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Coding static natural images using spiking event
times : do neurons cooperate?

Laurent Perrinet, Manuel Samuelides,Simon Thorpe

Abstract— To understand possible strategies of temporal spike of the core features of the various cognitive processes that
coding in the central nervous system, we study functional characterize living species. Therefore, spikes seem to provide
neuromimetic models of visual processing for static images. We 5 gimple universal element for inter-neuronal communication.
will first present the retinal model which was introduced by ) o . .

Van Rullen and Thorpe [1] and which represents the multi- ,BUt’ paradpxmally, it is still unclear hf)V_V these spikes are
scale contrast values of the image using an orthonormal wavelet interpretedi.e. what eventual "neural spiking code” could be
transform. These analog values activate a set of spiking neurons used.

which each fire once to produce an asynchronous wave of |n particular, there is little agreement about the representation
spikes. According to this model, the image may be progressively of the information used by the spatio-temporal pattern of

reconstructed from this spike wave thanks to regularities in ik Following the i . k of Adri 31 classical
the statistics of the coefficients determined with natural images. Spikes. Following the pioneering work o rian [3], classica

Here, we study mathematically how the quality of information ~theories suggest that each neuron effectively integrates its
transmission carried by this temporal representation varies over inputs by computing a correlation with a previously learned
time. In particular, we study how these regularities can be used pattern of synaptic weights and that this analog value is trans-
to optimize information transmission by using a form of temporal lated into changes in the frequency of spike firing. Since the
cooperationof neurons to code analog values. The original model X -

used wavelet transforms that are close to orthogonal. However, perceptronmodel [4], these models hav_e become increasingly
the selectivity of realistic neurons overlap, and we propose an more complex and now form the very rich and powerful class
extension of the previous model by adding apatial cooperation of algorithms used in Artificial Neural Networks. These algo-
between filters. This model extends the previous scheme for rithms have many links with other domains from mathematics
arbitrary —and possibly non-orthogonal— representations of 4 angineering and have been used to solve numerous problems

features in the images. In particular, we compared the perfor- - . - R .
mance of increasinglyover-complete representations the retina. which were intractable using methods from Artificial Intelli-

Results show that this algorithm provides an efficient spike coding 9ence. However, and in particular in the sub-class of feed-
strategy for low-level visual processing which may adapt to the forward modelsi(e. where communication loops are avoided),
complexity of the visual input. remaining information potentially contained in the detailed
Index Terms— Vision, ultra-rapid neuronal processing, parallel  Spatio-temporal spike patterns of biological neurons is often
and asynchronous computing, temporal spike coding, natural ignored. Recently, much progress has been done in focusing
images statistics, over-complete representation, matching pursuit. gn the temporal course of these complex neuronal systems to
provide dynamic theories of brain functions, particularly by
including feed-back loops [5].
I. A DYNAMIC REPRESENTATION OF A STATIC WORLD As is revealed by the complex architecture of visual processing
A. The spiking nature of the neural code in the cortex of primates, neurons interact through different
PIKES reveal a paradox in our knowledge of the brair‘fj.ynamic pathwa_lys [6] an_d a growing number (.)f recent theories
SSince their discovery, it is known that these brief an8]c peuronal _codlng takfa into account the predatency of_the.
relatively intense peaks of the neuron’s membrane poten ﬂkesby using dy”a”_“c mpdels. These advances are inspired
are an almost universal feature of nervous systems. Using 1} ergcgnt ?europhysmloglgal studies which sug'g.est that the
terminology of signal processing, since they are mostly similal eylatlons from the classlcal mo_dels may specifically carry
for all neurons, we may describe spikes as "all-or-none” eve g Important part of the information, par_tlcularly over short
generated by a non-linear "explosive” mechanism at the ne ochs [7], so that the actual complexity of the response

ronal membrane. Moreover, since the transmission of spik‘?—:sb'c’log'cal neuronal populations may in fact mirror more

between neurons through the synapses is highly reproduciﬁ?énplex spatio-temporal relations. In fact, some studies have

[2], they are often regarded as the only mechanism for long _vealeq puzzling. aspects of behavior: neurons that fc.)r.m
range inter-neuronal communication, the remaining signal pulations may in Some cases keep t_he same mean firing
jequency but convey different informations by varying the

the membrane potential being "filtered out”. This neuron . o .
information, forming a spatio-temporal pattern of spikes verall degree of coherency in the population’s spike pattern
' ' [8]. In this paper, we will explore how the cooperation in

then presumably "decoded” by the neurons’s dendrites i . -
é|me and space of neurons may provide a more efficient

even along relatively long distances— in a highly parall . . . ) ;
fashion (neurons receive arouri® synapses from Othertransm|33|on of the information over its temporal evolution,
gﬁgce a strategy afynamic spike coding

neurons). Finally, these successions of computations are
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B. Constraints on a temporal spike code how dynamic algorithms also apply to static stimuli.

One of the most important evolutionary constraints o_lr’ﬂ this paper, we will first present the architectgre of the model
the neural code is the need to convey the information iniroduced by Van Rullen and Thorpe [1]. This retinal model
fast and robust fashion. In particular, the results of psychtS€s @ precise wavelet-like transform based on the responses
physiological experiments which showed the rapidity of caff ganglion cells to form a complete temporal spike code in
egorization in primates [9] have stimulated the search ithe retina using an o.rthonormall re.presentatlon. We WI|| then
dynamic neuronal models compatible with these tempo%‘fa'“ate the |nf0rmat|qn transm_|53|0n through the spikes _and
constraints. Therefore, we have developed new paradigmsPEpPOSe some alternatives to this model based on the statistics
neural coding in feed-forward neural networks that includ® natural images which improves the temporal cooperation of
latency and rank-order based coding [10]. neurons in time. Then, we will propose an alterna_tlve sch_eme
In contrast with detailed neurophysiological models whemhich complements this model by using Ia}teral interactions
spikes are the result of a large number of differential equatioR8d Show how non-orthogonal representations may be used
describing the neuron’s behavior, these algorithms focus on {RePuild & generic neural code in the central nervous system.
relative latency of spikes to build a functional temporal cod¥Ve Wil discuss the relative efficiency of this in the retina for
To stress this difference, the equations governing neuro@&PWing numbers of neurons. We finally propose a strategy for
behavior are reduced to the strict minimum, and we only uetémporal spike code using tispiking eventas a substrate

the first "transient” wave of spikes generated by a parallfr neural computation.
neuronal layer : neurons fire only once and the information is
encoded in the relative latency of spikes of this wave of singi®. Methods of quantitative analysis

spikes. To rate the quality of the reconstruction we will use (as in

In particular, we analyzed the performance of different mod ) the Mean-Squared Error (dViSE) which measures the
of highly parallel networks of asynchronous neurons. The ean energy of the difference between the imagend its

neurons consist of simple elementary dynamic "voting” deg.,nstryctions,.. over the pixels € 7 where the image is
vices which cooperate to provide on demand a fast or rob ined:

decision. These ideas were implemented in tlrRKENET

model [11] and have proved to be very efficient for patteMSE(7, Io.) = E[||I — I1oc|/3] = E[Z (I(1) = Irec(1))?]
recognition, mimicking the performance of biological process- ) o )

ing. Thus, this direction of research proves that a more realisfi{though an image reconstruction is biologically not very
model of a temporal spike code does not necessarily need td’%@llstlc,.thls' criterion is particularly adapted for the retina if
more complex, but rather can exploit all the efficiency of th&¥& c_0n5|der it as t_he lowest Ie_vel of the V|sua_1l architecture and
parallel and asynchronous structure of biological processingtnﬁt it should provide a versatile representation. Moreover, the

the central nervous system. As a result, the rank-order codMgpE Provides —under the assumption of Gaussian noise in a

scheme provides an original set of dynamic systems. Thlé@)ear model of image construction and a uniform prior over

result in a wide class of novel and efficient algorithms th&fi€ representation— a direct measure of the log likelihood of
can be applied to signal processing. image reconstruction knowing the initial image [12].

Additionally, we will use Mutual Information from informa-
o ] tion theory. It is measured as the mean quantity of information
C. Models of ultra-rapid image coding that can be obtained about one image when the other is known
To study realistic models of temporal spike coding, we wilffor a review, see [13]). It is therefore the sum of the entropies
therefore study here a model of spike coding in a functionaf the luminance of both images minus the coupled entropy:
framework. Due to its relative simplicity and to the extensive
research on this part of the brain, we are especially concerneHI(I’ Irec) = H[I] + HlIrec] = HII, Irec]
in this paper with visual processing in the retina. Specifically, = Der P[I(l)yjrec(l)]-log(%)

we will be interested in how the information sensed by thv?/here H represents the entropy an# the probability.

photo-receptors could .be efficiently encoded by thg spat hroughout the paper the different schemes are rated by
temporal pattern of spikes generated by the ganglion cells . :
: . L . evaluating these measures on a set of randomly chosen images
which then project to the brain via the optic nerve. We __. . . :
. . D efined over rectangular grids. These images were chosen in
therefore applied and studied models of spiking neurons 0 : . . .
. . . R : the publicly available database of linearly calibrated natural
a simple model of information transmission in the optic nerve . . .
. . . images from Van Hateren as described in [14]. These images
using temporal spike coding. . :
ere corrected using @ correction [15] to assure the balance

Through this paper, we will use natural static images as mpu\é\é. luminance and mimic the analogical response of photo-

These are defined as images that are typical of those that occur S i . .
. . ) ; feceptors to luminosityi.e. to light intensity.
in real life and includee.g. outdoor scenes. We will analyze

how the model retina reacts to static flashed images firstly to
follow the protocol of Ultra-Rapid Categorization but also for
the sake of simplicity. A more realistic temporal model would
need to include more complex dynamics including adaptationTo achieve a comparison with other models, we will define
and eye movements. Also, this will provide an illustration odur model retina as the classical feed-forward two-layered

ez

Il. TEMPORAL COOPERATION IN AN ORTHOGONAL
WAVELET ARCHITECTURE
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(a) Architecture of the spiking model, (b) Sample input static (c) Montage of the multi-scale represen-
(PhRs) linear integration part up to the gray-scale image: Lena tation images, from lowest scale (left) to
Ganglion Cells and (GCs) non-linear spik- at size256 x 2565. the highest (in spiral).

ing layer.

Fig. 1. Architecture of the model retina. 1(a) The model retina consist of two layers : an input layer corresponding to the photo-receptors (PhRs) which
transmits the information analogically and linearly to the output layer corresponding to the ganglion cells (GCs). A sample GCisdughifighted in red,

and we showed its center-ON receptive field soma and axon. These ganglion cells produce spikes along their axons (forming the optic nerve). 1(b) The inp
of the model consist of static gray-scale images sampled over a rectangular grid (a white pixel corresponding to high luminance) which elicit the activity of
the photo-receptors. 1(c) The model retina induces the activity of the ganglion cells which represents either positive (represented as white pixels) or negativ
(black) contrasts at different scales. We represented here for clarity the lowest scale (therefore at the highest frequency) with the left-most image and in
spiral the progressively down-sampled images of contrast values for progressively higheriszdt®gef frequencies). Note that most values are grayof

low activity : the distribution of coefficients ikurtotic.

neural network described in [1]. It is characterized by a set obmputed over all positionsand scales, the set of activity
neurons, the ganglion cells (GCs), sensitive at different spati@lues constitute a continuous wavelet transform. A particular
scales to the local contrast of the image intensity detectedse of a discrete wavelet transform chosen by Van Rullen and
at the input layer of the photo-receptors. These GCs th&horpe [1] is to choose dyadic progressionj.e. where filter
emit spikes for which we will propose a compact temporabdius and grid spacing both grow in a geometric fashion as
spike code. These assumptions are unlike the biological retimawers of2. This choice is a particular down-sampling of the
which first has a hexagonal sampling but also has a higrmmtinuous wavelet transform which is particularly frequent in
concentration of neurons near the optical axis (the fovea), biotage processing (see Fig. 1(c)).

are sufficient to describe as a first step a static retina. As the architecture is defined, an important task is to choose
an appropriate mother wavelet to detect contrasts in the image.
As in [1] and from [17], neurons are defined here according to
their position/, and scales as dilated, translated and sampled

o Mexican Hat(or Difference Of Gaussian — DOG) filters (see
Based on neurophysiological data [16], we assume that thig pp. 77], and Fig. 2) as

part of the architecture (and which drives the activity at the
soma of the GCs) results from linearly filtering features of DOG{s 3 (1) = 9.Go(s)(l = le) = Gao(s)(I = L) (1)

A. Architecture of the linear retinal model: from light to multi-
scale contrast representation

the luminance distribution. The dendrite of a neuromay th () — 1 17]12 5
thus be characterized by its weight vectarover the image ~ "ith Go(s)(l) = ﬁgw'a(s)'e){p(_zg(s)) 2)

and to mimic neurophysiological constraints (total length %here we denoter

dendrit nd data. th functions are often localized on +(s) as the Gaussian function of variance
€ es) a ata, these functions are often ‘ocallzead on, s) which itself depends on the scale As suggested by

receptive field of limited radius (see Fig. 1(a)). The activity G\lkl

the soma of the neuron is the usual dot product : avelet_theory, we set(1) = .5 for the mother wa\_/elet
' that defines scalé, so that at scale (and up to maximal
Cii=<1,¢; >= Z I(1).¢:(1) scale suax), o(s) = 2°72. At scale s, the activities of the

leR: ganglion cells are calculated over the down-sampledBgic-

where (1) is the luminance at pixel (see an example input {(z,y) = (2°7*.i,2°7'.5)} where (i, j) are natural numbers.
image at Fig. 1(b)) an&R; is here the receptive field of the The multi-scale representation therefore constitutectio-
neuron:. nary of filtersD = |, ..., Ds placed on progressively more
For the sake of simplicity and to apply this algorithm wittwidely spaced grids, hence the name giysamid transform
standard computerized images, the photo-receptors and riée-lowest scale being the base. The total number of neurons
rons are placed uniformly over rectangular grids. We also ds-thus proportional to the number of pixels by a factonof
sume that the architecture is both translation independent (that(1/2)%+. ..+ (1/2)2=) = 3 (1/2)20- = %

is that neurons on a same scale are replicated over the differtdyatt is approximatelyc = 4/3. Instead of differentiating ON
positions) and also scale invariant. From these assumptions,aveéOFF cells (so that the number of neurons is doubled), we
can define a singlenother functioryy from which every filter will consider for simplicity and because it is exactly equivalent
can be derived using translation and scaling. If the activity that each neuronis assigned a polarity; which is either+1



4 IEEE TRANS. ON NEURAL NETWORKS

by the linear model into a multi-scale representation of con-
trasts (see Fig. 1(c)). These analog values are theoretically
sufficient to reconstruct the image and under the assumption
of orthogonality, this representation which is often used in
image processing algorithms, provides a compact code of the
image,i.e. one in which the number of significant coefficients
is relatively small.
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(a) Image of a DOG filter  (b) Slice of the retinal filter B. Analog to latency coding: ranking multiscale contrasts
contrast detector. along the axis.

Fig. 2. Linear filters in the retinaThe DOG filter in II-A is a center-OFF  (A)
surround-ON contrast detector. As a unit measure, the vertical striped lir

in 2(b) represent the variance of the narrower Gaussian used to generate
DOG filter and thus corresponds to the center of neighboring filters.

or —1, so that the coefficients are rectifieice( |C;| = p;.C:).
These filters resemble the receptive fields that can be obsers |
in the biological retina [19]. However, they may be difficult tc
implement since first they decay slowly, but also it is necesse g,
when sampling filters on the rectangular grid to correct the

in order to avoid artifacts and to assure that the sum of t _so
filters’ coefficients is zero. From the Calder formula, the
wavelet transform may be inverted and in our case the image

may thus be reconstructed by the coefficients’ values simptig. 3. Analog to latency coding. (A) We simulated a detailed Hodgkin-
by Huxley model neuron with steps of increasing activity. The neurons generated
spikes (when reaching a threshold potential~@63 ms) with a frequency
Liec = K. Z C;.0; proportional to the activity which is revealed by the inverse latency between
€D 2 spikes. (B) Similarly, there is a direct relation between the input (the rectified

where K is a constant dependent on the filters which fdiontrast in our model retina) and the latency. Above a threshold, the spike’s

; ) . | is | ingly shorter f ively higher i
simplicity is set to 1. In this architecture, the filters form arf o ¢ 'S Increasingly shorter for progressively higher input activities

approximateorthogonal wavelet transforrfl8] of the image, . . C
When presenting an image at an initial time, each neuron

i.e. the responses of different fibers are uncorrelated (that i? h del | h | inf ) )
< ¢i,¢; >= 0 for i # j). Note that it can be proved that this® the mode integrates the analog contrast m_ormatlon a_lt its
ma until it eventually reaches a threshold: it then emits a

relation is here only approximate and that the reconstructed!

image is blurred. This blur is characterized by a "point sprefc?'ke‘ As In most models of neuronal -|nt¢grat|on, we wil
function™® of the response : simply assume that the stronger the activation, the earlier the

cell will reach the threshold. Such behavior happens in most
I,ec = I % PSF with PSF = Z =5 < bors b, > biological neurons and can be be implemented by both detailed
1<s<e,. 5 (see Fig. 3) and more simple models such as the Integrate-

o o _ and-Fire neuron [21]. Finally, the spike then propagates along
This linear layer therefore exhibits two problems : first, thg,e axon and the neuron’s activity is reset. Classically, this

reconstruction is approximate and second, its implementatiganerates a pattern of spikes whose instantaneous frequency
may be computationally slow because the size of the filters CRfAy constitute the image’s code. But the code may also be

become very large. A common solution is to use a '—aplaCi%TE{uivalently carried by the exact spiking time (atency of

pyramid as defined by Bust al. [20]. This transform uses {he first spike. We may thus consider only the first spike, so

a bijective down- and up-sampling scheme to simulate thgy the code exactly consists of this latency for each of the

convolution by the larger filters by using recursive filteringjitrarent fibersi and which is inversely proportional to the
and a sub-sampling algorithm. This transform is still linear angb;ron’s excitation current,e. to the corrected activity. This
the image may similarly be reconstructed as a linear comBiyorithm defines a coding scheme that transforms an analog
nation of the filters by using the coefficients of the pyramid@/,otrix pyramid into a spike 'wave front' that travels along the
transform. Moreover, this transform is computationally MOTghtic nerve.

tractable and since it is orthogonal, the reconstruction of t'ﬂj’sing this framework. the coefficients are emitted and trans-
image is perfect. Here, we will at first use and compare boffieq in order, starting with the highest rectified contrast.If we
methods. o o , know exactly the corresponding contrast values when trying
Finally, during this linear stage, a static image is transformgg yecode the spike wave, we may reconstruct progressively

1Similarly as in optics, this is the response of the whole system ((:odir%]e image by
and decoding) to an impulse, here to the image of a single pixel at luminance

1. From the linearity of the transform, it proves the assertion. Irec(t) = Zr:l . Co(r)-¢o(r)

Latency (ms)

0 5 10 15 20 25
Time (ms) Input
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! \ 5 4 _— wherel,..(t) is the image reconstructed using the spikes rank
0. ) o / at stept and p,(,y the polarity of neuron corresponding to
0. byr L / the »'" spike. Using the orthogonality of the filters, the error
MSE .4 \\ Mt / SEL.t (1) is therefore using a same method as above (see Eq. 3)
1
o N Y r/ Mree®) = 1 = [(Frec(t) = Lec(®)) + (Lrect) = 1)
0
0 = LUT(7). —Cyiry)-
001 0.1 1 10 100 D 30 40 60 80 100 ”Zrzl..,t( (r)-Por) o(r))-Fo(r)
nk (%) nk (%) 2
Re "2 + ZT:t+1...rmaz C’0(7') d)()(l) H
Fig. 4. Progressive reconstruction of the image from the ranked linear multi- _ _ 2
scale representation. We plotted the Mean-Squared Error (MSE, logarithmic SELUt(t) - Z (LUT(T) |CO(T)|) + SE(t) (5)
abscissa scale) and the Mutual Information (Ml) of the progressive reconstruc- r=1...t

tion using theexacttransforms’ coefficients ranked from the highest energ . . P

to the lowest. We compared the method using a discrete wavelet transfoyme reconstruction error is therefore the sum the quantlza_tlon

(Wav) and a Laplacian Pyramid scheme (Pyr). It should be noted that ti@§ror added to the energy that has not yet been transmitted.

latter method provides at the end of the propagation an exact reconstrucfof), 5 also justifies the choice of the LUT as the mean

of the image and the Mutual Information therefore converges to the me . o - . .

entropy of the images in the database. tCee EQq. 4) since it is the optimal estimator for the rectified
coefficient as a function of its rank in the MSE metric.
Neurophysiological mechanisms for producing this decrease

wheret is the corresponding discrete time corresponding to

the count of fired spikesi.€. their rank) that we use for the 1.s

reconstruction and(r) is the address of the neuron of rank

In fact, if we assume that the filters are orthonormal and from 1-3
Pythagoras’ theorem, sinees a permutation of the addresses 1 1
of neurons, the squared er®E(t) at timet is simply: 0.4
-6
laee® =117 = 132, Cotr)botry = D, Citill® 0.4 ° ]

LUT w

= | Zr:l...t Co(r)-Po(r) 0.4 o
_ 2 o 0

Zr:l...rmam CO(T)'(bO(T)” 0.00DIOl O‘.l ; Jo ;oo 0.00DIOl O‘.l ; Jo 1700

Rank (%) Rank (%)

_ 2
- || Zr:f+1 - Co(r)-¢o(7‘) H
e 5 Fig. 5. Look-Up TablegLUTSs) for decoding the analog value corresponding
SE(t) = Z |Co(rl (3) to a spike. These LUTSs correspond respectively on the left to the average of
r=ttlTmas the rectified contrast as a function of the rank and on the right to a mean
wherer,,.. is the final time (and therefore corresponds to tha the same coefficients but weighted and normalized accordingly to provide

i i~ ; more robust regularity. The filled-in regions correspond to the variance of
total number of rectified coefficients). From Eq. 3, this strate lese measure and will be directly linked to the MSE of the reconstruction.

of coefficient propagation corresponds thus to a "greedyhe weighting process provides thus a better spike representation of the
minimization of the MSE at each step of the algorithmoefficients.

This also leads to the convergence Bf.(t) toward I,e.

(and therefore td for the Laplacian Pyramid), leading to aof the coefficients over time were discussed in [1] and may

progressive compact coding of the image (see Fig. 4). involve a set of separate neurons —interneurons— using
shunting inhibition [22]. We propose here that since these

C. Interpreting ranks as activities : a cooperation in time "rank counter interneurons” could be tuned used an incre-

But, how can this information be encoded and decod _ntal adaptive rule with an on-line h_ebbian _Iearning scheme.
using only one spike per axon? Van Rullen and Thorpe ['1r is rule takti,-; the form.ofa(i'gochastlc algon.thm SO that after
have shown that these values observed regularities acrb gmg then™ image usingn'™’ as a modulation function,
Inatural images as_they were ordered from the largest to the m(n+1)(r) —(1— M(n))'Tn(n) (r) + u(n)'|Co(r)|
owest. A solution is therefore to use the mean analog value
to form aLook-Up Table(LUT) to decode the analog valueswheret is as before the discrete time corresponding to the
back from their rank. They thus defined decomposition ang.™ (typically, (") = 1/n) the stochastic

LUT(r) = E[|Con ] ) Iearning gain. I_n practice, this is exactly equivalent to_ the
averaging algorithm (see Eq. 4) and thus leads to a similar

where &2 denotes the average over a set of randomly chosgitonstruction error. A more realistic biological implementa-
images from the databas&hen, we can reconstruct the imageion would consider the limited receptive fields of these inter

from the spike list using neurons, leading to a measure of the local rank, but although
7 his would | to interesting results, it i mputationally ver

Tree(t) = Z LUT() Do) o) this ou_d ead to interesting results, it is co putationally very

r=1...t demanding. It should be noted that the rectified coefficient

2Further averaging or learning schemes used here 200 randomly cholle ™| has yet to be tran_sm'mtt_ed and it can be computed
images. over a longer time scale with for instance the mean frequency
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of firing. This mechanism provides thus an adaptive and col 2500

plete mechanism for a temporal spike code using a tempo - 1000 -
cooperation. 2000 — 311 0o — 8
This algorithm transmits rapidly and in a robust fashion th _ 1500 _— 25 _ —_— 25
image by using the rank of the neurons, and it is in th 2 _ :§ 5 600 _ 2673
task superior to other temporal spike coding strategies st 1000 400
as frequency coding [1]. However, one may notice that tt ., 5

. . . . . 00
variance of the LUT is relatively high and especially for thi ~ \

0

Igsi ?Eikes,i.e. f(t)r tr'[].e most important stpikef.tSi?r::_e we sav ° o1 1 1 10 100 01 1 1 10 100
at the reconstruction error is proportional to this variance
(Eqg. 5), a better strategy is to give more importance for the Rank (%) Rank (%)

first ranks. In practice, we used a logarithmically decreasifg. 7. Optimization of the regularity of the wavelet coefficients with
"gain” f ion- harmonized scales. The LUT is shown at the background in plain color as a
gain unction: - - . . ; .
function of the rank in% using a logarithmic scale on the abscissa. When

)‘ separating the LUT for the different scales (from lowest to highestto s7

in the legend), one may observe that they correspond to similar regularities
) ) ) ) ~ —linked to the regular distribution of singularities at different scales— but
The resulting LUT vyields less variance especially for the firgte mistuned (lower frequencies, as tHé scale 's7’ are stronger and thus

spikes (see Fig. 5) which leads to better convergence ifgrease more rapidly as a function of the overall rank). These regularities

. di t .. l 'LUT' in Fig. 8 are therefore lost and mixed when ranking all scales together. By normalizing
Improved image transmission (See ine In Fg. ) the different scales according to the statistics of natural images, the "vote” by

the ranking process becomes "fair” and the LUTSs for the different scales can

D. Distributi fthe si larities i hi d li be made to match. The resulting LUT for harmonized scales preserves the
- Distribution of the singularities in whitened natura Ima(-:]e%nderlying regularity and information transmission is therefore more robust

One may wonder Why this regularity occurs in natural imfsee Eq. 5): it represents a more effective way to encode the analog value by
. - . the rank of a spike.
ages. In fact, when analyzing this regularity separately for the

different scales, we proved that the coefficients of particular

scales are not well tuned to the overall LUT (see Fig. fne retina and results in modifications in the spatial frequency
Left) and thata priori the coefficients corresponding to thening of cells [19]. Since the scales are tuned, rectified
lowest frequencies have a higher probability to be transmittgfefficients follow a very regular linear decrease (see Fig. 7)
first whatever the image to be coded [23]. From the "donufy the |og-linear plot, starting at rank 1 to a value proportional
shaped Fourier transform of the DOG filters, it is easy t0 S8 ine mean energy in the image and ending at the final
that there is a direct correspondence between the activities 8fk at zero. It suggests the existence of a relation of the
the neurons at a given scale and the Fourier componentsQfiifieq contrast value as a function of the logarithm of the
the image at a certain frequency. The mistuning of neurons gfative rank. We therefore used a similar averaging rule for
different scales thus corresponds in Fourier space to the shape| y1 (Eq. 1I-C) function which resulted in a more regular
of the mean power spectrum function. Over natural imag&g§nction. From Eq. 5, and since this leads to less variance, we
it is known to decrease i [17], a result from correlations 4re thys assured that this regularity results in more effective
between the luminances of neighboring pixels. We therefotg,mation transmission.

applied a decorrelating kernel as defined and computed BYtact  this regularity may be linked to the distribution of
Atick [24] to the input image. Note that this re—normallzatlorll_ipschitZ exponentd natural images. They correspond to a
according to the scale (or temporal frequency) leads t0gasure of the order of the singularities which are present
different distribution of the Fourier components in the spatigl (e image, and that can be qualitatively ranked from the
frequency space: the image’s power spectrum distribution jgyhest to the lowest Lipschitz exponents as : isolated dots,
spherized”. At the same time, we can derive a new measurejglas edges, slopes, gradients until uniform surfaces. In our

the image reconstruction error based on this renormalizatigpymework, since this multi-scale contrast representation gives
that we denote as th&Veighted Mean Squared Ermofor 5 ocal measurement of the Lipschitz exponents in the image

WMSE) and which leads to a new distance between imagesee [26], [18, p.513]), we can qualitatively link the definition
The WMSE appears to be more correlated to a subjecti¥eits value » with our model:

measure of distances between images (see Fig. 6), and since

there is a non-uniform prior in the energy of coefficients as v(z) =
a function of temporal frequency, it corresponds in fact to dlogz

the Mahalanobis distance [25] applied to our set of naturahere herex = "— is the relative rank and(z) = [Cq )|
images. It removes some of the disadvantages of the M8FEthe activity of neurons as a function of the r&nkVhen
measurement, such as its dependence to a constant compostelying whitened natural images, we can observe that after
and provides thus a new criteria for image reconstruction. normalizationz ~ — log z and therefore that the propagation
Back to the linear model, this decorrelation process correeheme ranks singularities from their highest order to their

sponds simply to a pre-process of filtering by the decorrelating

kernel. In our model it would correspond to the introduction >Since the energy of the image is equal to the sum of the squared
efficients, this constraint may be used to introduce a renormalization of

of a Iayer between th? phOto'recePtorS and the.ganglion Cé?% general, we verified at the start of each propagation that the total energy
that mimics the behavior of the horizontal and bipolar cells ias equal to 1.

m D (1) = (1=p).m ™ (r) 4. C0. (1-log(

T‘mam

_ dlogz(z)
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Fig. 6. Subjective distance between images. We added to an i(@agedifferent noises which are characterized by the envelope of their spectral energy

to obtain 5 new noisy imagg@\) to (E) deviating from the original. Comparing the results for the Mean Squared Error and for the Weighted MSE, we may
rank the quantitative distance of the noisy image compared to the original : for MSE closest to noisiest, we obtain A, B, E, C et D whereas WMSE provides
D, E, A, B et C. This harmonized distance is more robust to changes at low frequencies and corresponds to a more subjective measure of the noise added
an imagej.e. to a distance between images (see e.g. the zebra’s ear).

lowest with a regular distribution. MSE
The same was already observed for un-whitened ("raw”)
images after a certain rank (see [18, p.513]). We may in-
terpret the relative regularity of the distribution of Lipschitz
exponents physically as (1) the whitening process removes
the correlations between spatial frequencies due to size and
depth of objects [27], (2) then, the distribution of complexity
of shapes and textures of objects in nature is regular. This last T T T T T T T

e . . T 0.010.1 1 10 100 0 20 40 60 80 100
point is linked to the inherent properties of auto-similarity [28], Rank (%) Rank (%)
[29] in images. In a generative model framework [308, in
which we assume that all natural images may be generatégl 8. Progressive reconstruction of the image from the spike list using

ilicti ; ; iirank-order coding. We plotted the Mean-Squared Error (MSE, logarithmic
by a prObabIIIStIC model, this result suggests that Smgu'antlg:é;le on the abscissa) and the Mutual Information (MI) using the different

are chosen with a characteristic probability: it is therefoigmporal spike codes described in the text. We compared the results of the
an important feature of natural images corresponding to prpagation when knowing the coefficients (exact) with the method described
important measure of the distribution of complexity in th& Ed- 4 (LUT) which uses an optimized Look-Up-Table to "guess” the value
. . f the coefficients from their rank. Finally we compared these strategies to
image. It corresponds to a high level parameter that can %@optimized method that uses the regularity found in natural images through
used to generate the coefficients for the whole set of natuta statistics of natural images (WLUT). The reconstruction from this latter
images whereas the ranked lisof events’' addresses Wou|dmethod is close to the_ metho_d with exact value_s and proves that the_ analog
. . . infacEni values may be transmitted using rank order coding. It therefore constitutes a
COfreSand to the reallsatlo.n O.f_thls particular infad IS compact spike code which provides a simple implementation of rank-order
generative model approach justifies the use of the LUT in theding for static images.
algorithm since it corresponds to a physical interpretation of
the visual input.
But as we now ranked the coefficients according to decredg) the ranking of the information carried by neurons according
ing Lipschitz exponents, and since low frequencies seemtto their importance for the progressive propagation of the
providea priori information that is physically closer and thusnformation. However, we have shown that this is incompatible
more useful for rapid categorization, we may still want to prowith the regularity in natural images and we will overcome
agate the coefficients according to their eneigy,propagate this problem by separating these two ranking processes. As is
the lowest frequencies first. In fact, since the use of normalizetplemented in the retina by the differentiation between the
filters already provides this feature, this was accomplishéshagno- and Parvo- cellular pathways, low and high spatial
in the model of Van Rullen and Thorpe by the fusion ofrequency bands show different mean latencies, the neurons
(1) the use of the regularity as a function of the rank dfom the Magno-cellular pathway being significantly faster.
coefficients to code coefficients with analog values with spik&§milarly, we can still rank the weighted coefficients (in
WMSE metric) to produce a highly regular LUT (as in Fig. 7-
4Inversely, a desired distribution of exponents can be generated withRdght)' hence a bet_ter transmlssmn.o_f the coefhmgnts but ”9W
particular modulation of coefficients as a function of the rank. rank the propagation of the coefficients according to their
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energy (in MSE metric) so as to choose the order in whidheory [32]. The idea is that we have to account for the
the spikes are emitted (therefore using a similar algorithm egrrelations between filters and we therefore need to build up
the first scheme). In a probabilistic inferential model, this willateral interactions to cancel the correlation whenever a filter
correspond to the inclusion of a gain for low frequencies whes selected. The MP algorithm decomposes the image over a
in the context of rapidly detecting an animal. This schemarge arbitrary dictionaryD by iteratively choosing the best
results in improved transmission of the image with a resuttatch and then removing the orthogonal projection of this
that is close to the reconstruction using the exact coefficiemmatch.

(see Fig. 8, line wLUT). In this progressive scheme, let us first set the initial image
As a conclusion for this model, we have provided a gener#ll = I and activitiesC? = C; at the initial timet = 0. Then,
scheme for temporal spike coding using the relative ramke determine the first neuron in the layer to fire as the one
and using the statistics of natural images. Practically, théth the highest activation (see Fig. 3):

scheme uses two parallel sorting mechanisms, one based on 0 0

the regularity of the distribution of Lipschitz exponents and iv = ArgMax; (|C7)

the other based on the progressive transmission of the partggf this indexi® (the addressof the neuron), we define the
the image Starting with the most informative. Together, th%rresponding extremal contrast Va|6é)0_ Since we have
provide an algorithm that can efficiently decode the anal@gund the best match in the sense of the projection of the
values corresponding to each spike using only the rank orggfage on the dictionary, we can subtract the projection of this

information. This proves that this strategy can build a compleggatch ¢,o (with norm N;o) to I° in order to define a first
and efficient code from the retina (analog to spike codingdsiduall! at timet = 1

which can be decoded (spike to analog coding) using solely a

- . 0 X C()
temporal cooperation between the successive neurons that fire, ' = % — L@;?@O =70 102. ;0
i.e. arank-order codingscheme [9], which provides a compact [l Nio
temporal spike coden the retina. The activity becomes at the same at time 1:
[1l. N ON-ORTHOGONAL REPRESENTATIONSTOWARD A 1 n 0 C?o
SPARSE TEMPORAL SPIKE CODE C; =<1I,¢; >=C; — N2 < o, Pi >
A. Orthogonal vs. non-orthogonal representations This defines a spatial cooperation of the winning neuron to the

The condition on the filters for a perfect reconstructionorrelated neighboring neurons. Note that in a neurophysiolog-
—i.e. the orthogonality of the dictionary used to represeiital model, we do not need to update the image’s intensities
the image— is a strong constraint on the architecture a(lshckward propagation) because we can directly modify the
is achieved only approximately with the model presentedttivity in the adjacent neurons using a lateral propagation.
in [1], resulting in a small information loss. Moreover, inwWe therefore associate to each spike a lateral interaction
the biological retina, the architecture is not dyadic and real ¢,0,¢; > which accounts for the selected spike. Note in
neighboring neurons can often have correlated responses padicular thatC;, = 0, i.e. the activity corresponding to the
the previous model would result in a redundant representatid®est match at timé is totally cancelled at timé (see Fig. 9).
This condition is therefore too restrictive in order to build derating these steps, we may repeat this algorithm to obtain
biologically reasonable model of the retina where the resporsgccessive residual activities at the discrete timesfined by
of neurons depend upon the activity of neighboring cells [31the exact spiking times. The progressive reconstruction is then
that is where they may cooperate spatially. Such restrictiosignply at time stef™:
would be even more problematic if we wanted to apply the
same spike coding algorithm to cortical models as the primary Leo(T) = Z
visual cortex where the interdependence is even stronger.

In fact, in order to code the image with a linear generativ&his algorithm is exactly equivalent to MP for normalized fil-
model, we may want to use awer-complete representationters (V; = 1) and presents the same computational complexity
of the imagej.e. one which the number of filters is far greateland properties [18, pp.412-9]. In particular, the convergence
then in the previous model. Such representation result inoathe reconstruction is guaranteed [18, p.414] under the con-
sparse codei.e. one in which the absolute values of thalition that the dictionary is at least compltét is important
underlying linear generative model decrease rapidly [30]. Btd note that since we subtract the projection, the residual
mathematically optimizing the linear generative model leadsiage is orthogonal to the winning filter, a property which
to a combinatorial explosion of the freedom of choice of theroduces a similar relation for the MSE as for Eq. 3 although
filters and of their corresponding coefficient values (it is filters in the dictionary are here generally not orthogonal. The
NP-hard problem [18]). MP scheme thus provides a similar representation as before

_ ) ) ) ) ) “but avoids redundancies between the events representing the
B. Spike coding using a Matching Pursuit : adding spatighformation. With an over-complete dictionary, this coding
cooperation to rank-order coding neurons
Another strategy is to use Matching Pursuit(MP) [18 5In fact, an over-complete dictionary may be incompléte, when the
_ Use _ ) 140, . g L ) tors d
pp.412-9] algorithm, which is derived from a statistical e space generated by all linear combinations of the dictionary’s vectors does

’ - ) Sot recover the input space. But, in our case these the chosen dictionaries at
timation algorithm that has also been extended to waveleist include a complete basis.

C;‘L

t=0,..,7 N2

it
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Fig. 9. Principle of spike coding using a matching pursuit scheme. We represented a layer of riesinariag some similar inputs on their synapses

(black dots) according to given synaptic weighits. The idea is to select at a time stephe neuroni® corresponding to the maximal activity and to elicit

a spike along its axon. Using a matching pursuit scheme, we may then directly account for the correlation between filters by subtracting from the othel
neurons an amount of activition proportional to the correlatond;:,w; > between their weight vector and the weight vector of the chosen neuron. The
algorithm is then resumed at the next time step with the choice of a new winning neuron. This spatial cooperation —the firing of one neuron is accountec
in correlated neurons— is then recursively repeated to the neuron corresponding to the maximal updated activity and until the maximal activity is less than .
given threshold. The spatio-temporal spike pattern will therefore represent the input signal and may be reconstructed by a simple linear rule (see Eq. 6).

strategy provides a sparse representation of the signal: the same regularity of singularity distributions when whitening
number of coefficients needed to describe the image is muble image by appropriately tuning the norm of the filters as a
lower than the dimension of the input space. function of their scale.

As with the wavelet transform, it may be similarly translated toUsing the mean absolute coefficients as a LUT, we thus
a spike coding scheme by associating to each step the firing of

a spike and by evaluating a LUT, so that the coding algorith “*
is simply fort > 0,

it = ArgMax, . (IC)

t+1 _ i t oot <Pit,Pi>

B)| -

with m! = E[|C|] andp’ is the sign ofC!, (i.e.its ON or

OFF polarity). The reconstruction is then simply \
\
_ t t ¢it 0% ggz; 100% 0% 22:; 100%
IreC(T) - Zt:07m)Tp -m 'Nit2 (6)

; ; i ; :Ejg. 10.  Rank Order Coding with Matching Pursuit in the model retina.
In comparison with a wavelet decomposition, since the ChOIEg the architecture defined in [1] we calculated) Mean Squared Error

of then'” filter depends on the spike list for the previous time$ind(B) Mutual Information of the reconstruction as a function of the relative
this transform is non-linear. In particular, it is not possibleank (the percentage of the number of spikes fired to the total number of

; ; ; ; rons) for the different coding strategies, comparing (Theo) the theoretical
to dlreCtIy use Eq. 5 since the residual is not necessarl“(&:uonstruction from the orthogonal wavelet coefficients, (Lut) the Orthogonal

orthogonal to the inhibition. Rather, the quantization errQfavelet coding using a Look-Up Table as in [1] and (Adapt) the Matching
is added to the residual image and may therefore be codwguasuit with on-line learning (the image database consisting of 100 images to

; ; ; . ; ; ; learn the modulation function and 100 images to measure the reconstruction
in fOHOWIng splkes : the propagation Is adaptlve and th43§rror). The adaptability of the MP algorithm enhances the transmission of the

quantization error does not necessarily add up monotonoughige and proves that the relative order of the action potentials could be used
as in Eqg. 5. as a code in the optic nerve.

) ] ) o . built a mechanism of reconstruction from the spike list, but

C. Rank Order Coding with Matching Pursuit in the retina 55 gpposed to [1], this algorithm is adaptive and therefore the

To compare this algorithm with the model of Van Rullererror may be compensated dynamically, as opposed to Eqg. 5.
and Thorpe [1], we kept at first the same dyadic architectutéough filters are almost orthogonal (so that lateral interac-
and observed the behavior of the values for the absoldiens between filters -ie. their correlation— are relatively
coefficients as a function of the rank of propagation fdow) the MP algorithm introduces a gain in both the sparsity
different natural images drawn from a database of indoof the coefficients and in the reconstruction quality (Fig. 10).
and outdoor scenes. As in the previous model, we observed
regularities across natural images that were again sufficierfdly IS the spike representation over-complete in the retina?
stable to allow the use of a Look-Up Table (LUT) in order to But now, considering the same spike coding scheme, we
decode the analog value by its rank. In particular, we observedy ask whether an increase in the number of filters used



10

0.7
0.65
0.6
0.55
0.5
w
@© 0.45
=
0.4
0.35
0.3
0.25

0.2

— Wav

1 A\
— 2

4
— 8

1000
Information (bits)

<MSE/CPU>

0.9
0.8
07
06

S05
04
03
0.2
0.1

IEEE TRANS. ON NEURAL NETWORKS

Vi1

Retina

(B)

MSE

%

Retina

01% 1%

10% 100%

0.1%

5%

10%

Fig. 11. Is the spike representation over-complete in the retina? (Left) Weg. 12. Spike coding in the Retina and in YA) We computed recursively
compared the progressive transmission of information for different degreestioé LUT for the model adaptive dyadic retina and for the model of V1. In
over-completeness in the retina by plotting the average MSE of the residuamparison with the retina, the coefficients decrease very rapidly for the model
as a function of the information to code the spike list (in logarithmic scal&1. (B) MSE for the corresponding progressive image reconstruction (using
propagation up td2.5% of the relative rank for clarity). The set of neuronslogarithmic axis) defined by using this spike code. This proves that we defined
used rotation symmetric Mexican hat filters, with scales from layer to layan efficient visual code in V1 using an over-complete set of Gabor filters and
growing asp = {2,v/2, ¥'2, ¥/2} (and denoted on the legend respectivelyhich leads to a model of a sparse spike code.

as 1, 2, 4 and 8). As a comparison we plotted the method used in the first

part of the text (line 'Wav’). As a function of rank, the MSE decreases more

rapidly for increasing degrees of over-completeness. (Right) But if we plot . . . . .
the trade-off of MSE with CPU usage as a function of the over-completenegd)y New information. In fact, the evolution of the retina is

we fin_d that for the same amount of information the adaptive dyadic strateggrtainly constrained by its function, so that the argument

's optimal. may be reversed. First, the retina plays a key role in the

visual pathways since it is the first processing layer : it is

to describe the image can enhance the representasiorit therefore very demar_ldlng in terms of robustngss.and the
rliurons are highly active. Moreover, the eyes are in wide range
I

there would be an advantage to using an over-complete spike. . . ; . .
g g P PG iving species are mobile elements which permit the active

representation in the retina. We thus compared the sparse spike

. ‘exploration of the visual environment. Thus, the number of
code for different degrees of over-completeness by c:hoosmgJ

alternative progressions to the standard dyadic scale. The rons in the retina is presumably limited not only by the

filters are thus defined as above, but the image pyramid now %ﬂ-?al energy it can devote but also by physical restrictions such

. : as the size of the optic nerve. Since this number is limited (its
cludes respectivelyl, 2,4, 8} scalesper octavei.e. the scale Lo )

. . s over-completeness is limited), the representation may only use
level characteristic variances now grow aés) = o(1).p

X : _ im s more general filters. Simulations of filter emergence in this
wheres is the scale index and = {2, V2, 2, ¥2}. framework (described in [33]) show that for a small number

These experiments proved that as the number of neurons. . ' .
. . . of filters, the optimal filters converge to contrast selective
increased, the coefficients decreased more rapidly as a functlljon

of the relative rank and also the MSE. This behavior | etectors (unpublished data). It is therefore interesting to study

. . 1e case in the primary visual cortex where the situation is
understandable, because choosing a higher number of filz i . S0 . .
. X . different: the information is there multiplexed and filters may
ters allows the construction of a more fine grained multj- : . i .
X . selective to different orientations.
scale representation of the image. In fact, the number ©
neurons is multiplied by a factoy = 1 + (1/p)? +... +

(1/p)@rsem) = Zi(l/f’)z*(i_l) = % that is approx- E- Over-cqmplete_ representation in the primary visual cortex:
imately y = (1 — p~2)~L. This results in our different casesSParse spike coding

to an over-completeness of respectively/3,2,2 + v2 ~ Simple cells in V1 are known to exhibit a preference for
3.41,1/(1—1/+/2) ~ 6.28}. The information (in bits) needed oriented filters and we will here briefly present a model
to code the address of each spike (position and scale) is tlofisover-complete representation using a dictionary of Gabor
logs (Npizer) +1oga (1 — (1/p)?) 4+ 1 (npizer being the number filters to compare the time course of temporal spike coding
of pixels and one bit being allocated for the polarity). Weavith coding in the retina. In comparison with the retina, the
may therefore compute the performance of the coding schemer-completeness in V1 is far greater (in humans the number
in terms of the mean decrease in MSE as a function to tb&ganglion cells is of the order of one million whereas for V1
number of bits necessary to code the spike list (see Fig. this number reaches at leai0 million). In order to model
Left). However, the situation is different if we compare théhe simple cells of V1, we used the spike coding scheme (as
trade-off between efficiency (MSE decrease) and the complescribed in [23]) with a set of weight vectors; defined
tational complexity (we assumed here that the CPU usageas dilated, translated and sampl@dbor filters (see [18, pp.
proportional to the number of neurons). We obtained differet60]). The scale grows geometrically with a facipe= /2
results as a function of the degree of over-completeness ($ee 5 layers per octave) ove$ octaves and the preferred
Fig. 11-Right) and so conclude that under this constraint, tbeientation is circularly0, /4, /2 and 3w /4.

adaptive dyadic architecture would be optimal in the retina. As described in [23], the LUT were generated in the same
This appears to be mainly due to the nature of DOG filtersanner (see Fig. 12) and provided an efficient representation
(and to circularly symmetric wavelet filters in general) whiclof static images. Moreover, the location of spike firings
to a certain extent overlap too much and does not captu@responded with the location of edges at different scales and
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order of singularity in the static images providing a dynamican provide a computational gain. In particular, simulations
2 1/2 sketch of multi-scale contours. The resulting distributionith Gabor filters provided a temporaparse spike coding

of the coefficients is more kurtotic than in the retina.(it representation of the image which can be used to model V1.
decreases more rapidly toward zero). Since the number Hdwever, it seems still unclear if the chosen architecture for
filters is higher, the information rate ke. the information V1 is optimal in terms of the compromise between rapidity,
needed to code the address of one spike— is now in this layeecision and cost of computation.

~ 16.1bit/spike. However, convergence is quicker so that thi¥his scheme provides a simple algorithm for image processing
code may be compared with JPEG at high compression gamsich proves to be very effective and that can be used in
as shown in [23]. This therefore definesarse spike coding parallel algorithms such asP&ENET [11]. It shows specif-
scheme in V1 (Fig. 12). ically that in the model V1, the use of lateral interactions
This brief description shows that the use of more compld¥y to reduce redundancies could provide a speed-up of the
filters may yield more efficient representations. Moreover, wgocessing compared to an orthonormal feed-forward scheme.
proved that these filters could also be learnt using a simpe particularly interesting extension of this scheme, would
hebbian learning scheme [33] leading to an adaptive scheb® first to introduce mechanisms described by Bullier [6]:
that can code natural images optimally. However, the optimile spiking information from one layer or one sub-layer can
set of filters for V1 is still unknown, nor do we know themodify the sensitivity of neurons in another layer or sub-
optimal degree of over-completeness for the dictionary (hdayer to account for the information already propagated. For
many scales per octave? how many different orientationsistance, the rapid activity of neurons in the Magnocellular
This open question needs first to solve the acfuattionof pathway could cooperate with neurons in the Parvocellular
V1 constrained by its structure. In fact, V1 —as the most gfathway by providing a coarse information.

the cortex— is organized in 6-layered structure of elementafy last, it would be interesting to extend this spatio-temporal
cortical columns which could provide a hint to the particulatooperation to a spike code in the time domain. The matching
mechanisms underlying cortical processing. In particular [1pbrsuit scheme has already been used to build a video com-
suggested that these highly inter-dependant columns nmgssion codec [34] and should be particularly efficient for
implement a basic mechanism of inference, the whole syst@mocessing video streams. These advances would thus intro-
predicting future outcomes on the basis of the current inpulice a precise paradigm of event-based computing mimicking
the internal state and the expected gain predicting future statbg. efficiency of temporal mechanisms in biological neurons.

Online simulations - reproducible research

i . All scripts describing the models presented in the paper and
We presented and analyzed here strategies of temporal S%ﬁ?roducing the figures are available at :
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