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Abstract

It is generally assumed that neurons in the central nervous system communicate through
temporal firing patterns. As a first step, we will study the learning of a layer of realistic
neurons in the particular case where the relevant messages are formed by temporally cor-
related patterns, orsynfire patterns. The model is a layer of Integrate-and-Fire (IF) neurons
with synaptic current dynamics that adapts by minimizing a cost according to a gradient
descent scheme. This leads to a rule similar to Spike-Time Dependent Hebbian Plasticity
(STDHP). Our results show that the rule that we derive is biologically plausible and leads
to the detection of the coherence in the input in an unsupervised way. An application to
shape recognition is shown as an illustration.

Key words: Spiking Neural Networks, Hebb Rule, Spike Time Dependent Hebbian
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1 Description of the model

1.1 Coding scheme

We will represent (as in [Gerstner99]) the signalSi at synapsei by the sum of
Dirac pulses located at the spiking timestki drawn from the lists of spikesΓi (see
Figure 1-left).

Si =
∑

k∈Γi
δ(t− tki ) (1)

Synfire patterns are generated in analogy with the response of a retina to flashed
binary images. The input of the synapses is characterized as the output of single-
synapse IF neurons responding to a specific binary input.This response may be
described as the sum of two random point processes with different time scales. At
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Fig. 1.Neuron Model : (left) Input spikes (with a synfire pattern at t = 25ms), are
(middle) modulated in time and amplitude forming postsynaptic current pulses and
are finally (right) integrated at the soma. When the potential (blue line) reaches the
threshold (dotted green line), a spike is emitted and the potential is decreased. A
sample PSP is shown in red.

a narrow time scale, the input is the spontaneous activity, i.e. a background noise
independent of time and synapses that may be described by a Poisson point process
of rate1/τnoise. At a larger time scale, the synfire pattern activates a given subset
M of synapses once per flash with a correlation defined by its jitterτjitter. (see
figure 1-left)

1.2 Integrate-and-Fire Layer

We will considerN1 synapses (indexed byi) connected to a layer ofN2 neuronsj.
Those are generalized version of IF neurons with synaptic current dynamics, a one
compartment model with no delay and the synapses have contacts characterized by
their weightwij. The state variables are theN1.N2 synaptic driving conductances
gij and theN2 membrane potentialsVj. Incoming spikes trigger those conductances
by opening the driving gates with time constantτg :

dgij

dt
=− 1

τg

gij + wij.Si (2)

and the potentialVj at the soma integrates with time constantτV the driving cur-
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rents and the leaking currentgleak (with a potentialVrest ≈ −70 mV ): (see Fig. 1-
middle):

τV
dVj

dt
= gleak(Vrest − Vj) + (

∑
1≤i≤N2

gij) (3)

WhenVj reaches the threshold’s potentialVthreshold ≈ −54 mV from below, the tar-
get neuron fires (see Fig. 1-right) and is shunted (Vj is set e.g. toVreset ≈ −75 mV ).

1.3 Reduced equations

We introduce reduced equations for this IF Layer to study its dynamical behavior
and simplify its implementation. In fact, this reduction follows the concept of the
Spike-Response Model (SRM) which was extensively studied in [Gerstner99,?]. It
is similar to [Perrinet01] which aimed at reducing the STDHP equations to a set of
first order equations.





dci

dt
= − 1

τg
ci + Si

τV
dpi

dt
= −pi + ci

(4)

then,Vj = Vrest + (
∑

1≤i≤N1
wij.pi) verifies the equation system (2, 3), withgij =

wij.ci.
To account for the threshold mechanism at a timetkj , we may then add a resetting
value toVj by settingηj(t

k
j ) = Vreset − Vthreshold and then:

τV
ηj(t)

dt
=−ηj(t) (5)

So that finally, an equivalent version of the IF Layer consists of (4, 5) and :

Vj(t) = Vrest + (
∑

1≤i≤N1
wij.pi(t)) + ηj(t) (6)

This formulation depends only on the present state and not on the past values. It is
therefore biologically more plausible and computationally cheaper.
Integrating these equations after emission of a presynaptic spike atti or a postsy-
naptic spike attj leads to :
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ci(t) = exp(−t− ti
τg

) (7)

pi(t) =
τg

τV − τg

(exp(−t− ti
τg

)− exp(−t− ti
τv

)) (8)

η(t) = (Vreset − Vthreshold)exp(−t− tj
τV

) (9)

Those equations (6, 7, 8 and 9) are the equivalent SRM version of our IF model.
More precisely eq. 7 represents the PostSynaptic Current (PSC), see fig. 1-middle,
and eq. 8 the PostSynaptic Potential (PSP), see fig. 1-right. .

2 The learning mechanism

2.1 Definition of the cost function

Based on neurophysiological studies, we set the following principles :

(1) the learning is associated with a response : thenth learning step occurs at the
nth output firing timetn,

(2) to discriminate between the different input patterns, the output voltage should
be close to a target value : the potential of the winning neuron (which we
index j = jn) should be above threshold whereas other neurons should be
hyperpolarized,

(3) economy of the total synaptic efficacy and current use should be respected.

A possible cost function may therefore be the squared distance to the potentials of
neurons at the firing timetn added to the total sum of the squared weights:

2.E =
∑

1≤j≤N2

(Vj − V t
j )2 + α

∑

1≤j≤N2

(
∂Vj

∂t
)2 + β

1≤j≤N2∑

1≤i≤N1

wij
2 (10)

V t
j = Vrest for j 6= jn (11)

V t
jn

= Vthreshold + ∆V (12)

Whereα andβ are scaling parameters and∆V ≈ 5 mV .

2.2 Gradient descent

It follows from equations 10 and 6 :
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Fig. 2.STDHP : Relative weight change versus time difference between input and
output spikes in a single neuron modelized with our model.

∂E

∂wij

= (Vj − V t
j )

∂Vj

∂wij

+ α
∂Vj

∂t

∂

∂wij

∂Vj

∂t
+ βwij

= (Vj − V t
j ).pi + α

∂Vj

∂t
.ṗi + βwij

We may therefore formulate the gradient descent algorithm in our model as :

wn+1
ij = wn

ij − γn.
∂E

∂wij

= (1− βn)wn
ij + γn(V t

j − Vj).
∂Vj

∂wij

+ αn.
∂Vj

∂t
.
∂V̇j

∂wij

with learning factorsγn, αnandβn which satisfies (e.g. forγn)
∑

n=1...∞ γn → ∞
and

∑
n=1...∞ γn

2 < ∞.

Finally,

wn+1
ij = (1− γn)wn

ij + αn(V t
j − Vj).pi + βn(

∑
wij.ṗi)ṗi (13)

2.3 Spike-time Dependent Plasticity

A closer look at equation 13 shows a direction in the change ofwij is proportional
to (V target

j − Vj).pi. This is a hebbian type of rule : when a neuronj fires after
the firing of synapsej, there is a mechanism that strengthen the connection. The
strengthening depends therefore on the relative time of the pre- and post-synaptic
spikes (see fig. 2) as is observed in biological systems [Bi98].

5



200 400 600 800 1000

10

20

30

40

50

60

70

80

90

100

time (ms)

sy
na

ps
e 

#

0

1000

2000

0

2

4

6
−80

−60

−40

−20

0

time (ms)neuron #

po
te

nt
ia

l (
m

V
)

Fig. 3. Coherence detection: (left) different input patterns
(t = 100ms, 300ms, 500ms, 700ms, 900ms) are (right) learnt by the system :
only one neuron per input fires (100 learning steps)

3 Numerical results

We implemented this model using discrete versions of the differential equations
(forward Euler method) on a MATLAB system.

3.1 Response to synfire patterns

To achieve this experiment we presented synfire patterns to the layer. The weights
were set at random so that the network could fire to all the inputs. The patterns
were presented at random times that were sufficiently distant. This unsupervised
learning converges quickly, and as may be observed in neuromuscular connectivity,
the synapses tend to sparsify and the neurons tend to respond to only one input (see
Figure 3).

3.2 Response to oriented bars

The next experiment consisted in applying those results to a basic retina which in-
put consists of centered rotated lines. A fixed analogical contrast layer (ON and
OFF radial cells) sends then spikes to the learning layer that adapts with the rule
we presented. We observe unsupervised emergence of V1-like receptors fields sen-
sitive to the orientation (see Figure 4). Further experiments with lateral interactions
and accounting for dendritic delay show even more realistic filters and column ar-
chitecture.
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Fig. 4.Oriented bars detection: after learning, the weights show sensitivity to orien-
tation (black:OFF; white:ON; gray:neutral)

Conclusion

We have presented an original gradient descent method to find a learning rule for
a layer of spiking neurons. The simplicity of the rule gives a new insight into the
comprehension of the mechanism behind the observed STDHP. Further work is
done for the detection of asynchronous patterns.
However, this study should be extended to more realistic spike trains (e.g. bursts),
account for more complex behavior (e.g. facilitation and depression) and may be
extended to population of neurons and recurrent systems.
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Online simulations

http://laurent.perrinet.free.fr/app/app.html
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