model of a temporal spike code does not necessarily need to be
more complex, but rather can exploit all the efficiency of the
parallel and asynchronous structure of biological processing in
the central nervous system. As a result, the rank-order coding
scheme provides an original set of dynamic systems. They
result in a wide class of novel and efficient algorithms that
can be applied to signal processing.

C. Models of ultra-rapid image coding

To study realistic models of temporal spike coding, we will
therefore study here a model of spike coding in a functional
framework. Due to its relative simplicity and to the extensive
research on this part of the brain, we are especially concerned
in this paper with visual processing in the retina. Specifically,
we will be interested in how the information sensed by the
photo-receptors could be efficiently encoded by the spatio-
temporal pattern of spikes generated by the ganglion cells
which then project to the brain via the optic nerve. We
therefore applied and studied models of spiking neurons to
a simple model of information transmission in the optic nerve
using temporal spike coding.
Through this paper, we will use natural static images as inputs.
These are defined as images that are typical of those that occur
in real life and includee.g. outdoor scenes. We will analyze
how the model retina reacts to static flashed images firstly to
follow the protocol of Ultra-Rapid Categorization but also for
the sake of simplicity. A more realistic temporal model would
need to include more complex dynamics including adaptation
and eye movements. Also, this will provide an illustration of

how dynamic algorithms also apply to static stimuli.
In this paper, we will first present the architecture of the model
introduced by Van Rullen and Thorpe [1]. This retinal model
uses a precise wavelet-like transform based on the responses
of ganglion cells to form a complete temporal spike code in
the retina using an orthonormal representation. We will then
evaluate the information transmission through the spikes and
propose some alternatives to this model based on the statistics
of natural images which improves the temporal cooperation of
neurons in time. Then, we will propose an alternative scheme
which complements this model by using lateral interactions
and show how non-orthogonal representations may be used
to build a generic neural code in the central nervous system.
We will discuss the relative efficiency of this in the retina for
growing numbers of neurons. We finally propose a strategy for
a temporal spike code using thespiking eventsas a substrate
for neural computation.

D. Methods of quantitative analysis

To rate the quality of the reconstruction we will use (as in
[1]) the Mean-Squared Error (orMSE) which measures the
mean energy of the difference between the imageI and its
reconstructionIrec over the pixelsl ∈ I where the image is
defined:

MSE(I, Irec) = E[‖I − Irec‖2
2] = E[

∑
l∈I

(I(l)− Irec(l))2]

Although an image reconstruction is biologically not very
realistic, this criterion is particularly adapted for the retina if
we consider it as the lowest level of the visual architecture and
that it should provide a versatile representation. Moreover, the
MSE provides —under the assumption of Gaussian noise in a
linear model of image construction and a uniform prior over
the representation— a direct measure of the log likelihood of
image reconstruction knowing the initial image [12].
Additionally, we will use Mutual Information from informa-
tion theory. It is measured as the mean quantity of information
that can be obtained about one image when the other is known
(for a review, see [13]). It is therefore the sum of the entropies
of the luminance of both images minus the coupled entropy:

MI(I, Irec) = H[I] +H[Irec]−H[I, Irec]

=
∑

l∈I P [I(l), Irec(l)].log(
P [I(l),Irec(l)]

P [I(l)].P [Irec(l)]
)

where H represents the entropy andP the probability.
Throughout the paper the different schemes are rated by
evaluating these measures on a set of randomly chosen images
defined over rectangular grids. These images were chosen in
the publicly available database of linearly calibrated natural
images from Van Hateren as described in [14]. These images
were corrected using aγ correction [15] to assure the balance
of luminance and mimic the analogical response of photo-
receptors to luminosity,i.e. to light intensity.

II. T EMPORAL COOPERATION IN AN ORTHOGONAL

WAVELET ARCHITECTURE

To achieve a comparison with other models, we will define
our model retina as the classical feed-forward two-layered
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(a) Architecture of the spiking model,
(PhRs) linear integration part up to the
Ganglion Cells and (GCs) non-linear spik-
ing layer.

(b) Sample input static
gray-scale image: Lena
at size256× 2565.

(c) Montage of the multi-scale represen-
tation images, from lowest scale (left) to
the highest (in spiral).

Fig. 1. Architecture of the model retina. 1(a) The model retina consist of two layers : an input layer corresponding to the photo-receptors (PhRs) which
transmits the information analogically and linearly to the output layer corresponding to the ganglion cells (GCs). A sample GC neuroni is highlighted in red,
and we showed its center-ON receptive field soma and axon. These ganglion cells produce spikes along their axons (forming the optic nerve). 1(b) The input
of the model consist of static gray-scale images sampled over a rectangular grid (a white pixel corresponding to high luminance) which elicit the activity of
the photo-receptors. 1(c) The model retina induces the activity of the ganglion cells which represents either positive (represented as white pixels) or negative
(black) contrasts at different scales. We represented here for clarity the lowest scale (therefore at the highest frequency) with the left-most image and in a
spiral the progressively down-sampled images of contrast values for progressively higher scales (i.e. lower frequencies). Note that most values are gray,i.e. of
low activity : the distribution of coefficients iskurtotic.

neural network described in [1]. It is characterized by a set of
neurons, the ganglion cells (GCs), sensitive at different spatial
scales to the local contrast of the image intensity detected
at the input layer of the photo-receptors. These GCs then
emit spikes for which we will propose a compact temporal
spike code. These assumptions are unlike the biological retina
which first has a hexagonal sampling but also has a higher
concentration of neurons near the optical axis (the fovea), but
are sufficient to describe as a first step a static retina.

A. Architecture of the linear retinal model: from light to multi-
scale contrast representation

Based on neurophysiological data [16], we assume that this
part of the architecture (and which drives the activity at the
soma of the GCs) results from linearly filtering features of
the luminance distribution. The dendrite of a neuroni may
thus be characterized by its weight vectorφi over the image
and to mimic neurophysiological constraints (total length of
dendrites) and data, these functions are often localized on a
receptive field of limited radius (see Fig. 1(a)). The activity at
the soma of the neuron is the usual dot product :

Ci :=< I, φi >=
∑

l∈Ri

I(l).φi(l)

whereI(l) is the luminance at pixell (see an example input
image at Fig. 1(b)) andRi is here the receptive field of the
neuroni.
For the sake of simplicity and to apply this algorithm with
standard computerized images, the photo-receptors and neu-
rons are placed uniformly over rectangular grids. We also as-
sume that the architecture is both translation independent (that
is that neurons on a same scale are replicated over the different
positions) and also scale invariant. From these assumptions, we
can define a singlemother functionψ from which every filter
can be derived using translation and scaling. If the activity is

computed over all positionsl and scales, the set of activity
values constitute a continuous wavelet transform. A particular
case of a discrete wavelet transform chosen by Van Rullen and
Thorpe [1] is to choose adyadicprogression,i.e. where filter
radius and grid spacing both grow in a geometric fashion as
powers of2. This choice is a particular down-sampling of the
continuous wavelet transform which is particularly frequent in
image processing (see Fig. 1(c)).
As the architecture is defined, an important task is to choose
an appropriate mother wavelet to detect contrasts in the image.
As in [1] and from [17], neurons are defined here according to
their positionlc and scales as dilated, translated and sampled
Mexican Hat(or Difference Of Gaussian — DOG) filters (see
[18, pp. 77], and Fig. 2) as

DOG{s,lc}(l) = 9.Gσ(s)(l − lc)−G3.σ(s)(l − lc) (1)

with Gσ(s)(l) =
1√

2π.σ(s)
. exp(− ‖l‖2

2.σ(s)
) (2)

where we denoteGσ(s) as the Gaussian function of variance
σ(s) which itself depends on the scales. As suggested by
wavelet theory, we setσ(1) = .5 for the mother wavelet
that defines scale1, so that at scales (and up to maximal
scale smax), σ(s) = 2s−2. At scale s, the activities of the
ganglion cells are calculated over the down-sampled gridDs =
{(x, y) = (2s−1.i, 2s−1.j)} where(i, j) are natural numbers.
The multi-scale representation therefore constitutes adictio-
naryof filtersD =

⋃
1≤s≤smax

Ds placed on progressively more
widely spaced grids, hence the name of apyramid transform,
the lowest scale being the base. The total number of neurons
is thus proportional to the number of pixels by a factor ofχ =
1+(1/2)2+. . .+(1/2)(2.smax) =

∑
i(1/2)2.(i−1) = 1−(1/2)smax

1−(1/2)2

that is approximatelyχ = 4/3. Instead of differentiating ON
or OFF cells (so that the number of neurons is doubled), we
will consider for simplicity and because it is exactly equivalent
that each neuroni is assigned a polaritypi which is either+1
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(a) Image of a DOG filter
contrast detector.
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(b) Slice of the retinal filter
along the axis.

Fig. 2. Linear filters in the retina. The DOG filter in II-A is a center-OFF
surround-ON contrast detector. As a unit measure, the vertical striped lines
in 2(b) represent the variance of the narrower Gaussian used to generate the
DOG filter and thus corresponds to the center of neighboring filters.

or −1, so that the coefficients are rectified (i.e. |Ci| = pi.Ci).
These filters resemble the receptive fields that can be observed
in the biological retina [19]. However, they may be difficult to
implement since first they decay slowly, but also it is necessary
when sampling filters on the rectangular grid to correct them
in order to avoid artifacts and to assure that the sum of the
filters’ coefficients is zero. From the Calderón formula, the
wavelet transform may be inverted and in our case the image
may thus be reconstructed by the coefficients’ values simply
by

Irec = K.
∑

i∈D
Ci.φi

where K is a constant dependent on the filters which for
simplicity is set to 1. In this architecture, the filters form an
approximateorthogonal wavelet transform[18] of the image,
i.e. the responses of different fibers are uncorrelated (that is
< φi, φj >= 0 for i 6= j). Note that it can be proved that this
relation is here only approximate and that the reconstructed
image is blurred. This blur is characterized by a ”point spread
function”1 of the response :

Irec = I ∗ PSF with PSF =
∑

1≤s≤smax

1
σ2

s

< φσs
, φσs

>

This linear layer therefore exhibits two problems : first, the
reconstruction is approximate and second, its implementation
may be computationally slow because the size of the filters can
become very large. A common solution is to use a Laplacian
pyramid as defined by Burtet al. [20]. This transform uses
a bijective down- and up-sampling scheme to simulate the
convolution by the larger filters by using recursive filtering
and a sub-sampling algorithm. This transform is still linear and
the image may similarly be reconstructed as a linear combi-
nation of the filters by using the coefficients of the pyramidal
transform. Moreover, this transform is computationally more
tractable and since it is orthogonal, the reconstruction of the
image is perfect. Here, we will at first use and compare both
methods.
Finally, during this linear stage, a static image is transformed

1Similarly as in optics, this is the response of the whole system (coding
and decoding) to an impulse, here to the image of a single pixel at luminance
1. From the linearity of the transform, it proves the assertion.

by the linear model into a multi-scale representation of con-
trasts (see Fig. 1(c)). These analog values are theoretically
sufficient to reconstruct the image and under the assumption
of orthogonality, this representation which is often used in
image processing algorithms, provides a compact code of the
image,i.e. one in which the number of significant coefficients
is relatively small.

B. Analog to latency coding: ranking multiscale contrasts
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Fig. 3. Analog to latency coding. (A) We simulated a detailed Hodgkin-
Huxley model neuron with steps of increasing activity. The neurons generated
spikes (when reaching a threshold potential of∼53 ms) with a frequency
proportional to the activity which is revealed by the inverse latency between
2 spikes. (B) Similarly, there is a direct relation between the input (the rectified
contrast in our model retina) and the latency. Above a threshold, the spike’s
latency is increasingly shorter for progressively higher input activities.

When presenting an image at an initial time, each neuron
of the model integrates the analog contrast information at its
soma until it eventually reaches a threshold: it then emits a
spike. As in most models of neuronal integration, we will
simply assume that the stronger the activation, the earlier the
cell will reach the threshold. Such behavior happens in most
biological neurons and can be be implemented by both detailed
(see Fig. 3) and more simple models such as the Integrate-
and-Fire neuron [21]. Finally, the spike then propagates along
the axon and the neuron’s activity is reset. Classically, this
generates a pattern of spikes whose instantaneous frequency
may constitute the image’s code. But the code may also be
equivalently carried by the exact spiking time (orlatency) of
the first spike. We may thus consider only the first spike, so
that the code exactly consists of this latency for each of the
different fibersi and which is inversely proportional to the
neuron’s excitation current,i.e. to the corrected activity. This
algorithm defines a coding scheme that transforms an analog
matrix pyramid into a spike ’wave front’ that travels along the
optic nerve.
Using this framework, the coefficients are emitted and trans-
mitted in order, starting with the highest rectified contrast.If we
know exactly the corresponding contrast values when trying
to decode the spike wave, we may reconstruct progressively
the image by

Irec(t) =
∑

r=1...t
Co(r).φo(r)
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Fig. 4. Progressive reconstruction of the image from the ranked linear multi-
scale representation. We plotted the Mean-Squared Error (MSE, logarithmic
abscissa scale) and the Mutual Information (MI) of the progressive reconstruc-
tion using theexact transforms’ coefficients ranked from the highest energy
to the lowest. We compared the method using a discrete wavelet transform
(Wav) and a Laplacian Pyramid scheme (Pyr). It should be noted that this
latter method provides at the end of the propagation an exact reconstruction
of the image and the Mutual Information therefore converges to the mean
entropy of the images in the database.

where t is the corresponding discrete time corresponding to
the count of fired spikes (i.e. their rank) that we use for the
reconstruction ando(r) is the address of the neuron of rankr.
In fact, if we assume that the filters are orthonormal and from
Pythagoras’ theorem, sinceo is a permutation of the addresses
of neurons, the squared errorSE(t) at time t is simply:

‖Irec(t)− I‖2 = ‖
∑

r=1...t
Co(r).φo(r) −

∑
i
Ci.φi‖2

= ‖
∑

r=1...t
Co(r).φo(r)

−
∑

r=1...rmax

Co(r).φo(r)‖2

= ‖
∑

r=t+1...rmax

Co(r).φo(r)‖2

SE(t) =
∑

r=t+1...rmax

|Co(r)|2 (3)

wherermax is the final time (and therefore corresponds to the
total number of rectified coefficients). From Eq. 3, this strategy
of coefficient propagation corresponds thus to a ”greedy”
minimization of the MSE at each step of the algorithm.
This also leads to the convergence ofIrec(t) toward Irec
(and therefore toI for the Laplacian Pyramid), leading to a
progressive compact coding of the image (see Fig. 4).

C. Interpreting ranks as activities : a cooperation in time

But, how can this information be encoded and decoded
using only one spike per axon? Van Rullen and Thorpe [1]
have shown that these values observed regularities across
natural images as they were ordered from the largest to the
lowest. A solution is therefore to use the mean analog value
to form a Look-Up Table(LUT) to decode the analog values
back from their rank. They thus defined

LUT(r) = E[|Co(r)|] (4)

whereE denotes the average over a set of randomly chosen
images from the database2. Then, we can reconstruct the image
from the spike list using

Ĩrec(t) =
∑

r=1...t
LUT(r).po(r).φo(r)

2Further averaging or learning schemes used here 200 randomly chosen
images.

whereĨrec(t) is the image reconstructed using the spikes rank
at stept and po(r) the polarity of neuron corresponding to
the rth spike. Using the orthogonality of the filters, the error
SELut(t) is therefore using a same method as above (see Eq. 3)

‖Ĩrec(t)− I‖2 = ‖(Ĩrec(t)− Irec(t)) + (Irec(t)− I)‖2

= ‖
∑

r=1...t
(LUT(r).po(r) − Co(r)).φo(r)

+
∑

r=t+1...rmax

Co(r).φo(r)‖2

SELut(t) =
∑

r=1...t

(LUT(r)− |Co(r)|)2 + SE(t) (5)

The reconstruction error is therefore the sum the quantization
error added to the energy that has not yet been transmitted.
Eq. 5 also justifies the choice of the LUT as the mean
(see Eq. 4) since it is the optimal estimator for the rectified
coefficient as a function of its rank in the MSE metric.
Neurophysiological mechanisms for producing this decrease
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Fig. 5. Look-Up Tables(LUTs) for decoding the analog value corresponding
to a spike. These LUTs correspond respectively on the left to the average of
the rectified contrast as a function of the rank and on the right to a mean
of the same coefficients but weighted and normalized accordingly to provide
a more robust regularity. The filled-in regions correspond to the variance of
these measure and will be directly linked to the MSE of the reconstruction.
The weighting process provides thus a better spike representation of the
coefficients.

of the coefficients over time were discussed in [1] and may
involve a set of separate neurons —interneurons— using
shunting inhibition [22]. We propose here that since these
”rank counter interneurons” could be tuned used an incre-
mental adaptive rule with an on-line hebbian learning scheme.
This rule takes the form of a stochastic algorithm so that after
coding thenth image usingm(n) as a modulation function,

m(n+1)(r) = (1− µ(n)).m(n)(r) + µ(n).|Co(r)|

where t is as before the discrete time corresponding to the
decomposition andµ(n) (typically, µ(n) = 1/n) the stochastic
learning gain. In practice, this is exactly equivalent to the
averaging algorithm (see Eq. 4) and thus leads to a similar
reconstruction error. A more realistic biological implementa-
tion would consider the limited receptive fields of these inter
neurons, leading to a measure of the local rank, but although
this would lead to interesting results, it is computationally very
demanding. It should be noted that the rectified coefficient
|Co(r)| has yet to be transmimtted and it can be computed
over a longer time scale with for instance the mean frequency
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of firing. This mechanism provides thus an adaptive and com-
plete mechanism for a temporal spike code using a temporal
cooperation.
This algorithm transmits rapidly and in a robust fashion the
image by using the rank of the neurons, and it is in this
task superior to other temporal spike coding strategies such
as frequency coding [1]. However, one may notice that the
variance of the LUT is relatively high and especially for the
first spikes,i.e. for the most important spikes. Since we saw
that the reconstruction error is proportional to this variance
(Eq. 5), a better strategy is to give more importance for the
first ranks. In practice, we used a logarithmically decreasing
”gain” function:

m(n+1)(r) = (1−µ(n)).m(n)(r)+µ(n).|Co(r).(1−log(
r

rmax
)|

The resulting LUT yields less variance especially for the first
spikes (see Fig. 5) which leads to better convergence and
improved image transmission (see line ’LUT’ in Fig. 8).

D. Distribution of the singularities in whitened natural images

One may wonder why this regularity occurs in natural im-
ages. In fact, when analyzing this regularity separately for the
different scales, we proved that the coefficients of particular
scales are not well tuned to the overall LUT (see Fig. 7-
Left) and thata priori the coefficients corresponding to the
lowest frequencies have a higher probability to be transmitted
first whatever the image to be coded [23]. From the ”donut”
shaped Fourier transform of the DOG filters, it is easy to see
that there is a direct correspondence between the activities of
the neurons at a given scale and the Fourier components of
the image at a certain frequency. The mistuning of neurons at
different scales thus corresponds in Fourier space to the shape
of the mean power spectrum function. Over natural images,
it is known to decrease in1f2 [17], a result from correlations
between the luminances of neighboring pixels. We therefore
applied a decorrelating kernel as defined and computed by
Atick [24] to the input image. Note that this re-normalization
according to the scale (or temporal frequency) leads to a
different distribution of the Fourier components in the spatial
frequency space: the image’s power spectrum distribution is
”spherized”. At the same time, we can derive a new measure of
the image reconstruction error based on this renormalization,
that we denote as theWeighted Mean Squared Error(or
WMSE) and which leads to a new distance between images.
The WMSE appears to be more correlated to a subjective
measure of distances between images (see Fig. 6), and since
there is a non-uniform prior in the energy of coefficients as
a function of temporal frequency, it corresponds in fact to
the Mahalanobis distance [25] applied to our set of natural
images. It removes some of the disadvantages of the MSE
measurement, such as its dependence to a constant component
and provides thus a new criteria for image reconstruction.
Back to the linear model, this decorrelation process corre-

sponds simply to a pre-process of filtering by the decorrelating
kernel. In our model it would correspond to the introduction
of a layer between the photo-receptors and the ganglion cells
that mimics the behavior of the horizontal and bipolar cells in

Rank (%) Rank (%)

Fig. 7. Optimization of the regularity of the wavelet coefficients with
harmonized scales. The LUT is shown at the background in plain color as a
function of the rank in% using a logarithmic scale on the abscissa. When
separating the LUT for the different scales (from lowest to highest :s1 to s7
in the legend), one may observe that they correspond to similar regularities
—linked to the regular distribution of singularities at different scales— but
are mistuned (lower frequencies, as the7th scale ’s7’ are stronger and thus
decrease more rapidly as a function of the overall rank). These regularities
are therefore lost and mixed when ranking all scales together. By normalizing
the different scales according to the statistics of natural images, the ”vote” by
the ranking process becomes ”fair” and the LUTs for the different scales can
be made to match. The resulting LUT for harmonized scales preserves the
underlying regularity and information transmission is therefore more robust
(see Eq. 5): it represents a more effective way to encode the analog value by
the rank of a spike.

the retina and results in modifications in the spatial frequency
tuning of cells [19]. Since the scales are tuned, rectified
coefficients follow a very regular linear decrease (see Fig. 7)
in the log-linear plot, starting at rank 1 to a value proportional
to the mean energy in the image and ending at the final
rank at zero. It suggests the existence of a relation of the
rectified contrast value as a function of the logarithm of the
relative rank. We therefore used a similar averaging rule for
the LUT (Eq. II-C) function which resulted in a more regular
function. From Eq. 5, and since this leads to less variance, we
are thus assured that this regularity results in more effective
information transmission.
In fact, this regularity may be linked to the distribution of
Lipschitz exponentsin natural images. They correspond to a
measure of the order of the singularities which are present
in the image, and that can be qualitatively ranked from the
highest to the lowest Lipschitz exponents as : isolated dots,
lines, edges, slopes, gradients until uniform surfaces. In our
framework, since this multi-scale contrast representation gives
a local measurement of the Lipschitz exponents in the image
(see [26], [18, p.513]), we can qualitatively link the definition
of its valuez with our model:

γ(z) = −d log x(z)
d log z

where herez = r
rmax

is the relative rank andx(z) = |Co(r)|
is the activity of neurons as a function of the rank3. When
studying whitened natural images, we can observe that after
normalizationx ∼ − log z and therefore that the propagation
scheme ranks singularities from their highest order to their

3Since the energy of the image is equal to the sum of the squared
coefficients, this constraint may be used to introduce a renormalization of
x. In general, we verified at the start of each propagation that the total energy
was equal to 1.
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or. BA

EC D

Fig. 6. Subjective distance between images. We added to an image(Or.) different noises which are characterized by the envelope of their spectral energy
to obtain 5 new noisy images(A) to (E) deviating from the original. Comparing the results for the Mean Squared Error and for the Weighted MSE, we may
rank the quantitative distance of the noisy image compared to the original : for MSE closest to noisiest, we obtain A, B, E, C et D whereas WMSE provides
D, E, A, B et C. This harmonized distance is more robust to changes at low frequencies and corresponds to a more subjective measure of the noise added to
an image,i.e. to a distance between images (see e.g. the zebra’s ear).

lowest with a regular distribution.
The same was already observed for un-whitened (”raw”)
images after a certain rank (see [18, p.513]). We may in-
terpret the relative regularity of the distribution of Lipschitz
exponents physically as (1) the whitening process removes
the correlations between spatial frequencies due to size and
depth of objects [27], (2) then, the distribution of complexity
of shapes and textures of objects in nature is regular. This last
point is linked to the inherent properties of auto-similarity [28],
[29] in images. In a generative model framework [30],i.e. in
which we assume that all natural images may be generated
by a probabilistic model, this result suggests that singularities
are chosen with a characteristic probability: it is therefore
an important feature of natural images corresponding to an
important measure of the distribution of complexity in the
image. It corresponds to a high level parameter that can be
used to generate the coefficients for the whole set of natural
images whereas the ranked listo of events’ addresses would
correspond to the realisation of this particular image4. This
generative model approach justifies the use of the LUT in the
algorithm since it corresponds to a physical interpretation of
the visual input.
But as we now ranked the coefficients according to decreas-

ing Lipschitz exponents, and since low frequencies seem to
providea priori information that is physically closer and thus
more useful for rapid categorization, we may still want to prop-
agate the coefficients according to their energy,i.e. propagate
the lowest frequencies first. In fact, since the use of normalized
filters already provides this feature, this was accomplished
in the model of Van Rullen and Thorpe by the fusion of
(1) the use of the regularity as a function of the rank of
coefficients to code coefficients with analog values with spikes

4Inversely, a desired distribution of exponents can be generated with a
particular modulation of coefficients as a function of the rank.

exact
wLUT

LUT

0 20 40 60 80 100
Rank (%)

MSE MI
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0.010.1 1 10 100
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Fig. 8. Progressive reconstruction of the image from the spike list using
rank-order coding. We plotted the Mean-Squared Error (MSE, logarithmic
scale on the abscissa) and the Mutual Information (MI) using the different
temporal spike codes described in the text. We compared the results of the
propagation when knowing the coefficients (exact) with the method described
in Eq. 4 (LUT) which uses an optimized Look-Up-Table to ”guess” the value
of the coefficients from their rank. Finally we compared these strategies to
the optimized method that uses the regularity found in natural images through
the statistics of natural images (wLUT). The reconstruction from this latter
method is close to the method with exact values and proves that the analog
values may be transmitted using rank order coding. It therefore constitutes a
compact spike code which provides a simple implementation of rank-order
coding for static images.

(2) the ranking of the information carried by neurons according
to their importance for the progressive propagation of the
information. However, we have shown that this is incompatible
with the regularity in natural images and we will overcome
this problem by separating these two ranking processes. As is
implemented in the retina by the differentiation between the
Magno- and Parvo- cellular pathways, low and high spatial
frequency bands show different mean latencies, the neurons
from the Magno-cellular pathway being significantly faster.
Similarly, we can still rank the weighted coefficients (in
WMSE metric) to produce a highly regular LUT (as in Fig. 7-
Right), hence a better transmission of the coefficients but now
rank the propagation of the coefficients according to their
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energy (in MSE metric) so as to choose the order in which
the spikes are emitted (therefore using a similar algorithm as
the first scheme). In a probabilistic inferential model, this will
correspond to the inclusion of a gain for low frequencies when
in the context of rapidly detecting an animal. This scheme
results in improved transmission of the image with a result
that is close to the reconstruction using the exact coefficients
(see Fig. 8, line wLUT).
As a conclusion for this model, we have provided a general
scheme for temporal spike coding using the relative rank
and using the statistics of natural images. Practically, the
scheme uses two parallel sorting mechanisms, one based on
the regularity of the distribution of Lipschitz exponents and
the other based on the progressive transmission of the parts of
the image starting with the most informative. Together, they
provide an algorithm that can efficiently decode the analog
values corresponding to each spike using only the rank order
information. This proves that this strategy can build a complete
and efficient code from the retina (analog to spike coding)
which can be decoded (spike to analog coding) using solely a
temporal cooperation between the successive neurons that fire,
i.e. a rank-order codingscheme [9], which provides a compact
temporal spike codein the retina.

III. N ON-ORTHOGONAL REPRESENTATIONS, TOWARD A

SPARSE TEMPORAL SPIKE CODE

A. Orthogonal vs. non-orthogonal representations

The condition on the filters for a perfect reconstruction
—i.e. the orthogonality of the dictionary used to represent
the image— is a strong constraint on the architecture and
is achieved only approximately with the model presented
in [1], resulting in a small information loss. Moreover, in
the biological retina, the architecture is not dyadic and real
neighboring neurons can often have correlated responses and
the previous model would result in a redundant representation.
This condition is therefore too restrictive in order to build a
biologically reasonable model of the retina where the response
of neurons depend upon the activity of neighboring cells [31],
that is where they may cooperate spatially. Such restrictions
would be even more problematic if we wanted to apply the
same spike coding algorithm to cortical models as the primary
visual cortex where the interdependence is even stronger.
In fact, in order to code the image with a linear generative
model, we may want to use anover-complete representation
of the image,i.e. one which the number of filters is far greater
then in the previous model. Such representation result in a
sparse code, i.e. one in which the absolute values of the
underlying linear generative model decrease rapidly [30]. But
mathematically optimizing the linear generative model leads
to a combinatorial explosion of the freedom of choice of the
filters and of their corresponding coefficient values (it is a
NP-hard problem [18]).

B. Spike coding using a Matching Pursuit : adding spatial
cooperation to rank-order coding neurons

Another strategy is to use aMatching Pursuit(MP) [18,
pp.412–9] algorithm, which is derived from a statistical es-
timation algorithm that has also been extended to wavelet

theory [32]. The idea is that we have to account for the
correlations between filters and we therefore need to build up
lateral interactions to cancel the correlation whenever a filter
is selected. The MP algorithm decomposes the image over a
large arbitrary dictionaryD by iteratively choosing the best
match and then removing the orthogonal projection of this
match.
In this progressive scheme, let us first set the initial image
I0 = I and activitiesC0

i = Ci at the initial timet = 0. Then,
we determine the first neuron in the layer to fire as the one
with the highest activation (see Fig. 3):

i0 = ArgMaxi(|C0
i |)

For this indexi0 (the addressof the neuron), we define the
corresponding extremal contrast valueC0

i0 . Since we have
found the best match in the sense of the projection of the
image on the dictionary, we can subtract the projection of this
match φi0 (with norm Ni0) to I0 in order to define a first
residualI1 at time t = 1:

I1 = I0 − < I0, φi0 >

‖φi0‖2
.φi0 = I0 −

C0
i0

Ni0
2 .φi0

The activity becomes at the same at timet = 1:

C1
i =< I1, φi >= C0

i −
C0

i0

Ni0
2 . < φi0 , φi >

This defines a spatial cooperation of the winning neuron to the
correlated neighboring neurons. Note that in a neurophysiolog-
ical model, we do not need to update the image’s intensities
(backward propagation) because we can directly modify the
activity in the adjacent neurons using a lateral propagation.
We therefore associate to each spike a lateral interaction
< φi0 , φi > which accounts for the selected spike. Note in
particular thatC1

i0 = 0, i.e. the activity corresponding to the
best match at time0 is totally cancelled at time1 (see Fig. 9).
Iterating these steps, we may repeat this algorithm to obtain
successive residual activities at the discrete timest defined by
the exact spiking times. The progressive reconstruction is then
simply at time stepT :

Irec(T ) =
∑

t=0,...,T

Ct
it

Nit
2 .φit

This algorithm is exactly equivalent to MP for normalized fil-
ters (Ni = 1) and presents the same computational complexity
and properties [18, pp.412–9]. In particular, the convergence
of the reconstruction is guaranteed [18, p.414] under the con-
dition that the dictionary is at least complete5. It is important
to note that since we subtract the projection, the residual
image is orthogonal to the winning filter, a property which
produces a similar relation for the MSE as for Eq. 3 although
filters in the dictionary are here generally not orthogonal. The
MP scheme thus provides a similar representation as before
but avoids redundancies between the events representing the
information. With an over-complete dictionary, this coding

5In fact, an over-complete dictionary may be incomplete,i.e. when the
space generated by all linear combinations of the dictionary’s vectors does
not recover the input space. But, in our case these the chosen dictionaries at
least include a complete basis.
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f0 wi i0 < wi0;wi >

Fig. 9. Principle of spike coding using a matching pursuit scheme. We represented a layer of neuronsi sharing some similar inputs on their synapses
(black dots) according to given synaptic weights~wi. The idea is to select at a time stept the neuronit corresponding to the maximal activity and to elicit
a spike along its axon. Using a matching pursuit scheme, we may then directly account for the correlation between filters by subtracting from the other
neurons an amount of activition proportional to the correlation< ~wit , ~wi > between their weight vector and the weight vector of the chosen neuron. The
algorithm is then resumed at the next time step with the choice of a new winning neuron. This spatial cooperation —the firing of one neuron is accounted
in correlated neurons— is then recursively repeated to the neuron corresponding to the maximal updated activity and until the maximal activity is less than a
given threshold. The spatio-temporal spike pattern will therefore represent the input signal and may be reconstructed by a simple linear rule (see Eq. 6).

strategy provides a sparse representation of the signal: the
number of coefficients needed to describe the image is much
lower than the dimension of the input space.
As with the wavelet transform, it may be similarly translated to
a spike coding scheme by associating to each step the firing of
a spike and by evaluating a LUT, so that the coding algorithm
is simply for t ≥ 0,{

it = ArgMaxi∈D(|Ct
i |)

Ct+1
i = Ct

i − pt.mt.
<φit ,φi>

Nit
2

with mt = E[|Ct
it |] and pt is the sign ofCt

it (i.e. its ON or
OFF polarity). The reconstruction is then simply

Irec(T ) =
∑

t=0,...,T
pt.mt.

φit

Nit
2 (6)

In comparison with a wavelet decomposition, since the choice
of thenth filter depends on the spike list for the previous times,
this transform is non-linear. In particular, it is not possible
to directly use Eq. 5 since the residual is not necessarily
orthogonal to the inhibition. Rather, the quantization error
is added to the residual image and may therefore be coded
in following spikes : the propagation is adaptive and the
quantization error does not necessarily add up monotonously
as in Eq. 5.

C. Rank Order Coding with Matching Pursuit in the retina

To compare this algorithm with the model of Van Rullen
and Thorpe [1], we kept at first the same dyadic architecture
and observed the behavior of the values for the absolute
coefficients as a function of the rank of propagation for
different natural images drawn from a database of indoor
and outdoor scenes. As in the previous model, we observed
regularities across natural images that were again sufficiently
stable to allow the use of a Look-Up Table (LUT) in order to
decode the analog value by its rank. In particular, we observed

the same regularity of singularity distributions when whitening
the image by appropriately tuning the norm of the filters as a
function of their scale.
Using the mean absolute coefficients as a LUT, we thus

  0%  50% 100%
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Adapt

Rang

(A)

  0%  50% 100%
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Lut

Adapt
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Fig. 10. Rank Order Coding with Matching Pursuit in the model retina.
For the architecture defined in [1] we calculated(A) Mean Squared Error
and(B) Mutual Information of the reconstruction as a function of the relative
rank (the percentage of the number of spikes fired to the total number of
neurons) for the different coding strategies, comparing (Theo) the theoretical
reconstruction from the orthogonal wavelet coefficients, (Lut) the Orthogonal
wavelet coding using a Look-Up Table as in [1] and (Adapt) the Matching
Pursuit with on-line learning (the image database consisting of 100 images to
learn the modulation function and 100 images to measure the reconstruction
error). The adaptability of the MP algorithm enhances the transmission of the
image and proves that the relative order of the action potentials could be used
as a code in the optic nerve.

built a mechanism of reconstruction from the spike list, but
as opposed to [1], this algorithm is adaptive and therefore the
error may be compensated dynamically, as opposed to Eq. 5.
Though filters are almost orthogonal (so that lateral interac-
tions between filters —i.e. their correlation— are relatively
low) the MP algorithm introduces a gain in both the sparsity
of the coefficients and in the reconstruction quality (Fig. 10).

D. Is the spike representation over-complete in the retina?

But now, considering the same spike coding scheme, we
may ask whether an increase in the number of filters used
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Fig. 11. Is the spike representation over-complete in the retina? (Left) We
compared the progressive transmission of information for different degrees of
over-completeness in the retina by plotting the average MSE of the residual
as a function of the information to code the spike list (in logarithmic scale,
propagation up to12.5% of the relative rank for clarity). The set of neurons
used rotation symmetric Mexican hat filters, with scales from layer to layer
growing asρ = {2,

√
2, 4√2, 8√2} (and denoted on the legend respectively

as 1, 2, 4 and 8). As a comparison we plotted the method used in the first
part of the text (line ’Wav’). As a function of rank, the MSE decreases more
rapidly for increasing degrees of over-completeness. (Right) But if we plot
the trade-off of MSE with CPU usage as a function of the over-completeness,
we find that for the same amount of information the adaptive dyadic strategy
is optimal.

to describe the image can enhance the representation,i.e. if
there would be an advantage to using an over-complete spike
representation in the retina. We thus compared the sparse spike
code for different degrees of over-completeness by choosing
alternative progressions to the standard dyadic scale. The
filters are thus defined as above, but the image pyramid now in-
cludes respectively{1, 2, 4, 8} scalesper octave, i.e. the scale
level characteristic variances now grow asσ(s) = σ(1).ρs

wheres is the scale index andρ = {2,
√

2, 4
√

2, 8
√

2}.
These experiments proved that as the number of neurons
increased, the coefficients decreased more rapidly as a function
of the relative rank and also the MSE. This behavior is
understandable, because choosing a higher number of fil-
ters allows the construction of a more fine grained multi-
scale representation of the image. In fact, the number of
neurons is multiplied by a factorχ = 1 + (1/ρ)2 + . . . +
(1/ρ)(2∗smax) =

∑
i(1/ρ)

2∗(i−1) = 1−(1/ρ)smax

1−(1/ρ)2 that is approx-
imately χ = (1 − ρ−2)−1. This results in our different cases
to an over-completeness of respectively{4/3, 2, 2 +

√
2 ∼

3.41, 1/(1−1/ 4
√

2) ∼ 6.28}. The information (in bits) needed
to code the address of each spike (position and scale) is thus
log2(npixel) + log2(1− (1/ρ)2) + 1 (npixel being the number
of pixels and one bit being allocated for the polarity). We
may therefore compute the performance of the coding scheme
in terms of the mean decrease in MSE as a function to the
number of bits necessary to code the spike list (see Fig. 11-
Left). However, the situation is different if we compare the
trade-off between efficiency (MSE decrease) and the compu-
tational complexity (we assumed here that the CPU usage is
proportional to the number of neurons). We obtained different
results as a function of the degree of over-completeness (see
Fig. 11-Right) and so conclude that under this constraint, the
adaptive dyadic architecture would be optimal in the retina.
This appears to be mainly due to the nature of DOG filters

(and to circularly symmetric wavelet filters in general) which
to a certain extent overlap too much and does not capture
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Fig. 12. Spike coding in the Retina and in V1.(A) We computed recursively
the LUT for the model adaptive dyadic retina and for the model of V1. In
comparison with the retina, the coefficients decrease very rapidly for the model
V1. (B) MSE for the corresponding progressive image reconstruction (using
logarithmic axis) defined by using this spike code. This proves that we defined
an efficient visual code in V1 using an over-complete set of Gabor filters and
which leads to a model of a sparse spike code.

any new information. In fact, the evolution of the retina is
certainly constrained by its function, so that the argument
may be reversed. First, the retina plays a key role in the
visual pathways since it is the first processing layer : it is
therefore very demanding in terms of robustness and the
neurons are highly active. Moreover, the eyes are in wide range
of living species are mobile elements which permit the active
exploration of the visual environment. Thus, the number of
neurons in the retina is presumably limited not only by the
total energy it can devote but also by physical restrictions such
as the size of the optic nerve. Since this number is limited (its
over-completeness is limited), the representation may only use
more general filters. Simulations of filter emergence in this
framework (described in [33]) show that for a small number
of filters, the optimal filters converge to contrast selective
detectors (unpublished data). It is therefore interesting to study
the case in the primary visual cortex where the situation is
different: the information is there multiplexed and filters may
be selective to different orientations.

E. Over-complete representation in the primary visual cortex:
Sparse spike coding

Simple cells in V1 are known to exhibit a preference for
oriented filters and we will here briefly present a model
of over-complete representation using a dictionary of Gabor
filters to compare the time course of temporal spike coding
with coding in the retina. In comparison with the retina, the
over-completeness in V1 is far greater (in humans the number
of ganglion cells is of the order of one million whereas for V1
this number reaches at least300 million). In order to model
the simple cells of V1, we used the spike coding scheme (as
described in [23]) with a set of weight vectorsψj defined
as dilated, translated and sampledGabor filters (see [18, pp.
160]). The scale grows geometrically with a factorρ = 5

√
2

(i.e. 5 layers per octave) over8 octaves and the preferred
orientation is circularly0, π/4, π/2 and3π/4.
As described in [23], the LUT were generated in the same

manner (see Fig. 12) and provided an efficient representation
of static images. Moreover, the location of spike firings
corresponded with the location of edges at different scales and
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order of singularity in the static images providing a dynamic
2 1/2 sketch of multi-scale contours. The resulting distribution
of the coefficients is more kurtotic than in the retina (i.e. it
decreases more rapidly toward zero). Since the number of
filters is higher, the information rate —i.e. the information
needed to code the address of one spike— is now in this layer
∼ 16.1bit/spike. However, convergence is quicker so that this
code may be compared with JPEG at high compression gains
as shown in [23]. This therefore defines asparse spike coding
scheme in V1 (Fig. 12).
This brief description shows that the use of more complex
filters may yield more efficient representations. Moreover, we
proved that these filters could also be learnt using a simple
hebbian learning scheme [33] leading to an adaptive scheme
that can code natural images optimally. However, the optimal
set of filters for V1 is still unknown, nor do we know the
optimal degree of over-completeness for the dictionary (how
many scales per octave? how many different orientations?).
This open question needs first to solve the actualfunction of
V1 constrained by its structure. In fact, V1 —as the most of
the cortex— is organized in 6-layered structure of elementary
cortical columns which could provide a hint to the particular
mechanisms underlying cortical processing. In particular [12]
suggested that these highly inter-dependant columns may
implement a basic mechanism of inference, the whole system
predicting future outcomes on the basis of the current input,
the internal state and the expected gain predicting future states.

CONCLUSION : TOWARD DYNAMIC SPARSE SPIKE CODING

We presented and analyzed here strategies of temporal spike
coding that emphasize the transient response of the neurons
and showed how an event-based temporal code could be
implemented using a rank-order scheme by the use of both
temporal and spatial cooperation. In particular, we mathemat-
ically analyzed the model presented by Van Rullen and Thorpe
[1] which is based on an orthonormal wavelet representation
and proposed strategies to improve the performance of the
temporal cooperation used to code the information as a rapid
spike wave. Moreover, by taking into account the statistics
of natural images we have shown how regularities in the
distribution in the order of the singularities in whitened natural
images can be directly used to improve this spike-based code
by providing two separate ranking strategies: one to precisely
decode spikes as a function of their rank and a second that
propagates the most useful information in the most efficient
way.
We further extended this model to a model of sparse spike
coding using arbitrary representations by implementing lateral
interactions which favor cooperations between neurons. We
showed how this code is superior in the retina thanks to its
adaptability, but also compared architectures with increasingly
more over-complete representations. While a more precise
sampling of the wavelet space provided more accurate rep-
resentations, the adaptive dyadic transform appears to provide
a near optimal compromise between efficiency and cost of
computation. However, the use of more complex filters in
higher cortical areas suggests that an over-complete dictionary

can provide a computational gain. In particular, simulations
with Gabor filters provided a temporalsparse spike coding
representation of the image which can be used to model V1.
However, it seems still unclear if the chosen architecture for
V1 is optimal in terms of the compromise between rapidity,
precision and cost of computation.
This scheme provides a simple algorithm for image processing
which proves to be very effective and that can be used in
parallel algorithms such as SPIKENET [11]. It shows specif-
ically that in the model V1, the use of lateral interactions
by to reduce redundancies could provide a speed-up of the
processing compared to an orthonormal feed-forward scheme.
A particularly interesting extension of this scheme, would
be first to introduce mechanisms described by Bullier [6]:
the spiking information from one layer or one sub-layer can
modify the sensitivity of neurons in another layer or sub-
layer to account for the information already propagated. For
instance, the rapid activity of neurons in the Magnocellular
pathway could cooperate with neurons in the Parvocellular
pathway by providing a coarse information.
At last, it would be interesting to extend this spatio-temporal
cooperation to a spike code in the time domain. The matching
pursuit scheme has already been used to build a video com-
pression codec [34] and should be particularly efficient for
processing video streams. These advances would thus intro-
duce a precise paradigm of event-based computing mimicking
the efficiency of temporal mechanisms in biological neurons.

Online simulations - reproducible research

All scripts describing the models presented in the paper and
reproducing the figures are available at :
http://laurent.perrinet.free.fr/code/
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