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Abstract

The quality of the representation of an object’s motion is limited by the noise in the sensory input as well as by an intrinsic ambiguity
due to the spatial limitation of the visual motion analyzers (aperture problem). Perceptual and oculomotor data demonstrate that motion
processing of extended objects is initially dominated by the local 1D motion cues, related to the object’s edges and orthogonal to them,
whereas 2D information, related to terminators (or edge-endings), takes progressively over and leads to the final correct representation of
global motion. A Bayesian framework accounting for the sensory noise and general expectancies for object velocities has proven success-
ful in explaining several experimental findings concerning early motion processing [Weiss, Y., Adelson, E., 1998. Slow and smooth: a
Bayesian theory for the combination of local motion signals in human vision. MIT Technical report, A.I. Memo 1624]. In particular,
these models provide a qualitative account for the initial bias induced by the 1D motion cue. However, a complete functional model,
encompassing the dynamical evolution of object motion perception, including the integration of different motion cues, is still lacking.
Here we outline several experimental observations concerning human smooth pursuit of moving objects and more particularly the time
course of its initiation phase, which reflects the ongoing motion integration process. In addition, we propose a recursive extension of the
Bayesian model, motivated and constrained by our oculomotor data, to describe the dynamical integration of 1D and 2D motion infor-
mation. We compare the model predictions for object motion tracking with human oculomotor recordings.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Efficient object motion processing is achieved in humans
and non-human primates by integrating multiple noisy local
motion signals. It is appropriate to distinguish two types of
local motion signals, ambiguous and non-ambiguous ones.
Motion signals from elongated uni-dimensional (1D) con-
tours are ambiguous when analyzed through a spatially lim-
ited aperture (see Fig. 1), similar to the receptive field of
many neurons in the motion-sensitive middle-temporal
(MT) cortical area (Albright, 1984). The ambiguity relies
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on the fact that the motion of the contour in the tangential
direction is unknown, so that the observed movement is
consistent with a family of possible motion directions and
velocities (Fig. 1). In contrast, motion signals from local
2D features (e.g. terminators) are non-ambiguous, and psy-
chophysical (Lorenceau and Shiffrar, 1992) and physiolog-
ical (Pack and Born, 2001) studies have demonstrated that
these signals can be used to reliably solve the aperture prob-
lem. However, the integration of 1D and 2D information is
time-demanding and very short presentations of moving
objects may give rise to characteristic perceptual errors
(Lorenceau et al., 1993) that are biased in the direction
orthogonal to the contour. For example, Lorenceau and
Shiffrar (1992) found that tilted lines (+20� anti-clockwise
with respect to the vertical) moving to the right and down
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Fig. 1. The aperture problem. A simple moving stimulus such as a tilted
line carries ambiguous information about motion when it is observed
through a small aperture, like in the right panel. In this example, a tilted
line which is moving horizontally tends to be perceived as moving
orthogonally to its edge.
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are perceived as moving upward if presented very briefly at
a low contrast. For longer presentations, the perceptual bias
tends to be reduced and eventually eliminated. In parallel,
electrophysiological recordings have shown that direction
selectivity for motion-sensitive neurons in MT changes
across time, over a typical time interval of �60 ms (Pack
and Born, 2001). MT neurons respond mostly to the direc-
tion orthogonal to object’s motion, whereas later they
encode the actual object’s motion.

Recent studies on smooth pursuit eye movements
(SPEM) do also provide an account of early motion pro-
cessing which parallels the former findings in psychophys-
ical experiments (see also Section 2). When human
subjects or monkeys are required to visually track a moving
object carrying different 1D and 2D information, eye-
velocity traces are transiently biased, at pursuit initiation,
toward the 1D-cued direction, i.e. orthogonally to the
object’s contour (Masson and Stone, 2002; Wallace et al.,
2005; Born et al., 2006). Later, the edge–orthogonal 1D-
bias (or tracking error) is progressively eliminated and
eye-velocity converges to the object’s global motion. Typi-
cally, the resolution of motion signal ambiguity is achieved
within the first 300–400 ms after the presentation of the
moving stimulus.

Beside the intrinsic ambiguity resulting from the local
edge direction of motion, visual motion is also affected
by the noise embedded in the sensory input per se. These
two sources of uncertainty can be well integrated within a
Bayesian framework (Weiss et al., 2002; Weiss and Fleet,
2002; Stocker and Simoncelli, 2006; Perrinet et al., 2005)
where the perceived motion is the solution of a statistical
inference problem. In these models, the information from
local 1D and 2D motions can be represented by their like-
lihood functions and these functions can be derived for
simple objects with the help of a few reasonable assump-
tions (Weiss and Fleet, 2002). Bayesian models also allow
the inclusion of prior constraints and the most common
assumption used in motion models is a preference for slow
speeds. The effects of priors are especially salient when sig-
nal uncertainty is high. One way to increase the uncertainty
of a visual stimulus is to reduce its contrast, and in these
cases, perceived velocity is indeed underestimated (Thomp-
son, 1982), thereby providing some experimental support
for the slowness prior. Interestingly, Priebe and Lisberger,
2004 have demonstrated that increasing the spatial fre-
quency of the moving stimuli leads to qualitatively similar
results than a decrease of contrast (or, more generally, an
increase of visual noise), namely to the underestimation
of perceived motion speed.

Up to now, Bayesian motion models have been applied
to qualitatively predict, for instance, the initial bias toward
1D motion signals observed experimentally and its depen-
dence on sensory noise (Weiss et al., 2002). We propose
here to develop this theoretical framework in order to
model smooth pursuit eye movements when tracking mov-
ing objects that carry multiple local cues. In particular we
will focus on the dynamical evolution of the tracking error
which reflects, in our opinion, the main characteristics of
the underlying dynamical motion integration process.
Our dynamic model is composed of a Bayesian kernel
and an updating rule. The Bayesian kernel is fairly tradi-
tional, combining prior knowledge on speed with the cur-
rent estimate to produce a robust inference of velocity.
The updating rule revises the prior with time, thereby
reflecting all past evidence about particular velocities. We
propose that prior knowledge represents initially a default
assumption independently of any stimulus that is then
recursively updated by using the previous posterior proba-
bility as the current prior. The recursive injection of poster-
ior distribution boosts the spread of information about the
object’s global shape, favoring the disambiguation of 1D
by 2D cues. We also propose to both constrain and vali-
date this model by means of experimental recordings of
smooth pursuit eye movements.

2. Dynamic motion integration: an oculomotor account

Humans and monkeys are perfectly able to visually
track the center of a moving extended object. The general
purpose of these smooth voluntary eye movements is the
stabilization of the image of the moving object on the
fovea. Tracking accuracy during the steady-state move-
ment is very high regardless of the orientation of the
object’s edges with respect to motion direction.

However, before the steady-state movement is achieved,
significant biases can be observed. When the orientation of
a moving line is not orthogonal to motion direction, the
oculomotor trajectory initially deviates from the global
motion direction, moving in a direction biased toward
the perpendicular to the edge. For an horizontally moving
tilted line (see Fig. 2), for instance, a non-zero transient
vertical component is consistently observed, both in human
and non-human primate observers (Wallace et al., 2005;
Born et al., 2006). This tracking error typically peaks to a
maximum at around 100 ms after pursuit onset and then
it decreases to zero within the next 100 – 200 ms. The peak
of the tracking error occurs before the beginning of the
closed-loop phase, namely when feedback information
about the eye motion is not yet available. This suggests that
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Fig. 2. The aperture problem and smooth pursuit eye movements. Top: cartoon of stimuli composed of non-conflicting (vertical line) and conflicting
(tilted line) information from 1D and 2D cues. Solid (dashed) arrows represent actual (initially perceived) motion. Bottom Left and Middle: Horizontal
and vertical eye velocity when tracking the non-conflicting and the conflicting stimulus. Bottom Right: Mean tracking error with respect to object
trajectory. This figure is modified, with permission of authors, from (Wallace et al., 2005).
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the dynamic correction of the tracking error is primarily a
visual phenomenon.

The horizontal and vertical eye-velocity profiles, as well
as the tracking error during pursuit initiation of vertical
and tilted lines moving rightwards at 20 deg/s are shown
in Fig. 2 for a representative human subject. For the verti-
cal line, edge-related (1D) and terminator-related (2D) cues
are in agreement, both indicating horizontal motion. In
contrast, for the tilted line 1D and 2D cues carry conflicting
information, leading to the transient tracking error.

In the example in Fig. 2 the peak tracking error reaches
almost 40�, which is actually quite rare when using high-
contrast stimuli. Most often, SPEM tracking error starts
with a value bigger than 0 and below the 45� predicted by
the 1D-cue and then it decreases to 0. For the Ocular Fol-
lowing Reflex at ultra-short latency, Masson and colleagues
(Masson et al., 2000) have shown that the initial response,
initiated about 85 ms after stimulus onset is directed in
the exact 1D-cued direction and only �20 ms later the 2D
information starts to become relevant leading to the correc-
tion of the tracking error. One explanation of this discrep-
ancy between different types of eye movements is that,
because of their longer latency, the smooth pursuit system
has the time to integrate some information before move-
ment initiation, thereby confounding very small offset dif-
ferences in the processing of different motion components.

Overall, the time course of the ocular tracking error is in
good agreement with the psychophysical results on the
motion perception bias (Lorenceau and Shiffrar, 1992;
Lorenceau et al., 1993), again supporting the idea that
the transient oculomotor bias originates from local visual
motion processing. When compared to the temporal evolu-
tion of motion direction tuning curves observed in MT cells
(Pack and Born, 2001), the dynamics of the tracking error
correction appears to be slower. This fact has to be inter-
preted as the evidence that the oculomotor response corre-
sponds to a low-pass filtered account of the visual
dynamics, because of the properties of the oculomotor
plant (Robinson et al., 1986).

Two recent studies (Osborne et al., 2005, 2007) have
shown that most of SPEM velocity variability, at initiation,
can be explained in terms of uncertainty about the sensory
input. Although the exact match between perceptual and
oculomotor variability is still a debated issue (Gegenfurtner
et al., 2003; Priebe and Lisberger, 2004), we will assume
that, at least at smooth pursuit initiation, oculomotor var-
iability does mainly reflect sensory uncertainty (see Section
3.1). A purely oculomotor component of pursuit variability
is likely to affect the smooth pursuit data: Osborne et al.
(2005, 2007) have measured what they call the background
noise and have shown that this component is clearly distin-
guishable from the sensory-driven variability and that the
two components are simply linearly summed during visual
pursuit. Similarly to their evaluation of background noise,
in the present study, we evaluated the standard error of the
mean horizontal eye velocity in a 40-ms time window cen-
tered at the time of presentation of the moving stimulus.
We did it for all four stimuli we used, a circular blob, a very
long vertical line, a 17�-tilted line and a 12� vertical line. In
all cases was the estimated background noise about an
order of magnitude smaller than the velocity SEM com-
puted during the steady-state pursuit phase: overall mean
SEM velocity was respectively 0.09 and 0.94 deg/s, the dif-
ference being statistically highly significant (paired t-test,
p < 10�4). For this reason we decided to disregard here
the background motor component of velocity variability.

Finally, we will assume, at this first stage, that oculomo-
tor variability affects independently the horizontal and
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vertical components of smooth pursuit eye movements (in
line with the assumption that sensory variability is consid-
ered independent at different points in the velocity space,
see Section 3.2.1).

2.1. Effects of the physical properties of the moving stimulus

The tracking error has been shown to parametrically
depend on several characteristics of the moving stimulus.
When luminance contrast is reduced, the tracking error
increases in size, reaching, at its maximum, values very
close to the edge–orthogonal direction. In addition, the
time duration of the transient bias is bigger (Wallace
et al., 2005). The tracking error tends also to increase
weakly with stimulus speed, but in this case its time course
remains roughly unchanged. When the moving stimulus is
presented in the visual periphery, the smooth pursuit of the
eccentric stimulus presents only a very reduced tracking
error. Stimulus size (line length) boosts the transient bias
(Born et al., 2006), whereas the introduction of more termi-
nators (e.g. braking the contours in smaller dashes) reduces
both the size and the duration of the orthogonal transient
bias (Wallace et al., 2005). These findings replicate in many
aspects older analogous studies in visual psychophysics
(Castet et al., 1993) that had investigated the dependence
of the perceived illusory motion induced by the aperture
problem upon several physical properties of the stimuli.
This set of experimental observations provides a composite
and straightforward benchmark for our model of the
dynamics of motion processing based on sensory
uncertainty.

2.2. Effect of motion predictability: no transfer across trials

A striking aspect of the initial bias for pursuit is that it is
highly reproducible and seems to be immune to cognitive
influence such as shape cueing (Wallace et al., 2005). We
have recently tested the robustness of the tracking error
to motion predictability by manipulating, across experi-
mental blocks, the probability of occurrence of a given
stimulus orientation and/or motion direction (Montagnini
et al., 2006). Interestingly, no reduction of the average
tracking error at pursuit initiation was observed, across
many trials, when motion predictability was very high
(90% probability) or complete (100% probability). In
apparent contradiction with this finding, a robust anticipa-
tory pursuit in the true global motion direction was
observed, whose size was proportional to the strength of
predictability. This fact proves that an efficient predictive
signal about correct object motion was indeed available
to the oculomotor system, although it was clearly not used
at the initial stage of motion cue integration to reduce the
tracking error. Taken together, these findings suggest that
predictive information can differently affect distinct phases
of smooth pursuit eye movements. Moreover, and more
specifically to the present purpose of a Bayesian model of
motion perception, these findings constrain the limits and
the nature of the prior that is the crucial dynamic variable
of our model. In the current study, we use the term prior to
refer to the accumulated evidence that an observer assigns
to each point in velocity space. This probability distribu-
tion is defined at any time since motion onset, but it does
not transfer from trial to trial. In other words, for any trial,
at time 0 our prior P0 corresponds to the traditional defini-
tion of a prior, i.e. a stimulus-independent statistical belief
about motion. Based on our past work (Montagnini et al.,
2006), we assume that previous trial experience does not
influence the initial prior on velocity P0 although it might
influence motion expectations at a different level to explain
the anticipatory eye movements. As explained in detail in
the next section (3.2), the prior in our model is not taken
to be fixed, and its recursive update is fundamental to cor-
rect the tracking error within the first 300 ms of motion.

3. General ideas and methods

3.1. Oculomotor recordings: constraining and testing the

model

3.1.1. Smooth pursuit recording and analysis
In the first set of oculomotor experiments, we recorded

smooth pursuit eye movements from three human subjects
(two authors of the paper and one naı̈ve subject) while they
were tracking one of two objects. The first object was a cir-
cular Gaussian spot and the second a line whose length
could be approximated as infinite, in the sense that termi-
nators were very far in the periphery and therefore their
influence was presumably very limited. These stimuli
moved with various motion directions and speeds (see
Fig. 3). Vertical and horizontal position of the right eye
was recorded by means of the scleral eye coil technique
(Collewijn et al., 1975). Data were sampled at 1 kHz,
low-pass filtered (DC – 130 Hz) and digitized with 16 bit
resolution. Eye-position data were linearized off-line and
smoothed using a spline algorithm before differentiation
to obtain eye-velocity profiles. In this first experiment,
stimuli were either a central blob with Gaussian luminosity
profile (standard deviation �0.2� of visual angle) or a long
line (length: 48� same Gaussian profile for its width). Peak
luminance was always 60 cd/m2. In all cases the moving
targets were highly visible against the black background.
We used three different target speed values: 5, 10 and
15 deg/s; target motion was always horizontal and the
direction (right or left) was randomly chosen at each trial.
The second set of oculomotor experiments provided a data-
base to quantitatively test the model’s prediction concern-
ing the tracking error’s dynamics. Stimuli were always a
single line, either tilted 45� relative to horizontal, (length:
17� of visual angle) or vertical (length 12�), the latter pro-
viding a reliable control stimulus for possible idiosynchrat-
ic movement bias. We collected between 100 and 150 trials
for each condition (4 stimulus types · 2 directions · 3
speed values) from each subject. Off-line inspection of the
individual eye-velocity curves allowed us to eliminate
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Fig. 3. Left: Moving stimuli carrying mostly 2D (central spot, top) or 1D (very long line, bottom) information. Right: Example of horizontal velocity
traces at pursuit initiation recorded when one subject was tracking the long vertical line. The trial-by-trial variability of horizontal velocity around the time
of peak acceleration is used to estimate the variance of the 2D and 1D likelihood functions.
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aberrant trials (overall less than 5%), like those including
eye blinks. In addition, an automatic procedure was used
to detect catch-up saccades within the pursuit traces and
to cut out the corresponding part of the velocity traces,
before the evaluation of the sample mean and variance
and any other analysis.

All statistical analyses were repeated in two conditions,
i.e. with the traces aligned with respect to stimulus onset
and with the traces aligned with respect to pursuit onset.
The reason to do this was to control and eventually elimi-
nate the component of variability in the eye velocity which
is due to the jitter in pursuit latency and possibly to uncer-
tainty in time estimation (as pointed out by Osborne et al.
(2005)). As a matter of fact, pursuit latency was quite stable
across conditions in our experiments (averaging between
100 and 120 ms) and we could not detect any major differ-
ence in our results depending on the time-locking choice.
Therefore, since our model does not make any specific
hypothesis about latency variability, in this paper we chose
to present only results obtained with the eye movement
traces aligned on pursuit onset.
3.1.2. Using pursuit data to estimate Bayesian uncertainty

Previous works (Hürlimann et al., 1992; Stocker and
Simoncelli, 2006) have attempted to validate and constrain
the theoretical Bayesian framework for motion perception
(Weiss et al., 2002) by using psychophysical experimental
data. Here, we propose to use smooth pursuit eye move-
ments data for both phases, i.e. in order to estimate the cru-
cial model parameter (thereby constraining the model at
the quantitative level) and, later, to test its predictions
(see Section 4).

We assume that the variability of pursuit velocity at ini-
tiation mostly reflects the variability of the estimated target
velocity. This assumption allows us to infer the variance of
the posterior velocity distribution in our model from the
measurement of pursuit data variability. In turn, the
inferred variance for the posterior can be used to infer
the variance of the Bayesian prior and likelihood functions.
In particular, using the specific stimuli of the first experi-
ment (small circular Gaussian spot and very long line),
we can infer the spread of the likelihoods for the 2D and
1D visual sources of information. The mathematical details
of this derivation are explicited in Section 3.2.1.

For each pursuit trial, we used the mean eye velocity
across a 40 ms time window centered around the time of
peak acceleration (i.e. between 20 and 60 ms after pursuit
onset or 120–160 ms after stimulus onset) as the relevant
estimate for the initial posterior distribution (see Fig. 3,
right panel). This choice was motivated by the fact that
pursuit dynamics at the peak acceleration can be consid-
ered as approximating the impulse-response function to a
step in the target velocity (the peak eye acceleration being
proportional to target velocity for smooth pursuit eye
movements (Lisberger et al., 1987)). We computed the
average and variance across the trial population of this
impulse-response velocity. The derived quantities were
used as estimates of the means and variances of the poster-
ior distributions (see Section 3.2.1).
3.2. Model: An adaptive Bayesian framework to explain

dynamic motion integration

Our modeling effort is an attempt to reproduce the
characteristic tracking errors witnessed during smooth
pursuit of a moving tilted line. Mathematical details are
reported below (Section 3.2.1). We assume here that the
problem is solved at the level of velocity space, thereby
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1 A (rapidly) evolving prior is somewhat contradictory with the
established Bayesian definition of prior (but see Mamassian and Landy,
2001). Beyond the possibly misleading name, our aim here is only to
suggest a formal way to update the statistical inference which is at the
basis of motion perception. The updating rule could probably be different
– for instance affecting the likelihood instead of the prior – but the crucial
point is that it has to progressively account for an increasing weight of 2D
cues.
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considering solved the critical stage of extracting velocities
from the image, for which we follow the approach pro-
posed by Weiss and colleagues (Weiss and Adelson,
1998). We also follow some basic assumptions of previous
Bayesian static models of motion processing (see Fig. 4),
namely that

• at time t = 0 (stimulus motion onset) the prior is Gauss-
ian, centered on (vx,vy) = (0, 0), with variance r2

0;
• the likelihood functions computed at any given point of

the moving object are independent. As a consequence,
1D (edge related) and 2D (terminator related) likelihood
functions can be multiplied to compute the object
likelihood;

• the sensory noise affecting the likelihood functions is
Gaussian, with variance r2

1 and r2
2 for the edge and ter-

minator likelihood respectively.

The posterior distribution of perceived motion is related
to prior and likelihood functions by means of Bayes’ rule
(as represented in Fig. 4). Image motion is inferred by
means of a Maximum a Posteriori estimate (MAP).
Our aim here being to model the time course of the pur-
suit tracking error, we implemented a recursive method to
update the prior using past information.1 This is somewhat
equivalent to a dynamic filtering procedure (Kalman,
1958). Indeed the role of the prior distribution in our recur-
rent probabilistic model is very similar to the idea that the
prior information in the Kalman filter includes all the
knowledge accumulated across time, before the integration
of the current piece of information.

An interesting model of a cortical recurrent neural net-
work implementing dynamic Bayesian inference has been
proposed by Rao (2004). It is important to underline here
that although our model is critically grounded on the
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recurrent update of information, it does not provide any
indication about the nature of the underlying cortical
architecture. For instance, one possibility is that feedback
connections from MT to V1 could play a crucial role in
the accumulation of evidence leading to the correction
of the tracking error, as suggested by Bayerl and Neu-
mann (2004). Alternatively, the update of information
could even occur at the early stages of integration of the
visual input, as suggested by Weiss and Adelson (1998).
In practice, in our model at each discrete time step (in
arbitrary units) the previous posterior function is used as
the current prior function (see arrow scheme on the left
of Fig. 4). Fig. 5(top) shows a cartoon of the simulated
evolution of the posterior distribution for a moving tilted
line from motion onset to the final matching with the
object velocity. The inferred motion direction is given at
any time by the velocity vector corresponding to the max-

imum a posteriori (MAP) of the probability distribution.
Fig. 5(bottom) represents the simulated evolution of such
inferred direction expressed as tracking-error. The initial
tracking is clearly biased in the direction orthogonal to
the line (1D motion cue), and it is progressively corrected
to match the true object motion (2D motion), as it was
experimentally observed in human smooth pursuit (see
Fig. 2).

Note that during smooth pursuit the retinal velocity
converges to zero: the stabilization of the moving visual
image on the retina is indeed the purpose of this kind of
eye movements. Classical models of oculomotor control
(Robinson et al., 1986) postulate the existence of an efferent
copy of the oculomotor command, in the closed-loop
phase, which is fed back to the input-stage of the smooth
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Fig. 5. Top: Evolution of the posterior probability: four arbitrary time s
pursuit control system. The information carried by the
efferent copy is summed to the retinal visual input, thereby
preventing the eyes from interrupting their tracking motion
once the image is stabilized and the retinal velocity is
around zero. In our model we assume that in the closed-
loop phase the efferent copy is combined with the retinal
input with no delay and no additional oculomotor noise,
which is equivalent to consider visual information in an
absolute allocentric reference frame instead of the retino-
centric frame.

A more general prediction of our recurrent model is that
posterior variance, which is assumed to be faithfully repre-
sented by the experimental smooth pursuit velocity, will
decrease across time. This fact can be easily observed in
the upper panels of Fig. 5 and will be made more explicit
mathematically later (see Eqs. (9) and (10)). This prediction
holds regardless of the moving stimulus considered. There-
fore, in order to test this prediction we pooled data from all
sets of recordings (i.e. using the four types of visual stimuli
described in Section 3.1.1), for all subjects and conditions,
and we compared the standard error of the mean for eye-
velocity computed at the beginning of the pursuit steady
state (�240 ms after stimulus onset) and at a later phase
of the steady state (�340 ms after stimulus onset). Mean
velocity SEM was respectively 0.94 and 0.35 deg/s, this dif-
ference being highly significant (as confirmed by a one-
tailed paired t-test, t(69) = 3.27, p < 10�3), and suggesting
that indeed velocity variability is consistently reduced
across time. Unfortunately our experimental trials lasted
only 500 ms after stimulus onset and therefore they did
not allow us to analyse the dynamic decrease of velocity
variance on a longer interval.
t2 t3

uit onset [arbitrary units]

teps are shown from left to right. Bottom: Simulated tracking error.
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The model can now be tested against quantitative pre-
dictions about the time course of SPEM tracking error
for different conditions of the sensory input. For instance,
all the experimental effects described in Section 2.1 can vir-
tually be reproduced by the model. In principle the motion
integration dynamics for more complex objects can also be
predicted, as a combination of several independent 1D and
2D components.

3.2.1. Mathematical details of the model

Let us assume that the likelihood function is composed
of two parts, one corresponding to the information coming
from the middle of the line, the other to the information
coming from the ends of the line (terminators). We assume
that these two pieces of information are processed indepen-
dently and that their uncertainty function is well described
by a normal distribution. With no loss of generality, we will
assume that the line is moving horizontally at speed v0. The
likelihood L1 for the middle of the line is subject to the
aperture problem, i.e. the velocity component tangent to
the orientation of the line is undetermined. For each coor-
dinate pair (vx,vy) in velocity space, we have:

L1ðvx; vyÞ ¼
1

Z
exp �ððvx � v0Þ cosðhÞ þ vy sinðhÞÞ2

2r2
1

 !
; ð1Þ

where Z is the partition function (or normalizing constant:
we will use the same notation Z for different distributions
along the paper), h is the orientation of the line (0 is verti-
cal), and r1 is the standard deviation of the uncertainty on
speed of the line motion along the normal to the line. The
likelihood L2 for the terminators is not subject to the aper-
ture problem and is therefore a noisy unbiased estimate of
the true velocity:

L2ðvx; vyÞ ¼
1

Z
exp �

ðvx � v0Þ2 þ v2
y

2r2
2

 !
; ð2Þ

where r2 is the standard deviation of the uncertainty on
speed of the line motion at the terminators. Because of
our independence assumption, the overall likelihood for
the line motion is simply:

Lðvx; vyÞ ¼ L1ðvx; vyÞL2ðvx; vyÞ: ð3Þ
At the onset of the stimulus, we assume not only that we do
not have any bias to perceive any particular direction of
motion but also that motion speed is slow. In other words,
the initial prior P0 of velocity is centered on the origin of
the velocity space (i.e. the most expected speed value is 0)
and it is normally distributed, with variance r2

0 about the
origin:

P 0ðvx; vyÞ ¼
1

Z
exp �

v2
x þ v2

y

2r2
0

 !
: ð4Þ

Likelihood and prior information can be combined thanks
to Bayes’ rule to produce the posterior distribution Q0:

Q0ðvx; vyÞ ¼ Lðvx; vyÞP 0ðvx; vyÞ: ð5Þ
If we adopt as decision rule the maximum-a-posteriori
(MAP), the inferred velocity at the onset of the stimulus is

ðbvx ; bvy Þ ¼ arg max
vx;vy

Q0ðvx; vyÞ: ð6Þ

It should be noted however that in the case of Gaussian
distributions the argument of the maximum-a-posteriori
is equivalent to the mean of the distribution.

The posterior probability distribution function includes
all the information extracted from the stimulus and from
prior knowledge. Therefore, it makes sense to pass on this
knowledge at the next iterative stage when new information
is extracted from the stimulus. By then, the original prior is
out-of-date and the best strategy is to replace it with the
past posterior. Iteratively from time (t � 1) to time t, we
thus obtain:

P tðvx; vyÞ ¼ Qt�1ðvx; vyÞ: ð7Þ
Finally, the posterior distribution at any time t is given
again by the Bayes’ rule:

Qtðvx; vyÞ ¼ Lðvx; vyÞP tðvx; vyÞ: ð8Þ
3.2.1.1. Analytical formulation. Because all the densities
involved are normally distributed, their product is Gauss-
ian and we can solve Eq. (8) analytically (Perrinet et al.,
2006), with respect to the two velocity components vx(t)
and vy(t) (not shown). More simply, by projecting the equa-
tion along two axes (tangent and perpendicular to the line
respectively), there exist two simple coupled equations (one
according to the orthogonal ‘orth’, one according to the
tangent ‘tang’) allowing to explicit the mean and variance
of the distribution on the left-hand side of Eq. (8) as a func-
tion of the mean and variance of the distributions on the
right-hand side:

r�2
Q;orth ¼ ðr�2

1 þ r�2
2 Þðt=sÞ þ r�2

0 ;

r�2
Q;orthðvx cosðhÞ þ vy sinðhÞÞ ¼ ðr�2

1 þ r�2
2 Þðt=sÞv0 cosðhÞ;

(
ð9Þ

r�2
Q;tang ¼ r�2

2 ðt=sÞ þ r�2
0 ;

r�2
Q;tangðvx cosðhÞ � vy sinðhÞÞ ¼ r�2

2 ðt=sÞv0 sinðhÞ;

(
ð10Þ

where s is a time constant that corresponds to the duration
of one iterative step in the discrete description of our model
in Eq. (7) and (8). The constant s serves also the purpose to
keep coherent dimensions on both sides of the equations,
namely the dimension of an inverse square velocity (first
equation of each set) or that of an inverse velocity (second
equation).

Finally, one can extract (vx,vy) as function of time from
this set of two linear equations.

3.2.1.2. Parameter estimation to constrain the model. The
variance terms r2

0, r2
1 and r2

2 of Eqs. (1), (2) and (4) are free
parameters in our model. We estimate them by applying
Bayes’ rule, similar to Eq. (5), to the pure 1D (long vertical



2 Given the use of an arbitrary time unit in the model simulations, all
predictions about the time course of motion processing have to be rescaled
along the temporal dimension.

72 A. Montagnini et al. / Journal of Physiology - Paris 101 (2007) 64–77
line) and pure 2D (central Gaussian blob) motion stimuli of
our first experiment:

Q0;iðvx; vyÞ ¼ Liðvx; vyÞP 0ðvx; vyÞ; ð11Þ

with i = 1 or 2 depending on whether we displayed the 1D
or 2D stimulus, respectively. Again, given that both the
likelihoods and the prior are normal distributions, their
product is also proportional to a normal distribution. Fol-
lowing the same reasoning leading to Eqs. (9) and (10), we
can write:

lQ0;i
r�2

Q0;i
¼ lir

�2
i þ l0r

�2
0 ;

r�2
Q0;i
¼ r�2

i þ r�2
0 :

(
ð12Þ

The values lQ0;i
and r�2

Q0;i
have been estimated from the ocu-

lomotor recordings for the 1D and 2D-stimulus respec-
tively (see Section 3.1). The likelihood mean value li is
assumed to coincide with the stimulus speed v0 (see Eqs.
(1) and (2)), whereas the prior mean l0 is assumed to be
0 initially (see Eq. (4)). Therefore, the only unknowns left
are r�2

i and r�2
0 . The above pair of equations is a set of

two linear equations with these two unknowns, thus lead-
ing to a straightforward unique solution. However, if we
consider the two pairs of equations (for i = 1,2), these
equations are overdetermined because there are altogether
only three unknowns r�2

1 , r�2
2 and r�2

0 . The variance of the
prior r2

0 is indeed assumed to be independent of the stimu-
lus type (at least initially). In order to validate the self-con-
sistency of the model we checked how well the model
parameters estimated from one set of oculomotor measure-
ments are capable of predicting the other set of measure-
ments. In practice, the double set of Eqs. (12), for i = 1,
2, has a solution if and only if the following equality is va-
lid (we have implicitly eliminated the term with l0, since the
prior mean is assumed to be 0 initially):

r�2
Q0;1
¼ r�2

Q0;2

l2 � lQ0;2

l2

l1

l1 � lQ0;1

: ð13Þ

This equality shows that the 1D-posterior variance (left-
hand term) can be estimated by using the terms on the
right-hand side, which are available from experimental
measures or from the model assumptions. At the same time
the 1D-posterior variance is itself an experimental observa-
ble (from the set of measurements with the 1D stimulus).
We therefore compared, for each subject, model predic-
tions and experimental measures of the 1D-posterior vari-
ance in all experimental conditions. In order to evaluate
the goodness of fit for our model’s predictions, we com-
puted the coefficient of determination R2, defined as

R2 ¼ 1� SSE

SST
; ð14Þ

where SSE is the sum of squared errors (distance between
predicted and measured datapoints) and SST is the total
sum of squares for the measured variables. We obtained
a coefficient of determination R2 equal to 0.56, 0.33 and
0.41 for the three subjects respectively, these values being
well within the desired range [0–1].

After this validation, in order to reduce measurement
noise, we chose to estimate r�2

0 as the average between
the two independent estimates of this quantity obtained
by solving the two sets of equations for i = 1 and 2. The
estimated Bayesian variables are shown in Fig. 6 for all
three subjects and all target speed and direction conditions.
4. Results

Fig. 6 presents, for each subject and target motion direc-
tion, the estimated variance of the prior and the two inde-
pendent likelihood distributions as a function of the target
speed. It is important to underline that these are estimates
of hidden variables which are supposed to characterise the
internal inferential processes underlying motion integra-
tion. Because these variables are fully constrained by exper-
imental data, they may provide a first general validation of
the model. Fig. 6 deserves two comments: first, the esti-
mated prior variance (green curves in Fig. 6) turns out to
be roughly constant – as expected for a prior – across a
threefold increase in target speed. Second, our estimates
for the 1D and 2D likelihood variance (red and black
curves, respectively) for different speed provide evidence
of a monotonic increase of the variance with target speed.
Note that this functional relationship was not included in
the assumptions of the original theoretical model of veloc-
ity perception (Weiss et al., 2002), although it appears to be
perfectly reasonable in light of Weber–Fechner’s law.

An interesting attempt to quantitatively constrain the
Bayesian framework for motion processing with psycho-
physical data has recently been published (Stocker and
Simoncelli, 2006). Motivated by the weakness of the classi-
cal model in reproducing trial by trial variability in motion
perception, Stocker and Simoncelli used experimental data
in a speed discrimination task to infer the internal noise
characteristics. One of their main findings was that the
internal noise (i.e. the likelihood variance) is approximately
proportional to the stimulus speed, in agreement with our
results.

Our Bayesian recurrent model of the tracking error
dynamics was implemented numerically in a Matlab
(MathWorks) routine that took the parameters of the
Bayesian prior and likelihood functions as input argu-
ments. The discrete evolution of the posterior distributions,
as well as of the MAP-defined current velocity estimate,
were provided as output. At each time step we could derive
the estimated tracking error (like for the example in the
bottom panel of Fig. 5), as the inverse tangent of the ratio
between vertical and horizontal velocity estimate.2 For
each subject, direction and speed, we have estimated the
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Fig. 6. Estimates of the prior and Likelihood variance for all subjects (rows), target motion directions (columns) and motion speed. Note that for subject
AM ocular tracking of the long line with the highest speed was excessively noisy and dominated by catch-up saccades, making the variance estimate
unreliable.

3 We tried experimentally to ask people to track two eccentric blobs
simulating the two terminators of the short line stimulus but failed to
obtain genuine smooth pursuit behaviours, presumably because there was
no stimulus in the fovea. For this reason, in experiment one, we gave
subjects a central circular spot to track instead.
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input parameters (see Section 3.2.1) and have run the sim-
ulations. In Fig. 7 the experimental average eye velocity
and the model predicted estimated velocity are displayed
(both for the horizontal and vertical component) for one
subject. Qualitatively similar results were obtained for the
other subjects (not shown).

We decided to introduce one free parameter (variable
across subjects and motion directions but fixed for the
three speed values), namely a gain parameter dividing the
line likelihood variance. In practice, in Eq. (1), we substi-
tuted the term r2

1 with r2
1=g, leading to:

L1ðvx; vyÞ ¼
1

Z

� exp �ððvx � v0Þ cosðhÞ þ vy sinðhÞÞ2

2r2
1=g

 !
:

ð15Þ

The best value of the gain parameter g was determined
as the one minimizing the prediction error for the peak
of the vertical component. In practice, g was varied
between 0.5 and 10 in steps of 0.5, while the sum (across
speed conditions) of the squared difference between exper-
imental and model-predicted peak vertical velocity was
computed (and minimized). The need of a scaling parame-
ter for the likelihood variance of the line is reasonable if
one thinks that the 1D-likelihood parameters were esti-
mated for a very long line, necessarily implying a much
larger energy in the motion signal when compared with
the short line used in the tilted-line experiment. Interest-
ingly, the optimal gain parameter was found to be similar
for all subjects and directions and it ranged between 3
and 5, which turned out to be close to the length ratio
between the two lines (�3). It is worth mentioning that
only one 2D likelihood function was used in the simula-
tion, even though one could argue that the short tilted line
stimulus contains two non-ambiguous sources of informa-
tion (one terminator at each end). While the short line con-
tains two terminators, these 2D cues are more eccentric
than the central circular Gaussian spot we used in experi-
ment one, so the weakening effect of eccentricity arguably
compensates the benefit of having two terminators.3

There are two apparent reasons for the mismatch
between model predictions and experimental eye-velocity
curves, as exemplified in Fig. 8. First, our model at this
stage is able to predict the perceived velocity which is used
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to drive smooth pursuit eye movements, but it does not
account for the motor constraints. In other words, as
already mentioned, our model does not predict motor
latency (that we have also dismissed in the representation
of the experimental curves), nor does it reproduce the
dynamics of acceleration of pursuit initiation (the model
has virtually an infinite acceleration) and any other non-
purely visual phenomena characterising smooth pursuit
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(see discussion in Section 5). This fact implies that at the
very first iteration the model’s prediction is consistent with
the maximally biased velocity in the direction orthogonal
to the line (it will progressively converge to the horizontal
motion later); in contrast smooth pursuit eye velocity,
although driven by the same visual input (the perceived
biased velocity), needs a finite time to accelerate from rest
to the final desired velocity (see rising part of the blue curve
in Fig. 8). Second, the time constant is actually arbitrarily
fixed in the recurrent model and therefore the predicted
velocity curves have to be fitted to the experimental curves
by means of a multiplicative temporal gain.

In Fig. 9 we present the tracking error for one particular
combination of target speed and motion direction and for
all three subjects. The original mean experimental tracking
error can be compared with the model prediction and a
transformed version of the latter, which accounts for a
non-zero asymptotic vertical offset of the experimental
data, as well as for the temporal rescaling needed to match
the arbitrary model step to real time. The optimal adjuste-
ment for the model time step was obtained for a step cor-
responding to about 10 ms. This estimate was obtained
by varying the number of model time steps (1,2,3, . . .) that
matched one experimental time step of 20 ms and minimiz-
ing the sum of squared errors between the experimental
and the model-predicted velocity (both the horizontal and
the vertical components).

5. Conclusions

Uncertainty in motion processing is reflected in the var-
iability of the initial velocity of smooth pursuit eye move-
ments. This type of eye movements provides also a
reliable dynamic measure of the different contributions of
1D and 2D motion cues to motion integration. We have
presented a simple model of motion integration dynamics,
which is based on the idea of recursively updating the
observer’s prior about object motion by means of recent
experience. The model is quantitatively constrained by ocu-
lomotor data and it replicates the well-established transient
deviation of the gaze from the object’s trajectory as well as
its dynamical correction.

Our modeling approach represents one of the first exten-
sions of the Bayesian framework, already widely applied in
visual perception studies (Kersten et al., 2004; Weiss et al.,
2002; Weiss and Fleet, 2002), to the oculomotor domain.
Eye movement measurements have a consistent advantage
with respect to other experimental measures like perceptual
judgements, because they can be considered as a continu-
ous dynamic account of the inference process output.

Our attempt to estimate the uncertainty of the internal
inferential representation of motion information on the
basis of smooth pursuit variability provided plausible
quantitative results for the variance of prior and likelihood
functions. Importantly, these estimates are in agreement
with recent findings obtained with perceptual judgments
and used to constrain a similar Bayesian model (Stocker
and Simoncelli, 2006).

However, at the present stage, there is an apparent
coarse mismatch between the model prediction and the
observed ocular tracking traces. One simple reason can
explain this mismatch: our model does not really account
for the visuo-oculomotor transformations, nor for the ocu-
lomotor feedback information sent to the early visual
stages during the closed-loop phase, i.e. during the late per-
iod of the tracking error correction. In Section 4 we have
mentioned the need to adjust the model-predicted eye
velocity to take account of the necessary temporal gain
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factor and the temporal offset. The temporal offset is justi-
fied by the fact that ocular muscles can apply only a finite
force on the eye, and therefore eye movements, different
from our infinite-acceleration model, undergo necessarily
an initial phase of velocity increase with finite acceleration.
Only at the end of this phase it is reasonable to assume that
eye-velocity variations (and tracking error) are related to
velocity estimates. There exists at least another apparent
difference between model predictions and oculomotor
recordings, which can be explained in terms of the visuo-
oculomotor loop characteristic dynamics. Eye-velocity
curves tend to oscillate, with decreasing amplitude, around
the final desired velocity (i.e. the target velocity, in the
steady state). Oculomotor oscillations are due to delayed
transmission in the visuo-oculomotor loop in conjunction
with an online adaptation of pursuit gain (Goldreich
et al., 1992): the retinal velocity error is translated into
an oculomotor command aiming to correct it, but the latter
is executed after a delay, thereby not accounting for the
ongoing dynamics and introducing a new retinal velocity
error with opposite sign, which has to be corrected and
so on. In contrast, our model does clearly not suffer from
this problem, given that a virtual zero-delay between visual
input and model output is assumed, and the model curves
reach the asymptotic velocity following a simple non-oscil-
lating monotonic decay law. This fact, again, is a source of
mismatch between our model predictions and the data.

We are currently planning to improve our model by sim-
ulating the missing stages of the visuo-oculomotor trans-
formations. Classical models of the oculomotor plant
based on Control-theory (Robinson et al., 1986; Krauzlis
and Lisberger, 1994) provide a good estimate of the
observed pursuit dynamics for a simple visual motion
input. We will apply this type of oculomotor transforma-
tion to our dynamic velocity estimates, thereby obtaining
true theoretical predictions for the oculomotor output.
By doing so, we will be able to compare our experimental
oculomotor data with congruent model predictions.

The model time step represents the internal delay for the
recurrent loop, or, in other words, the time needed to
update the interal inferred motion information. At this
stage it is hard to judge about the significance of the
best-fitting time constant (�10 ms), especially because we
do not have a clear hypothesis about the neural implemen-
tation of our dynamic recurrent model of motion process-
ing. However, cortical interaction between early visual
areas (either within the primary visual cortex, V1, or
between MT and V1) can occur over a typical time scale
of 10–20 ms, which makes our estimate not completely
unplausible. Note that the dynamic role of the V1-MT loop
in solving the aperture problem has already been proposed
by other authors (Bayerl and Neumann, 2004). We believe,
in general, that the application of our dynamic model to
simulate specific observed experimental effects may provide
interesting indications about the underlying cortical
dynamical processes.
To conclude, a number of recent experimental findings
(Wallace et al., 2005; Born et al., 2006) have provided
important hints about the impact of several properties of
moving stimuli on motion integration and the time course
of the tracking error. In perspective, this experimental
database constitutes a rich benchmark to test the validity
and the robustness of our model and will probably allow
to improve it.
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