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a b s t r a c t

Short-latency ocular following are reflexive, tracking eye movements that are observed in human and
non-human primates in response to a sudden and brief translation of the image. Initial, open-loop part
of the eye acceleration reflects many of the properties attributed to low-level motion processing. We
review a very large set of behavioral data demonstrating several key properties of motion detection and
integration stages and their dynamics. We propose that these properties can be modeled as a behavioral
eywords:
otion integration

racking eye movements
ptic flow
ensorimotor transformation
ain control

receptive field exhibiting linear and nonlinear mechanisms responsible for context-dependent spatial
integration and gain control. Functional models similar to that used for describing neuronal properties
of receptive fields can then be applied successfully.

© 2011 Elsevier Ltd. All rights reserved.
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. Introduction: object motion computation for gaze
tabilization

Visual motion is critical for the guidance of slow eye move-
ents that help visual perception by stabilizing the images onto

he retina. However, in a crowded and constantly changing visual
nvironment, stabilizing the whole retinal image is largely inap-
ropriate. Our visual system must parse these images into separate
bjects, select the one of interest and accurately measure its motion
n order to smoothly rotate the eyes at the appropriate speed and
irection. Primates are equipped with extremely fast and accurate
culomotor behaviours. Since the mid 20th century, the primate
culomotor system is probably one of the best known of the sen-
orimotor systems (see Leigh and Zee, 2006). Many review articles
re available from the literature. For instance, Keller and Heinen
1991) and Ilg (1997) gave exhaustive reviews of the classification
f the different types of smooth eye movements and their neural
ubstrates. Krauzlis and Stone (1999) documented the behavioral
vidences that smooth and saccadic eye movements are closely
inked together. More recently, Krauzlis (2004) has recasted the
eural framework of smooth pursuit eye movements and its links
ith the saccadic systems. However, very few review articles have

een dedicated to the more specific topic of visual motion pro-
essing in the context of sensorimotor transformation. Miles and
olleagues (e.g. Kawano, 1999; Miles, 1993, 1997, 1998; Miles
t al., 2004) have published several reviews that summarizes their
ioneering work on optic flow processing and reflexive slow eye
ovements. Still, a review article focusing the consequences of

arly visual motion computation is missing.
This review takes a different viewpoint about eye movement

ontrol. We are interested in the fundamental visual mechanisms
nderlying this sensori-to-motor transformation. As pointed out
y Miles (1993) most models of smooth eye movements collapse
his complex processing into a single box that measures retinal
arget velocity, or higher derivatives needed to feed the motor con-
rol mechanisms. Thus, understanding the visual motion processing
tage of visuomotor behaviors is a major challenge in systems neu-
oscience. Lisberger et al. (1987) offered a classical introduction
o this fascinating question. In a more recent review, he summa-
izes the results obtained from his group supporting the idea that
oluntary pursuit is initiated based upon a rapid linear read-out
f area MT neurons (Lisberger, 2010). Thus, it appears after two
ecades of intensive work that many of the dynamical aspects of
ye movements are in fact constrained by the neural solutions of
isual motion processing (see also Masson, 2004; Ilg, 2008; Masson
nd Ilg, 2010). In this perspective, tracking eye movements offer a
iniature model of perception–action coupling.
Herein, our objective is to provide an updated view of the

omplex front-end processing that computes object motion for
isuo-motor control. Our review documents the experimental work
onducted by several groups to elucidate the properties of ocular
ollowing responses in both human and non-human primates. Thus,
e will restrict our scope to the initial, open-loop part of the reflex-
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

ve responses. In this well-defined framework, it becomes possible
o relate neural and behavioral dynamics with a very high level
f details (Lisberger et al., 1987; Miles, 1997; Kawano, 1999). Each
spect of the motor responses can be mapped with a specific aspect
f visual information processing. These linear and non-linear mech-
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

anisms can be summarized within a concept called the behavioral
receptive field that concisely describes how information is inte-
grated within populations of cortical neurons in order to extract
the relevant signals (i.e. speed and direction) about a single object
motion (Barthélemy et al., 2006). This idea is reminiscent of the
earlier notion of perceptive fields but offer a more precise frame-
work, in particular regarding the temporal dynamics of information
processing. Such behavioral receptive field incorporates many of
the fundamental aspects of sensory information processing such as
spatial and temporal filtering, spatial summation, nonlinear gain
control and multiple feature integration. Each of these aspects can
be fitted with mathematical tools already used at both population
and neuronal levels to describe classical and non-classical receptive
fields.

Such behavioral receptive field can be seen as a read-out of
low-level cortical computations done through the recurrent con-
nectivity between areas V1 and MT/MST. These first 100 ms of
ocular following offers a minimalist, but very efficient window onto
these mechanisms. Whenever it is possible, we will compare the
tuning properties and their temporal dynamics of the behavior with
the neuronal mechanisms observed at each of these cortical stages.
Although the scope of this review might sounds a bit too much
focused on a particular type of eye movements, we advocate herein
the usefulness of such a delicate approach to elucidate the detailed
temporal architecture of the brain.

The review is organized as follows. We will first recast ocular
following as one example of short-latency, reflexive smooth move-
ments of the eyes that have been identified in both human and
non-human primates. From neurophysiological studies conducted
in macaque monkeys, we will present the underlying cascade of
cortical and sub-cortical steps driving response onset, aiming at
extracting the key stages that are essential to understand the
behavioral results that will be presented subsequently. We will
then define the behavioral receptive field, in the perspective of
an older theoretical concept from visual perception, the percep-
tive field. Both concepts are defined from behavioral (i.e. motor
versus perceptual) phenomenology, but we propose that the ocu-
lar following approach allows us to better constrain the core idea
and therefore will open the door for realistic modeling. Indeed, we
will review behavioral properties of ocular following when tack-
ling the classical computational stages of visual motion processing:
(i) what are the detection mechanisms, (ii) how local motion in
pooled to extract direction and speed information and (iii) how are
these mechanisms dependent upon visual context? At each stage
we highlight the key results that will be then used to define the
mathematical description of its input–output transfer function. We
will then close this review by highlighting some open questions.

2. Ocular following: reflexive tracking in human and
non-human primates

Since the pioneering work of Dodge (1903), several sub-types
of visually driven smooth eye movements have been defined. This
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

classical taxonomy distinguishes between reflexive optokinetic eye
movements that are driven by large field visual motion to form
the slow phases of OKN, and voluntary smooth pursuit eye move-
ments that are elicited by local visual motion. They both have short
latency, mostly around or below 100 ms in primates. Eye speed

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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uring tracking phases barely exceeds 40◦/s. It is linearly related
o target speed below this limit and saturates for higher input
elocity (see Lisberger et al., 1987 for a review). Reflexive tracking
esponses have long been seen as being sub-cortically mediated and
riven by the en masse motion of the visual scene, as reproduced
y optokinetic drums. Investigating slow phases of primates OKN,
everal groups reported that complex motion processing is actually
nvolved, such as disparity- or attention-based motion selection
e.g. Murasugi et al., 1989; Howard and Simpson, 1989; Mestre and

asson, 1997). The group of Fred Miles at the NIH discovered, first
n monkeys (Miles et al., 1986) and later in humans (Gellman et al.,
990), that a rapid shift of a large visual scene can trigger machine-

ike smooth eye movements at very short-latency. To distinguish
hem from both voluntary pursuit and OKN, they coined the term
f ocular following responses (OFRs). Ocular following responses are
hought to correspond to the early phase of the optokinetic reflex
hat backs up translational vestibulo-ocular reflex (Cohen et al.,
977; Lisberger et al., 1981). These results opened the way to the

ong series of experimental work that will be presented below.
Although some idiosyncratic differences can be found between

ubjects, in particular regarding the absolute amplitude of the
esponses, the basic tuning properties of OFRs are highly repro-
ucible. A practical consequence is that input–output transfer
unctions can be mapped with a remarkable resolution. Most often,
uman and monkey OFRs exhibit similar visual properties (e.g.
usettini et al., 1996; Masson et al., 1997), pointing out that ocular

ollowing is a good model for investigating both visual motion pro-
essing and visuomotor transformations in non-human primates.
oreover, they are obtained in monkeys without the need of exten-

ive training. Reward is given only if the monkey attends to the
enter of the screen prior visual motion onset and refrains sac-
ades during the 150 ms after motion onset. It is never delivered as
function of performance for a given set of motion stimuli. Thus,

esponses are free of any biases that could have been introduced
rom training protocols (Miles et al., 1986). Lastly, all stimuli are
lways fully interleaved so that a given condition cannot be pre-
icted ensuring that early phase of ocular following is not corrupted
y anticipatory pursuit responses (Kowler and Steinman, 1979).

When recorded with the scleral search coil technique in both
pecies, these responses exhibit two striking properties: they are
machine-like” as shown by the small variability across trials and
hey are initiated at extremely short latencies. In non-human pri-

ates, latency is ∼55 ms after target onset. In humans, it goes up
nly to ∼85 ms. These latencies are very robust and show very little
ariance (<5 ms) for stimuli with high signal-to-noise ratio (Miles
t al., 1986; Masson and Castet, 2002). There are two key aspects
hat must be noticed. First, given a shortest reaction time around
5 ms in primates, only a few cortical steps can be activated before
he neuronal information flow reaches the oculomotor brainstem
uclei. In fact, latency of monkey ocular following strictly follows
hat of the earliest MST neurons when recorded simultaneously
Kawano et al., 1994). Thus, the temporal dynamics of early phases
f ocular following must closely follow the temporal dynamics of
eed-forward cortical motion processing. In line with this, a change
n visual input will be reflected in the oculomotor response with the
ame delay, as demonstrated with double ramp experiments (Miles
nd Kawano, 1986). Any increase in response latency must be asso-
iated with additional delays in the processing steps encoding or
ecoding motion information. Second, since the earliest phase of
FRs seems to be dependent upon both speed and direction of tar-
et motion, these critical pieces of evidence must be extracted with
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

very short integration time. In other words, only a few spikes at
he onset of neuronal responses are sufficient to convey informa-
ion needed by visuomotor transformation (Osborne et al., 2004). In
ine with this, the time course of eye acceleration can be predicted
rom that of neuronal activity in areas MT and MST (Kawano et al.,
 PRESS
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1994; Takemura et al., 2001). Thus, ocular following very nicely
reflects the activity at the earliest stages of the cortical motion
pathway and that makes it an excellent behavioral probe of sensory
processing.

Ocular following is a member of a family of short-latency smooth
binocular responses. Miles and colleagues described in both mon-
keys and humans short-latency vergence eye movements, which
are driven by binocular disparity (Busettini et al., 1996, 2001;
Masson et al., 1997). These vergence eye movements depend on
the activity of MST neurons encoding absolute binocular dispari-
ties for large visual scene (Takemura et al., 2001). Busettini et al.
(1997) documented optic flow-driven vergence eye movements
at ultra-short latency in humans. Here, the useful information is
the radial, rather than planar, velocity flow field (see Miles, 1998;
Miles et al., 2004 for reviews). Similar responses were subsequently
observed in macaque monkeys (Kodaka et al., 2003). Very recently,
Sheliga et al. (2009) reported short-latency torsional ocular fol-
lowing induced by rotation of the frontal images about the line of
sight. Altogether, Miles and coworkers clearly demonstrated that all
these short-latency ocular responses exhibit similar computational
solutions in terms of linear extraction, gain control and automatic
integration of motion/disparity signals. There is no room to describe
these results here, but we want to pinpoint that the computational
steps that will be described below are shared by many different
binocular responses.

3. Neural bases of ocular following: cortical and
sub-cortical contributions

Early work on ocular following suggested that such ultra-fast
drive of the sensorimotor transformation can be explained by the
feed-forward activation of template detectors such as found in area
MST that extract optic flow information (Nakayama and Loomis,
1974; Duffy and Wurtz, 1991a,b). A long series of experimen-
tal work has been conducted to decipher their neural bases (see
Kawano, 1999 for a review). A key argument suggesting that OFRs
are cortically mediated was published only very recently: chemical
lesions of cortical areas MT and MST abolish all these types of short-
latency smooth eye movements (Takemura et al., 2007). Moreover,
what makes ocular following an attractive model of sensorimo-
tor transformation is that it is possible to track the neuronal flow
of information at different cortical and sub-cortical stages and to
correlate it with behavioral responses (Kawano, 1999).

Fig. 1 summarizes the impressive work conducted by Kawano
and colleagues. For each stage, both one example of neuronal
(mean firing rate) and ocular responses (mean eye velocity) are
given together with a distribution of direction selectivity encoun-
tered within the neuronal population. Visual stages such as area
MT/MST and DLPN are characterized by a full distribution cover-
ing all motion directions in the frontal plane (Kawano et al., 1992,
1994). On the contrary, in the ventral paraflocullus of the cerebel-
lum (VPFL) only horizontal and vertical directions are represented
indicating that contribution of extra-ocular muscles, rather than
visual motion directions are represented at the level of Purkinje
cells (Gomi et al., 1998). One can then follow the flow of infor-
mation from visual to motor structures. Initiation of short-latency
ocular following responses (∼55 ms) is preceded by the onset of
neuronal activity at ∼40 ms in cortical areas MT and MST (Kawano
et al., 1994). This early onset is consistent with the fast magnocel-
lular input from the retino-geniculo-cortical pathway, with a relay
in spiny stellate neurons of layer 4B in area V1 (Shipp and Zeki,
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

1989; Yabuta et al., 2001). In macaques, areas MT and MST project
monosynaptically onto the dorsolateral pontine nucleus (DLPN),
the main visual relay nucleus in the brainstem (Glickstein et al.,
1994). Here, earliest activity was found ∼10 ms before eye move-
ment onset (Kawano et al., 1992). In contrast, neuronal activity

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 1. Neural bases of ocular following in macaque monkeys. Single unit activity (mean firing rate) is shown at the level of cortical areas MT/MST, their direct projection
n (VPF
e liest n
m of ocu

i
a
t
t
c
e
o
L
n
t
h

ucleus in the brainstem, the DLPN and the oculomotor structures of the cerebellum
ye movements onset was at ∼55 ms after stimulus motion onset. Notice that ear
otion signals occurred only at ∼60 ms after stimulus onset, that is after initiation

n VPFL was time locked with the initiation of tracking. Kawano
nd colleagues suggested that visual information about motion of
he visual scene is encoded in area MST and relayed via DPLN to
he VPFL, which computes the motor commands driving eye mus-
les (Kawano, 1999). Accordingly, different signals related to either
ye position or velocity, have been identified in the VPFL during
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

cular following (Shidara and Kawano, 1993; Gomi et al., 1998).
astly, there are additional cerebellar afferences from the pretectal
ucleus of the optic tract (NOT) that should be taken into account
o render the exact wiring diagram (Inoue et al., 2000). Notice
owever that the earliest activity in NOT was seen only after track-
L). Earliest neuronal latencies were respectively of about 40, 45 and 50 ms whereas
euronal activity in the Nucleus of the Optic Tract, the main sub-cortical input for
lar following. Modified from Masson (2004) with permission from Elsevier.

ing initiation, suggesting that subcortical inputs may play a role
in the build-up of the response but not in triggering its earliest
part.

A recurrent question regarding the neural basis of ocular fol-
lowing concerns the putative contribution of sub-cortical direct
inputs to cortical areas along the motion pathway. Macaque area
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

MT receives input from both the LGN and pulvinar. One might won-
der whether these inputs could significantly contribute to ocular
following responses. However, recent physiological evidences do
not support this. First, Berman and Wurtz (2011) have dissected
the signals coming from the superficial layers of the superior col-

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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iculus via the inferior pulvinar (IP). They rejected the idea that
hey carry visual motion information since direction selectivity was

inimal in IP neurons belonging to this ascending path. Second,
incich et al. (2004) have provided a detailed anatomical analysis
f direct geniculate input to area MT, bypassing V1. However, these
eniculo-cortical neurons are mostly koniocellular and equal about
0% of the V1 population innervating MT. In macaque LGN, konio-
ellular cells are most often noted for carrying blue/yellow color
ignals (see Hendry and Reid, 2000 for a review). Their possible
nvolvement in driving earliest responses in area MT is contra-
icted by the fact that color-based motion signal cannot elicit
cular following in monkeys at the ultra-short latency obtained
ith luminance-based motion (Guo and Benson, 1999). In brief,

here is very little evidence that direct inputs to MT neurons com-
ng from subcortical structures could play a significant role in the
nitiation of ocular following.

Although the information conveyed by spiking patterns of cere-
ellar neurons have been conducted with great details in the
ontext of ocular following, there is still an urgent need for further
esearch in two main directions. First, no information is available
egarding the variability of neuronal responses in cortical areas
T and MST, and its impact upon the variability of the behavioral

esponses. Some hints are provided by the study of Lisberger and
olleagues on smooth pursuit (see Lisberger, 2010 for a review).
hey showed that MT neuron responses to small target motions
re highly correlated and that such correlation can both predict eye
elocity amplitude and variance during the initial phase of monkey
oluntary pursuit (Huang and Lisberger, 2009). This is important
o understand how tracking eye movements are sensitive to noisy
nputs and how vector averaging or other estimators of MT activ-
ty extracts speed and direction information for driving the eyes.
ince sensitivity to noise could be different when using small tar-
et or large visual scene such as with ocular following, future work
hould further investigate the link between neuronal discharges in
reas MT/MST and ocular responses. Second, very little works have
een conducted to relate neuronal population activity in the pri-
ary visual cortex and ocular following responses (see Reynaud

t al., 2007 for a preliminary report). Since such population activ-
ty can constrain behavioral responses in motion detection tasks
or instance (Chen et al., 2006), it would be important to better
nderstand the impact of early (V1) neuronal processing of motion

nformation in the context of ocular following responses. We will
ee below that identifying the contribution of each cortical, and
ub-cortical stages, into sensory, and motor, action would largely
enefit from this.

Two questions remain largely open. First, it is always difficult
o directly map neural mechanisms measured in macaque mon-
eys with putative neural pathways in human subjects. There is a
arge bulk of data suggesting that the human homologues of areas

T and MST are both involved in motion detection and integration
see Orban et al., 2004 for a review). It is thus highly plausible that
ssential cortical steps of motion processing for ocular following
re similar in both species. Below, we will pinpoint striking behav-
oral similarities between monkey and human ocular following.
hese similarities, for spatial summation for instance, are a behav-
oral correlates of the similarities observed for spatial summation
t population level in both macaque and human V1 (Nurminen et
l., 2009). Still, there is an urgent need for running fMRI studies
n order to correlate large-scale brain activity with ocular follow-
ng responses in both monkeys and humans. Such brain imaging
pproach will be also important to enlarge our current view about
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

he cortical network involved in driving ocular responses. We might
nd out that other cortical areas such as V2 or V4 are involved in

ate parts of (or delayed) responses driven by specifically designed
timuli such as plaids, barber-poles or color gratings (Masson and
astet, 2002; see Masson, 2004 for a review).
 PRESS
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4. Sampling and integrating local motion: the idea of a
behavioral receptive field

Tracking the cortico-subcortical sequence of neuronal activity
driving ocular following is not sufficient to elucidate the neural
basis of gaze stabilization. In the present article, we will exten-
sively review the recent behavioral evidences that early linear
and nonlinear visual mechanisms have a profound impact on
the time course and dynamics of ocular behavior. Overall, our
goal is to tease apart the contribution of each processing stage
along the V1–MT–MST cascade when linking neural activity and
behavioral dynamics. It is also to propose a theoretical frame-
work for this link. We have recently proposed that the idea of a
behavioral receptive field (bRF) can collapse these different oper-
ations into a compact representation of information processing
(Barthélemy et al., 2006). Moreover, a strong isomorphism can
be found between particular aspects of this bRF and what is
known about neuronal receptive field (nRF) properties of direction-
selective cells.

The idea that similar computations characterize behavior and
physiology is not new but is at the core of the concept of percep-
tive field as originally proposed by Jung and Spillmann nearly 40
years ago (see Jung and Spillman, 1970; Ehrenstein et al., 2003; Neri
and Levi, 2006; Spillman, 2006 for reviews). This approach aims
to compare the functional properties of single neuron, neuronal
populations and the whole organism. It has been demonstrated
in some cases that idiosyncratic response properties of retinal
or cortical neurons are propagated through subsequent stages
in visual processing and can be observed in human behavior
(e.g. Jung and Spillman, 1970; Ringach, 1998; Neri et al., 1999).
Using reverse correlation, perceptive fields have been measured
for orientation or motion direction domains (Ahumada, 1996;
Neri, 2004; Solomon, 2002; Ringach, 1998; Murray et al., 2003).
In many cases, there was a good match between the perceptive
fields and the neuronal receptive fields of early cortical filter-
ing. When such match is found, bottleneck information processing
steps can be identified. However, this psychophysical approach
suffers from severe limitations that can be overcome with ocular
following.

As evidenced by the seminal work of Ahumada (1996), a per-
ceptive field indicates the output of this final decision stage and
thus aggregates properties of several neural processing units. In
psychophysical tasks, the exact number of different hierarchical
steps differs from one task to another. On the contrary, from the
work of Kawano and colleagues, it is known that no more than 3
visual processing stages (i.e. V1, MT and MST areas) are necessary
for driving ocular following in monkeys. Because all the results
presented below were always collected within a very small time
window (i.e. between 50 and 100 ms after stimulus onset in mon-
keys), behavioral receptive field reflect only transient processing
along a minimalist cortical stream. Therefore, matching properties
of bRF with key computations done within nRF at different stages
is surely less risky than with perceptive fields.

The second limitation concerns the nonlinear properties of
behavioral responses. Because different high-level factors influ-
ence the absolute psychophysical performance (Ahumada, 2002),
it is most often inappropriate to establish a direct link between
gain changes in perceptive fields to underlying gain changes in
front-end filtering. In particular, decision criteria involved psy-
chophysical tasks (Ahumada, 2002), as well as attentional factors
(Murray et al., 2003) have a strong influence on the gain of the
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

perceptive field. Ocular following offers a much safer alternative.
Initial eye acceleration is related only to the spiking frequency of
MST neurons (Takemura and Kawano, 2002). Only one final neural
decision mechanism is involved since the firing rate of these MST
neurons reflects the vector average of the MT population encoding

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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mage direction and speed (Kawano et al., 1994). We will see below
ow such minimalist read-out allow us to map nonlinear aspects
f the bRF onto a functional architecture downstream to area MST.

The third limitation is that behavior reflects the activity of pop-
lation of neurons and not a single unit. This was originally stressed
y Sherrington (1906) when he first coined the term of receptive
eld. For him, a receptive field was a functional description of an
nsemble of peripheral sensors that would trigger an appropriate
ehavioral response (the scratch-reflex in his original description).
e will see that bRF can be described by a set of functions describ-

ng the input–output transfer function. Still, each operator must be
een as a computation (e.g. gain control) performed by a popula-
ion of inhibitory and excitatory neurons embedded in feedforward,
eedback and recurrent connectivities. Thus, isomorphism between
RF and nRF can be used to probe such a complex functional
rchitecture. However, we face a scaling problem. Tuning proper-
ies can be measured at behavioral and neuronal levels along the
ame dimension (i.e. speed and disparity) but bRF tunings encom-
ass the full behavioral range while nRF tuning operates over a
maller sample. For instance, psychophysical (Neri et al., 1999) and
cular (Masson et al., 1997) responses to anti-correlated stimuli
esemble the properties of disparity-selective neurons in macaque
reas V1 (Cumming and Parker, 1997). Subsequent studies found in
acaque area MST a nearly perfect fit between short-latency ocular

vergence) responses and neuronal properties at population level.
owever, it is only in area MST that most of the neurons encode

he same range of disparities as the behavior and that both popula-
ion and behavior disparity–tuning functions coincide (Takemura
t al., 2001). We will show that a similar problem occurs when
onsidering speed tuning of ocular following.

The last advantage of bRF over perceptive fields is related to the
ature of smooth eye movements. Temporal dynamics of visual
rocessing can be tracked down to the ms time scale from the time
ourse of eye velocity profiles. In macaque monkeys, such precise
iming can be used to elucidate which stage among V1, MT or MST
reas determines a particular computation of the bRF. Varying spa-
ial aspects of visual information such as visual eccentricity was
seminal strategy used by Jung and Spillman (1970) to identify
hich processing stage constrain the perceptive field. Other strate-

ies such as dichoptic presentation or isoluminance can be used to
arrow down the underlying brain loci. Here, we will show that
emporal dynamics is a key dimension to consider when identifying
he different computational elements of the bRF.

Fig. 2 illustrates our strategy to document the properties of the
RF and to link them to specific processing stages along the primate
ortical motion pathway. Our objective is to reverse-engineer the
ear-end cortical populations from a behavioral performance. We
an record reflexive tracking responses in both human and mon-
eys. These machine-like responses can be binned and quantified
ver a small 100 ms time window. Tuning functions can be recon-
tructed for various dimensions, as illustrated by speed tuning.
ost often such behavioral tuning function coincides with single

euron tuning curves documented in area MST. These neurons have
large receptive field and integrate information from a large pop-
lation of MT neurons. By presenting a motion stimulus with a
iven speed (grey symbol) we can probe the dynamics of a given
T subpopulation. Keeping speed constant while varying contrast,

ize, signal-to-noise or other aspects of the motion stimulus, we
an probe the linear and nonlinear aspects of the motion integra-
ion process for this particular MT subpopulation. Because most
f these computations have different contrast dynamics as well as
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

ime courses, we can identify how interactions done within V1 or
T populations can constrain the bRF. For instance, it is known that

ontrast gain control from surround motion is direction-selective
n area MT neurons, but not in V1 (Rust et al., 2006). Step by step it
ecomes possible to dissect the role of each stage in the emergence
 PRESS
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of the behavior and open the door to detailed models of brain in
action.

Whenever it is possible, experiments seeking for a direct com-
parison between neuronal dynamics and behavior shall be run.
However, this is not possible in human subjects. A complete
description such as the bRF helps us to elucidate the neural mech-
anisms underlying human behavior. Below, we will systematically
compare tuning properties and temporal dynamics of human and
monkey ocular following. Only the latter will be compared to neu-
ronal data available from the literature. Still, a coherent picture
emerges that highlights the detailed properties of human motion
processing.

Below, we will summarize the properties of such a behavioral
receptive field along different dimensions (spatio-temporal tuning,
contrast, speed,. . .) that are characteristic of motion detection and
integration stages. These stages are largely seen as being imple-
mented by cortical areas V1 and MT/MST. When neuronal data
are available, we will directly compare these behavioral proper-
ties with the properties of populations of V1, MT and MST neurons.
Lastly, we will summarize the different linear and nonlinear oper-
ators forming this bRF and show their similarities with neuronal
operators found in monkeys.

5. Dynamics of first stage: local motion detection

The seminal work of Rashbass (1961) demonstrated that visual
motion is the primary information for smooth tracking eye move-
ments: when a small, point-like target, is briefly stepped in one
direction and then ramped into the opposite direction, smooth pur-
suit eye movements are initiated in the direction of the ramp (the
so-called velocity error) and not the direction of the step (the so-
called position error) (see also Carl and Gellman, 1987). The key
question is then: how such information about speed and direction
can be reconstructed?

Computing motion of a single surface is often described as a
two stage process where a motion detection stage extracts local
spatio-temporal changes from the images and feeds an integration
stage that computes the global solution from these piecewise mea-
surements (Nakayama, 1985; Albright and Stoner, 1995; Braddick,
1993 for reviews). In primate, areas V1 and MT/V5 are often seen
as implementing detection and integration stages, respectively
(Movshon et al., 1985). Several studies have investigated the contri-
bution of the different motion detection mechanisms as well as the
dynamics of motion integration to ocular following. Several recent
reviews more specifically focus on the computational properties
of each stage (Miles and Sheliga, 2010; Miles et al., 2004; Masson,
2004). We will summarize the most important aspects to define the
linear filtering stage of the behavioral receptive field, its contrast
dynamics and contextual modulations.

5.1. Linear motion detection: motion energy

Visual motion detection is often seen as a puzzle of differ-
ent mechanisms, each of them sensing motion from different
spatio-temporal cues in the image. Lu and Sperling (1995, 2001)
have theorized this approach by suggesting three different sys-
tems for visual motion perception. The first-order, also called
short-range (Braddick, 1974) or Fourier-based (Chubb and Sperling,
1989; Cavanagh and Mather, 1989), motion system senses direc-
tion and speed from the spatio-temporal changes in the retinal
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

luminance pattern through a set of linear spatio-temporal fil-
ters called motion energy detectors (Adelson and Bergen, 1985;
Van Santen and Sterling, 1984; Watson and Ahumada, 1985; see
Derrington et al., 2004 for a recent review). These elementary
detectors correspond to complex cells in primary visual cor-

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 2. Reconstructing population dynamics for behavioral responses. Left-side plot illustrates the hierarchy of neuronal population yielding to ocular following responses.
Complex stimuli covering a large part of the retina are processed by a cascade of neuronal populations, where information is processed through feedforward, lateral and
feedback interactions. Such cascade implements local, context-dependent extraction of motion information (area V1), reconstruction of target motion (MT) and effective
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ead-out estimating the direction and speed of the global motion to be pursued,
escribed as a population receptive field (pRF) whose properties can be inferred f
onstant speed that is decoded at level of area MST, we can probe the spatial inte
eurons.

ex (Emerson et al., 1992). Under some circumstances, motion
an be perceived while the spatio-temporal luminance profile
emains constant. Several authors have postulated the existence
f a 2nd-order or non-Fourier motion processing which sense
otion from changes in contrast cues such as texture or feature

lements (see Lu and Sperling, 1995, 2001). 1st- and 2nd-order
otion mechanisms have very similar spatial and temporal fre-

uencies tuning, but 2nd-order motion is slightly delayed relative
o energy-based motion signals (Wilson et al., 1992). Wilson et al.
1992) have proposed that an early nonlinearity, such as half-
quare rectification might be sufficient to make second-order cues
isible to motion energy detectors albeit at a different spatial
cale (Wilson et al., 1992). Others have suggested that 2nd-order
otion detectors solve the correspondence problem and there-

ore track significant features that are first to be extracted from
he images (Cavanagh and Mather, 1989; Smith, 1994). This is
owever still a matter of debate as some authors have pro-
osed that such a feature-tracking motion system (Ullman, 1979)
ay be dependent on our ability to attend to the features being

racked and therefore is different from the 2nd order, pre-attentive
otion system (Derrington et al., 2004). Following this view,

eature-tracking mechanisms are more similar to the 3rd-order,
ttention-based motion system postulated by Lu and Sperling
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

2001). This latter system is a much more sluggish mechanism that
enses motion from tokens extracted from some spatio-temporal
aliency maps. Thus, the first question arises: what is the respec-
ive contribution of these different motion subsystems to ocular
ollowing?
g sub-cortical nuclei and ultimately ocular following responses. Each step can be
e behavioral receptive field (bRF) under some assumptions. For instance, using a

ns underlying motion processing by a specific sub-population of speed-tuned MT

5.1.1. Contribution of luminance-based motion energy
Several studies have demonstrated that ocular following

responses are primarily driven by luminance-based motion infor-
mation. The first evidence was given by Masson et al. (2002a)
in humans (Fig. 3a–c). Reversing the contrast polarity of a high-
density random dot pattern (Fig. 3a) elicits motion perception in
the direction opposite to the physical displacement of the pattern.
Such inverted perceived motion direction was called reversed phi
motion by Anstis (1975) and can be easily explained from a Fourier
analysis of the motion stimulus: as predicted by linear system anal-
ysis, reversing contrast polarity across the single step of apparent
motion flips the sign of all Fourier frequency components. In partic-
ular, the largest component of first-order motion energy is then in
the direction opposite to the physical displacement. Masson et al.
(2002a) found that reversed phi motion elicited reversed ocular
following with the same latency than responses elicited by for-
ward apparent motion (Fig. 3b). When examining the relationship
between response amplitude and step size, similar tuning functions
were observed albeit with opposite polarity (Fig. 3c). This strongly
suggests that ocular following responses are driven by low-level
motion detectors extracting motion energy through some kind of
linear filtering. Similar evidence was found for another member
of the family: disparity-driven vergence showed the same sign
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

inversion when disparity was introduced between binocularly anti-
correlated left and right eye images (Masson et al., 1997; Takemura
et al., 2001).

The second set of evidences was provided by Miles and col-
leagues using the missing fundamental (mf) motion stimulus

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 3. (a,b) Forward and reversed ocular following responses. (a) Space–time diagram of the one-step apparent motion applied to a random-dot pattern (50% density, dot
size ∼2◦). Upper and lower diagrams plot the two conditions where contrast polarity of each element is either maintained constant or reversed during the step, respectively.
(b) Ocular following responses to constant (blue curves) or reversed (red curves) contrast polarity stimuli. Numbers indicate the size of the physical step (in◦). Blue area
indicates the time window over which the change in eye position was computed for each trial. (c) Relationships between amplitude of the response and step-size, for each
condition. Continuous lines are best-fit Gabor functions indicating that similar relationships (but of opposite sign and different total amplitude) were found for both forward
and reversed conditions (Masson et al., 2002a). Reprinted from Masson (2004). Elsevier. (d,e) Ocular following response to the missing fundamental stimulus. (d) Space–time
d f) and
w ving i
c fter M
r f the

i
M
t
A
t
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9
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iagrams of a sine-wave grating, the missing fundamental square-wave grating (m
ith a sine-wave grating (f) moving in the rightward direction, a mf stimulus mo

omponent of the mf stimulus albeit moving in the leftward direction. Modified a
eferences to colour in this figure legend, the reader is referred to the web version o

llustrated in Fig. 3d (Chen et al., 2005; Sheliga et al., 2005, see
iles and Sheliga, 2010 for a review). In the mf motion stimulus,

he fundamental frequency of a square-wave grating is removed.
s pointed by Adelson (1982), the mf stimulus has the essen-
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
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ial property that when set into motion by shifting its phase
y ¼ wavelength steps, the 4n + 1 harmonics (like the 5th, the
th,. . .) are all shifted in the forward direction while the 4n − 1
armonics (like the 3rd, the 7th,. . .) are shifted in the backward
irection. The amplitude of the ith harmonic is proportional to
its third harmonic (3f) component. (e). Initial ocular following responses obtained
n the rightward direction or a sine-wave grating at the same frequency as the 3f
iles and Sheliga (2010) with permission from Springer. (For interpretation of the

article.)

1/i, so that the major Fourier component is the 3rd harmonic
(also called 3f). Psychophysical studies have clearly shown that
in such condition, the mf stimulus is perceived as moving in
the opposite direction to its physical translation (Adelson, 1982;
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

Adelson and Bergen, 1985; Baro and Levinson, 1988; Brown and
He, 2000). Such reversed perceived direction can be understood if
motion perception is primarily driven by 1st-order motion detec-
tors sensing the most prominent energy component from the
image.

dx.doi.org/10.1016/j.neubiorev.2011.03.009


 INN

and Bi

f
(
e
w
a
f
w
t
a
S
i
o
c
e

5
t

w
F
I
o
n
a
a
m
p
i
m
f
a
e
o
s
t
a
2

t
b
o
m
d
n
t
H
a
t
m
b
f
2
M
w
s

o
o
s
n
r
h
d
T
s

ARTICLEG Model
BR-1438; No. of Pages 25

G.S. Masson, L.U. Perrinet / Neuroscience

Quarter wavelength steps applied to mf stimuli elicit ocular
ollowing responses in humans at the usual ultra-short-latency
Fig. 3e), albeit in the backward direction (Chen et al., 2005; Sheliga
t al., 2005). Fig. 3e plots the velocity profiles of responses obtained
ith a pure sine wave grating at the fundamental frequency (f) or

t the spatial frequency, contrast and direction of the 3f component
rom the mf stimulus. Clearly, responses to mf and 3f motion stimuli
ere indistinguishable: ocular following was driven in the direc-

ion of the prominent frequency component of complex stimuli,
s expected from a system driven by motion-energy mechanisms.
imilar conclusions were reached with ocular following responses
n monkeys, also using the mf stimulus (Miura et al., 2006). More-
ver, responses driven by either f or mf stimuli scale similarly with
ontrast both in terms of response amplitude and latency (Sheliga
t al., 2005; Miura et al., 2006).

.1.2. Lack of evidence for a contribution of second- and
hird-order motion

If luminance-based motion sensors drive early ocular following,
hat would be the contribution of the two other motion systems?

eature-tracking motion detection is believed to be extremely slow.
n particular, it fails with very brief stimulus presentation (<200 ms)
r very high temporal frequency stimuli because there might
ot be time to locate the features before they move (Derrington
nd Badcock, 1992). The ultra-short latency of ocular following
rgues against a significant contribution of feature tracking for eye
ovement initiation. Interestingly, human subjects can sometime

erceive motion in the correct direction of the mf stimulus by pick-
ng up some specific features in the images, though higher level

otion mechanisms. This never occurs in monkey or human ocular
ollowing. Thus, early ocular following is essentially pre-attentive
nd immune to contribution of third-order motion system. Coher-
ntly, investigating the initiation of voluntary tracking in human
bservers, Wilmer and Nakayama (2007) suggested that motion
ensor might trigger the earliest phase of pursuit, while feature
racking mechanisms would be engaged much more later, that is
fter the first catch-up saccade most often occurring later than
00 ms after target motion onset.

If feature-tracking mechanisms have little chance to contribute
o the initiation of ocular following responses, it remains possi-
le that a 2nd-order motion mechanism does contribute. The role
f motion cues based upon contrast modulation of texture ele-
ents in the image has been a matter of debate for the last two

ecades. Some authors have proposed the existence of a specific,
on-Fourier motion system that can extract texture information
hrough some nonlinear operation (Lu and Sperling, 1995, 2001).
owever, the results compiled from the psychophysical literature
re highly contradictory, so that some authors have suggested that
here is no specific 2nd-order motion sensors and that, instead,

otion direction of contrast-modulated pattern are sensed either
y regular motion energy sensors (at low contrast at least) and by
eature-tracking mechanisms (at high contrast) (Derrington et al.,
004). This is consistent with the physiological observations that
T neurons are only weakly driven by contrast-modulated patterns
hereas they show high responsiveness and strong direction-

electivity for luminance patterns (O’Keefe and Movshon, 1998).
What about ocular following? An early study showed, but in

nly one monkey, that a low-contrast texture pattern can elicit
cular following with a slightly delayed latency but with similar
patio-temporal tuning when compared with responses to lumi-
ance gratings (Benson and Guo, 1999). However, in a very recent
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

eport, the group of Kawano reinvestigated this question in both
umans and monkeys. They found that pure second-order motion
id not elicit short-latency ocular following (Hayashi et al., 2008).
his further suggests that mostly, if not solely, first-order motion
ensors trigger ocular following eye movements in primates.
 PRESS
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5.2. Linear motion detection: spatio-temporal tuning

In their original studies, Miles and coworkers examined the
dependence of OFRs on the spatio-temporal properties of the input.
In both species, they found that OFRs were best driven by low
spatial frequency stimuli (cutoff: 1 cpd) and mid-to-high (>8 Hz)
temporal frequencies with optimal values around 0.3cpd and 10 Hz
(Miles et al., 1986; Gellman et al., 1990). The spatial and tempo-
ral tunings of motion energy mechanisms driving ocular following
has been fully characterized by several studies conducted in both
humans and monkeys. Fig. 4a and d plots the normalized response
amplitude again spatial frequency of grating patterns. In both
human (Sheliga et al., 2005) and monkeys (Miura et al., 2006),
spatial frequency tuning is best fitted by a Log-skewed Gaussian
function, peaking and 0.2–0.3 cpd and of width of ∼0.5 log units.
Fitting functions and best-fit parameters are given in Table 1. We
found similar tuning parameters in human subjects using bandpass
filtered noise patterns. They remained constant over a large range of
contrast (Drewes et al., 2007). Spatial frequency tuning were always
measured using large field stimuli, covering a broad range of reti-
nal eccentricities. Optimal frequency range and tuning width match
that of population measurements done in visual areas MT/V5 + in
humans (Singh et al., 2000; Henriksson et al., 2008) albeit the band
pass tuning of ocular following function more closely fit that of
V1 at large eccentricity. In monkeys, a large majority of MT simi-
lar band-pass tuning peaking at spatial frequency around 0.3 cpd
(Lui et al., 2007), A direct comparison is still needed using high
speed stimuli as used for ocular following to understand which
neuronal mechanism shape the behavioral spatial frequency tuning
function.

Fig. 4b and e plots the relationship between response amplitude
and temporal frequency of a drifting sine wave grating at opti-
mal spatial frequency. In both species, strongest responses were
obtained with mid-range temporal frequency (∼10 Hz). Similar
low-pass temporal tuning was found with other spatial frequen-
cies, albeit with some jittering across conditions (Miles et al., 1986;
Gellman et al., 1990). Interestingly, temporal frequency cutoff (as
defined by the temporal frequency yielding two-thirds of peak
response) was found between 20 and 30 Hz. A similar frequency
cutoff was reported for V1 neurons when presented with drift-
ing gratings (Hawken et al., 1996; Nienborg et al., 2005). Lastly,
temporal frequency tuning such as illustrated in Fig. 4e exhibits
many of the key properties of V1 neurons projecting to area MT
in macaque (Movshon and Newsome, 1996), suggesting that the
spatio-temporal dependencies of ocular following are set at a very
early stage along the cortical motion pathway. Coherently, a sub-
population of MT neurons exhibits a similar band-pass tuning
peaking at high temporal frequencies (8–10 Hz). Both single neuron
and ocular following tuning for temporal frequency are best fitted
by a log-skewed Gaussian function (see Table 1).

Latency of ocular following is largely independent upon spa-
tial frequency of single gratings as well as dot size of random
dot patterns, in both humans and monkeys (Miles et al., 1986;
Gellman et al., 1990). Latency was also weakly affected by motion
speed. However, when plotting latency against temporal frequency
of single sine-wave moving gratings, they found a strong decay-
ing exponential relationship, mostly independent upon the grating
spatial frequency (Fig. 4c and f). Minimum latencies were found
for temporal frequencies in the 20-40 Hz range, for both humans
(∼85 ms) and monkeys (∼55 ms). At very low temporal frequencies
(<1 Hz), mean latency increased up to about 100 ms in both mon-
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

keys and humans. Overall, these results support the existence of a
local mechanism that senses the temporal change in luminance to
trigger ocular following (Miles et al., 1986). Interestingly, optimal
temporal frequencies are different for either response amplitude
(∼10 Hz) or latency (∼20–30 Hz) in the two species. This argues in
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Fig. 4. Temporal and spatial tunings of ocular following in human (upper row) and macaque monkey (lower row). (a,d) Relationship between amplitude of the earliest ocular
following and spatial frequency of a drifting grating. The smooth black curves are best-fit Gaussian functions. Reprinted from Sheliga et al. (2006a,b) and Miura et al. (2006).
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espectively. (c,f) Dependency of ocular following latency upon the temporal frequ
requencies. Replotted from Gellman et al. (1990) and Miles et al. (1986), respective

avor of separate information processing for triggering responses
n the one hand and controlling eye velocity on the other hand, as
riginally suggested by Miles et al. (1986).

.3. Linear motion detection: temporal properties of motion
etectors

The band-pass properties of the temporal tuning function can
e explained from the temporal properties of the motion energy
etectors. Recent studies using two frames movies (i.e. single steps
f a vertical grating) to elicit ocular following responses found that
rief Inter Stimulus Intervals (ISIs, range 10–100 ms) reversed the

nitial direction of these responses (Sheliga et al., 2006a; Kodaka
t al., 2007). These reversals are reminiscent of the reversed per-
eived direction observed with brief ISIs (Pantle and Turano, 1992;
hiori and Cavanagh, 1990). They are usually attributed to the tem-
oral dynamics of motion detection mechanisms in early visual
athways and in particular to the negative phase of the bipha-
ic impulse response function of motion detectors (Takeuchi and
e Valois, 1997; Takeuchi et al., 2001). In this schema, the polar-
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

ty of the visual inputs to motion detectors is assumed to undergo
eversal during the ISI, so that the neural representation of the sec-
nd image is now matched to a representation of the first image
hich is now of opposite contrast polarity. Miles and coworkers
erformed the same experiment at both low (scotopic) and high
ave gratings. Inset in the human data plot illustrates the temporal impulse response
SI. Replotted from data published in Gellman et al. (1990) and Miles et al. (1986),
of the grating. For monkey results, the relationship is plotted for two low-spatial

(photopic) illumination conditions. As expected, higher eye veloci-
ties were obtained at high illumination and reversal were also more
evident at both 40 and 100 ms ISIs. Reducing the mean illumina-
tion level to scotopic conditions resulted in smaller response and
a reduced ISI window (i.e. 60–100 ms) for motion reversal. They
proposed that these results correspond to the behavioral counter-
part of the changes in the human modulation transfer function
from band-pass to low-pass in the frequency domain and from
biphasic to monophasic in the time domain when going to light-
adapted to dark-adapted conditions (Kelly, 1961, 1971a,b; Roufs,
1972; Swanson et al., 1987). Since psychophysical studies have
generally agreed that low-level, first-order motion mechanisms are
triggered at short ISIs (<100 ms, providing that spatial distance was
not too large), Miles and colleagues concluded that reversed ocu-
lar following reflects the temporal properties of low-level motion
detectors. It is another example that fundamental aspects of motion
processing such as biphasic temporal impulse response of early
motion detectors can be probed at the level of short-latency ocular
following to understand the functional properties of populations of
motion sensitive neurons in cortical areas MT and MST.
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

5.4. Low-level motion detection: contrast dynamics

We have seen that ocular following is best driven by low spatial
frequencies (<1 cpd) and high temporal frequencies (10–30 Hz). In
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Table 1
A complete set of descriptive functions for modeling the behavioral receptive field underlying ocular following, together with average values of best-fit parameters. References
corresponding to the original papers are given in the text.

Computational step Descriptive functions Humans Monkeys

Spatio-temporal filtering

Temporal impulse response f (t) = (kt)n exp(−kt)

[
1
n!

− B(kt)2

(n + 2)!

]
(1) n = 1

k = 0.12
B = 3.5

NA

Temporal frequency tuning R(tf ) = Rmax

(
exp

[
− log ((tf/tfopt ))

2

2(�tf − � log(tf ))2

]
− exp

(
− 1

�2

))
(2) tfopt = 12 c/s

� = 0
�tf = 0.46 c/s

tfopt = 5 c/s
� = 0
�tf = 0.55 c/s

Spatial frequency tuning R(sf ) = Rmax exp

[
− log (sf/sfopt )

2

2�2
sf

]
(3) sopt ∼ 0.3 c/◦

�s ∼ 0.5 log unit
sopt ∼ 0.3 c/◦

�s ∼ 0.5 log unit

Gain control

Response latency �c(c) = �max + �shift .

[
cn

cn + Sn
50

]
(4) n ∼ 1.8

7 < S50 < 10
�shift ∼ 20 ms

n ∼ 2.4
30 < S50 < 40
�shift ∼ 27 ms

Response amplitude R = Rmax
Cn

Cn + Cn
50

(5) n ∼ 2
5 < C50 < 10%

n ∼ 2
10 < C50 < 30%

Spatial summation and center–surround interactions

Spatial summation R(x) = Lc(x)
1 + ksLs(x)

(6) wc = 10◦ wc = 16◦

where Lc(x) =
(

2√
�

∫ x

0
e−(y/wc )2

dy
)2

ks = 6.2 ks = 12.5

and Ls(x) =
(

2√
�

∫ x

0
e−(y/ws)2

dy
)2

ws = 10◦ ws = 28◦

Speed tuning
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Speed tuning R(s) = Rmax exp

[
− log[(s/sopt )]

2�2
s

2
]

rimates, this range corresponds to the optimal tuning parameters
f the magnocellular (M) component of the retino-geniculo-cortical
athway (see Shapley, 1990). Beyond area V1, this M pathway pro-
ides the main direct input to area MT (see Born and Bradley, 2005
or a review). These neurons, as well as their cortical target cells are
ensitive to low spatial frequency (upper cutoff frequency, 1 cpd)
nd a rather large temporal tuning favoring high temporal fre-
uencies (Shapley, 1990; Movshon and Newsome, 1996). They also
anifest a preference for low contrast and have a high contrast gain

s expressed by a steep contrast response function.
The dependency of ocular following upon contrast of drifting

rating has been carefully investigated by several groups. Again,
ery similar properties were observed in both humans (Masson and
astet, 2002; Barthélemy et al., 2006, 2008; Sheliga et al., 2005) and
onkeys (Miura et al., 2006; Barthélemy et al., 2010). Fig. 5a and
illustrates eye velocity profiles of ocular following for different

ontrast values. In humans, as contrast of a vertical drifting grating
ncreases from 2.5 to 40%, response latencies become shorter and
nitial eye acceleration becomes stronger. For contrast higher than
0% no further changes were observed (Fig. 5a). Similar dynamics
as found in monkeys (Fig. 5d). Fig. 5c and f plots the relation-

hip between response amplitude and contrast. Masson and Castet
2002) have suggested to describe this ocular following contrast
esponse function with a functional model similar to that used
o describe contrast dynamics at neuronal levels for both single-
ell spiking rate (Albrecht and Hamilton, 1982) and sub-threshold
opulation activity recorded with voltage-sensitive optical imaging
Reynaud et al., 2007; Sit et al., 2010). The Naka–Rushton function
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
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Naka and Rushton, 1966) nonlinearly links response amplitude
R) and contrast (C) (see Table 1) with only two free important
arameters. Its slope sets the sensitivity of the neuronal mech-
nism while its half-saturation contrast determines its operating
ange. Similar best-fit parameters were found by the different stud-
(7) sopt ∼ 40◦/s sopt ∼ 41◦/s

�s ∼ 0.6 �s ∼ 0.6

ies. In monkeys, half-saturation values are ∼5% contrast and slopes
is ∼2 (Miura et al., 2006). Barthélemy et al. (2010) found slightly
higher half-saturation contrast as they used lower mean luminance
and non optimal stimulus size (see below). In humans, mean half-
saturation and slope parameters range around 8–10% and 1.8–2.2,
respectively (Table 1). Barthélemy et al. (2008, 2010) investigated
whether there was a change in the main parameters of the contrast
response function over several successive time windows. There was
a significant decrease in half-saturation contrast (from 10 to 5%)
over a 100 ms time course, although major part of the reduction
was seen during the first 40 ms. This indicates that contrast gain of
the cortical pathway driving ocular following is set very rapidly, as
found for V1 neurons (Albrecht et al., 2002). This responds to the
need for a quick sensory gain control that can operate to optimize
visual processing shortly after a saccade and during brief fixation
periods (<200–300 ms) such as experienced during natural vision.

Fig. 5b and c illustrates the last aspect of contrast dynamics. As
evidenced from the eye velocity profiles, reducing contrast from 50
to 2% resulted in a 50% increase in response latency in both species.
Barthélemy et al. (2008) have shown that, similarly to V1 neuronal
response (Albrecht et al., 2002, 2003), the relationship between
response latency and contrast can be described using an inverted
Naka–Rushton function (see Table 1). Best-fit parameters were very
similar to those computed from the response amplitude, indicating
that initial eye acceleration and response onset are linked together.

Fig. 6a compares humans and monkeys ocular following
response functions (red curves) with that of neuronal populations
at different cortical stages. Each curve is the best-fit function com-
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

puted with the mean of the parameters distributions given by Sclar
et al. (1990) for LGN, V1 and MT and Crowder et al. (2009) for MST.
Clearly MT and MST curves fall in between the two behavioral func-
tions. LGN magnocellular and V1 neurons have lower sensitivities
because of their smaller spatial integration (Sclar et al., 1990). None

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 5. Contrast dynamics of ocular following responses in humans (a–c) and monkeys (d–f). (a,d) Eye velocity profiles of responses to a single grating that is drifting leftward
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b,e) Latency of ocular following, plotted against grating contrast. Continuous line is
cular following and grating contrast. Continuous lines are best-fits obtained with
llustrated in (d–e) are replotted from Barthélemy et al. (2010).

f the behavioral curves match the V1 or LGN parvocellular func-
ions, suggesting that contrast dynamics must be set at MT/MST
tage.

.5. Low-level motion detection: speed tuning

Initial eye acceleration is primarily sensitive to the speed of reti-
al motion (Miles et al., 1986). Fig. 6b illustrates the speed tuning

unction of monkey (grey symbols) and human (closed symbols)
cular following in response to brief motion of a large random dot
attern. These two sets of data were collected in exactly the same
xperimental conditions (Masson and Miles, unpublished results)
or direct comparison but closely match with other datasets (e.g.

iles et al., 1986; Gellman et al., 1990; Kawano et al., 1994; Masson
t al., 2002b). Both speed tunings exhibit an inverted-U shape func-
ion in log scale, peaking at ∼40◦/s. Data were best fitted with a
og-skewed Gaussian function similar to that used for MT and MST
eurons speed tuning (Nover et al., 2005) to compute tuning width
nd cut-off (see Table 1).

Superimposed are two sets of neuronal data. Red dotted curve
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

lots the mean firing rate of a population of MST neurons recorded
imultaneously to ocular following (Kawano et al., 1994). Clearly,
peed tuning of behavior and MST population overlap, illustrat-
ng that MST neurons encode motion information for driving the
yes (Takemura and Kawano, 2002; Takemura et al., 2002). Also
strates the early time window for measuring changes in eye position in each trial.
fit inverted Naka–Rushton function. (c,f) Relationships between amplitude of early
ka–Rushton function. Plots (a–c) are modified from Barthélemy et al. (2008). Data

superimposed is the distribution of speed-tuned neurons in the
macaque MT population (taken from Cheng et al., 1994, see also
Maunsell and Van Essen, 1983). Such distribution fits the optimal
velocity for driving MST neurons and ocular following. Black dotted
lines are four theoretical MT neurons. Their log-skewed Gaussian
tuning function was defined using the mean parameters obtained
over a large sample by Nover et al. (2005) in awake macaques, and
weighted by the population distribution of optimal speeds. From
this, we can see that ocular following is driven by the population
activity of MST neurons that sample speed information from MT
neurons that are more narrowly tuned. Linear decoding of both
MT and MST populations has been proposed for describing ini-
tial eye velocity of both voluntary (Priebe et al., 2003; Priebe and
Lisberger, 2004; Lisberger, 2010) and reflexive tracking (Takemura
et al., 2002). Fig. 6b illustrates the neuronal populations underly-
ing the behavioral receptive field. As illustrated in Fig. 2, using a
constant speed stimulus tap onto one specific, speed-tuned sub-
population of MT neurons.

5.6. Low-level motion detection: summary
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

We have shown above that ocular following exhibit many of the
properties attributed to low-level motion detectors. These prop-
erties can be described by the first set of descriptive functions
for both response amplitude and latency. These functions (spatial

dx.doi.org/10.1016/j.neubiorev.2011.03.009


ARTICLE ING Model
NBR-1438; No. of Pages 25

G.S. Masson, L.U. Perrinet / Neuroscience and Bi

Fig. 6. (a) Contrast dynamics of ocular following responses in humans (hOFR) and
monkeys (mOFR). Best fit Naka–Rushton functions were computed using mean
parameter estimates from Barthélemy et al. (2008) and Miura et al. (2006), respec-
tively. For comparison, these curves are plotted together with the best fit functions
estimated for the population of MST neurons (Crowder et al., 2009) or MT cells (Sclar
et al., 1990) as well as a population of V1, LGN magnocellular and parvocellular
neurons (Sclar et al., 1990). (b) Speed tuning of human and monkey ocular follow-
ing. Normalized response amplitudes of human (hOFR) and monkey (mOFR) ocular
following are plotted against stimulus speed (data from Masson and Miles, unpub-
lished). Red dotted curve plot the mean firing rate of a MST population (Kawano et al.,
1994). Continuous red curve show the frequency distribution of optimal speed for a
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T population (Cheng et al., 1994). Continuous grey curves are best fit tuning func-
ions of three hypothetical MT neurons (parameters taken from Nover et al., 2005),
eighted by their frequency distribution. (For interpretation of the references to

olour in this figure legend, the reader is referred to the web version of the article.)

nd temporal frequency tunings, speed tuning, contrast response,
emporal impulse) are similar to that used for describing neuronal
nput–output transfer function. This suggests that ocular follow-
ng results from a linear pooling of nonlinear units. Below, we will
ighlight several aspects of these nonlinear processing involved in

ocal interactions between motion signals.

. Beyond low-level motion detection: the needs for local
otion integration

Local, first-order motion detectors that trigger ocular following
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
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ace several pitfalls when processing natural images as, for instance,
xternal noise, luminance and contrast fluctuations or the aperture
roblem. Solving these different problems requires to pool infor-
ation across different spatial and temporal scales. It also requires

o adaptively change response gain as a function of the local con-
 PRESS
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text. These mechanisms are useful to improve the estimate of local
velocity. We will review the existing behavioral evidence and relate
them to neural mechanisms found at different cortical stages, try-
ing to tease apart their respective role. In particular, we will show
how different types of divisive normalization act to produce opti-
mal responses. In Section 7, we will review the impact of the neural
solutions for the aperture problem for the behavioral output.

6.1. Combining early motion signals: linear or non-linear
integration?

A single object contains different edges, features or textures
that can yield to local motion signals along different directions
and speeds. An immediate question is: how are these differ-
ent local motions integrated to reconstruct a single and accurate
estimate of object motion? The flipside of motion integration is
segmentation. Integration must be selective to eliminate spuri-
ous motion belonging to background or other surfaces (Braddick,
1993). Different natural surfaces can have different global direc-
tions or speeds, different mean luminance or contrast (e.g. Balboa
and Grzywacz, 2000; Frazor and Geisler, 2006) or different spatio-
temporal frequencies. These low-level features can be used for
automatic segmentation in order to single out the single global
motion that needs to be pursued. Several studies have been con-
ducted to decipher how different motion signals are automatically
but selectively integrated for ocular following. They are rooted on
earlier observations that opposite motion direction signals cancel
each other (Busettini et al., 1996; Masson et al., 2001; Barthélemy
et al., 2006) and that early phase of optokinetic nystagmus is
driven by the vector average motion when several random dot
fields moving in the same direction but with different speeds are
presented simultaneously (Mestre and Masson, 1997). However,
studies on voluntary and reflexive tracking have pointed out that,
under some certain circumstances and timing, automatic target
selection can occur so that ocular responses are driven by only
one target at a point in time (Mestre and Masson, 1997; Ferrera,
2000). However, these delayed target selections must be done
thought top-down mechanisms. On the contrary, ocular follow-
ing studies point out the role of automatic scene segmentation
based on low-level features (e.g. Busettini et al., 1996). Recent
experimental work has clarified what are the different integra-
tion and competition rules as well as their biologically plausible
mechanisms.

6.1.1. Pooling motion information: vector averaging
Masson and Castet (2002) reinvestigated this point with mov-

ing plaids made of two orthogonal gratings of similar contrast and
spatio-temporal frequencies. They found that the earliest phase of
ocular following to these type I plaids are similar to the responses
driven by a single oblique grating moving in the same direction and
speed as the vector average prediction for plaid motion (Fig. 7a, left
panel). In particular, latencies of responses to both type I plaid and
single gratings were identical. Consistently, patterns made of sev-
eral Gabor patches were presented with all patches having same
carrier orientation/direction or the ensemble being divided into
two sets of orthogonal carrier orientation/direction. Again, ocular
following responses to either uni- or bi-kinetic patterns were indis-
tinguishable (see Fig. 7a, right panel, Masson, 2004; Masson and
Castet, 2002). These results suggest that ocular following is driven
by a vector average computation that integrates all motion signals
present in the central part of the visual field (see below) and in
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

the plane of fixation (Masson, 2004). These results are consistent
with previous psychophysical studies showing that, in the absence
of special features, the visual system defaults to simple pooling
over space to compute estimates of global velocity (Mingolla et al.,
1992; Rubin and Hochstein, 1993; Lorenceau and Zago, 1999). It is
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ARTICLE IN PRESSG Model
NBR-1438; No. of Pages 25

14 G.S. Masson, L.U. Perrinet / Neuroscience and Biobehavioral Reviews xxx (2011) xxx–xxx

Fig. 7. (a,b) Ocular following responses to single vs multiple motion stimuli. (a) Mean horizontal and vertical eye velocity in response to either single grating (dotted line)
and type I plaid (continuous line) whose global motion direction and speed were equivalent. (b) The same responses obtained with micropatterns made of either one type
of Gabor patches or two sub-groups of Gabor with orthogonal carrier motion direction. Once again, the global motion direction and speed were identical. Reprinted from
Masson (2004) with permission from Elsevier Ltd.. (c–f) Linear and non-linear interactions between competing motions. (c) Closed symbols plot (mf(3f)) the contrast response
function of early ocular following responses driven by a missing fundamental stimulus where contrast of the 3f component was varied (from 32 to 1%) while the contrast
of the other component was kept constant. For comparison, open circles plot the contrast response function obtained when varying the contrast of a pure 3f stimulus alone
(i.e. a sine-wave grating). Point labeled mf − 3 indicates the responses obtained when removing the 3f component (i.e. contrast = 0) from the missing fundamental stimulus.
Continuous grey line shows the vector average prediction from the responses to both mf − 3 and 3f stimuli. Clearly, when the contrast of the 3f component from the mf(3f)
stimulus was reduced below 20%, no contribution of this motion stimulus was seen. Such critical value is equivalent to the contrast of the 5f component, now driving the
responses in the forward direction. (d) Amplitude of ocular following response is plotted again the contrast of the 3f component when a single sine-wave of spatial frequency
3f is presented alone (open symbols) or together with a grating of 5f spatial frequency at fixed contrast (8%). The response to the later component presented alone is indicated
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eprinted from Miles and Sheliga (2010) with permission from Springer-Verlag.

lso coherent with the fact reported above that when two motion
ignals of opposite motion directions are located in the plane of
xation, they cancel each other (Masson et al., 2001).

These results are also consistent with observations that volun-
ary pursuit is also initiated in the vector average direction when
resented with two targets (Ferrera and Lisberger, 1997; Lisberger
nd Ferrera, 1997; see Lisberger, 2010). Moreover, since earliest
esponses of area MT neurons to multiple motions correspond
rst to the vector average prediction, Recanzone and colleagues
ave argued that averaging occurs at this critical stage of motion
rocessing (Recanzone et al., 1997; Recanzone and Wurtz, 1999).
ltogether, these results strongly support the idea that motion sig-
als of similar spatio-temporal contents and contrast are pooled
ogether by the population of MT neurons underlying the behav-
oral receptive field.

.1.2. Pooling motion information for direction: from vector
veraging to winner-take-all
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
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However, there is a strong need for automatic segmentation of
isual scene to single out motion of the object of interest. Psy-
hophysical studies have suggested that local motion signals can
e integrated automatically only within a limited range of spatial
nd temporal frequencies (e.g. Adelson and Movshon, 1982; Welch
ontrast of the 3f component dropped below the contrast of the 5f component, its
nents, moving in the same direction. (f) Model proposed by Sheliga et al. (2008a,b)

and Bowne, 1992; Delicato and Derrington, 2005). Moreover, dif-
ferent surfaces in the visual environment can have different mean
luminance or contrast values, providing other low-level segmenta-
tion cues. It is only very recently that experimental evidences have
been gathered about how these low-level mechanisms are used by
ocular following.

First, we found that, in a plaid pattern, moving gratings of very
different spatial frequencies are not integrated together. Further-
more, when the two components of the plaid have very different
contrasts, ocular following was driven in the direction of the highest
contrast component (Masson and Castet, 2002). Miles and col-
leagues conducted a more extensive study using the mf stimulus
already described above (Fig. 3d, see Miles and Sheliga, 2010 for a
review). They reduced the stimulus to the sum of the 3rd and 5th
harmonics. Overall, when the two components had similar con-
trast, both were effective and ocular following can be predicted by
vector average of the responses to the single component motion.
However, initial ocular following showed a nonlinear dependence
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

on the relative contrast of those two sine waves (Sheliga et al.,
2006b). When the two components differed in contrast by more
than about an octave, ocular following was dominated by the one
with the higher contrast. The second component was suppressed,
providing evidence for a winner-take-all mechanism. These results

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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uggest that channels conveying information about the competing
armonics are mutually antagonistic so that if one harmonic has
contrast significantly greater than all others then it will tend to
revail over its competitors. What about motion signals along the
ame direction? Fig. 7 illustrates the interactions observed when
otion stimuli were made of two sine waves of frequencies equiv-

lent to the 3f and 7f of the mf stimulus. For a contrast ratio equal
o or around 1, amplitude of ocular following responses was again
est predicted by a vector average computation. On the contrary,
or contrast ratios lower than ½ or higher than 2, the response
as purely determined by highest contrast motion. The latter was

nterpreted as further evidence for a winner-take-all mechanism
ngaged when the two components have very dissimilar contrast.
verall, these experiments show that to reconstruct global motion
irection, similar local motion signals are linearly combined but
issimilar ones are actively eliminated to that only one reliable
olution drives tracking initiation. Contrast ratio can determine
uch transition from vector averaging to winner-take-all solution,
ut we can assume that other low level feature dimensions (orien-
ation, spatial frequency,. . .) could be also of importance (Masson
nd Castet, 2002).

.1.3. Pooling motion information for speed: the competition
odel

Reconstructing speed offers another example for investigating
ntegration rules. Rigid translation of a single surface will drive
ifferent channels lying along the same speed axis in the spatio-
emporal space. Visual motion is extracted at different spatial
cales, but we need to understand how these different bits of infor-
ation are integrated to obtain the most likely speed estimate.
e recently investigated this question by recording human ocu-

ar following to single or composite noise patterns. We compared
esponses obtained with two band-pass filtered noise pattern of dif-
erent spatial frequencies presented either separately or together
Drewes et al., 2007). Notice that the two noise patterns had similar
peed, direction and contrast but differed by their spatio-temporal
ontents. A single weighted vector average model failed to pre-
ict the responses to the composite patterns over the whole set
f pairwise combinations. A winner-take-all model was also inap-
ropriate. Overall, we found that vector average solution works
hen the two spatial frequencies were close one from each other

y less than 1 octave. Above this, responses were stronger than
redicted, this gain being larger when weak (i.e. high-spatial fre-
uency) noise patterns were combined. To accommodate the full
ange of results we considered a competition model using tuned
xcitatory input and tuned divisive inhibition. Such feed-forward
etwork implements a competition among the component inputs
Grossberg, 1973; Reynolds et al., 1999; Krekelberg et al., 2004) but
oes not necessarily lead to a single “winner” as in the winner-take-
ll model. Such a model is equivalent to a divisive normalization
Simoncelli and Heeger, 1996; Reynolds and Heeger, 2009) where
he response R can be predicted from:

= K × E

E + I + �
with E =

∑
i

W+
i

Ci and I =
∑

i

W−
i

Ci

here Ci is a spatio-temporal channel, Wi
+ and Wi

− are 6 excita-
ory and inhibitory weights (given by the total number of spatial
requency tested pairwise) and K is a gain factor. The competi-
ion model worked must better than a weighted vector average

odel. We found that excitatory and inhibitory weights were
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

et as a function of distance between spatial frequency channels.
otice however a strong difference between these interactions and

hose observed when using different motion directions. When all
otion components have similar speed, a supralinear interaction
as found when local motions were sampled across very different
 PRESS
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spatial channels. Now here excitatory weights are given between
dissimilar inputs to units tuned for the same speed, contrary to
the integration rules found for motion direction (e.g. Wilson et al.,
1992).

6.2. Local motion integration: summary

Overall, the results described above illustrate how motion infor-
mation is pooled within the behavioral receptive field to drive
ocular following. Automatic integration is performed when local
motion signals have similar contrast or spatio-temporal contents,
corresponding to the vector average solution (Masson and Castet,
2002). Notice that vector average corresponds only to a singular
solution of the competition model. There is however a limited oper-
ating range for vector averaging computation. When local motion
signals are too different, one must be eliminated, corresponding
to automatic segmentation. This is evident when the two motions
have very different contrast (contrast ratio > ½) or are given by very
different directions. When local motions are of opposite directions,
the competition model collapses to a winner-take-all solution since
a single winner is necessary to make a decision about which direc-
tion will be used to initiate tracking. Lastly, when local motion
signals are of same direction or speed, we must understand how
motion information is pooled across units tuned for the same speed
but that sample motion across different spatio-temporal channels
(Hayashi et al., 2010). Then, the weights of these different chan-
nels can be measured using the competition model. Altogether,
these results can be explained by a single competition model where
weights (Wi

+ and Wi
−) are set differently along different domains:

contrast, direction, speed, spatio-temporal frequencies. It shall be
noticed however that when these opposite motions cannot be dis-
tinguished based on their spatio-temporal properties, additional
low-level segmentation mechanism are involved such as the binoc-
ular filtering of out-of-plane motion that has been demonstrated in
both humans and monkey ocular following (Busettini et al., 1996;
Masson et al., 2001).

The competition model relies on tuned divisive inhibition
between units, the weights of the inhibitory components being
set by their relative distance and contrast. Divisive normalization
can be seen as a mechanism acting to enhance sensitivity to the
signal(s) of interest and lower the contribution of irrelevant sig-
nals. This model has been successfully applied to a wide range of
low-level mechanisms, from direction selectivity (Heeger, 1993)
to attentional modulation (Reynolds and Heeger, 2009) at both
single-unit (e.g. Simoncelli and Heeger, 1996; Reynolds et al., 1999)
and population levels (Sit et al., 2010). Motion integration under-
lying neuronal responses to plaid patterns can be also described
as a cascade of tuned divisive normalizations between V1 and MT
units (Rust et al., 2006). These last versions of the models involve
both global and tuned components of the divisive pool acting on
units tuned for spatio-temporal frequencies, direction or speed. An
attractive aspect of this class of models is that it allows describ-
ing contrast dynamics and motion integration within the receptive
field (see Albrecht et al., 2002 for a review) as well as from outside
the classical receptive field (e.g. Schwartz and Simoncelli, 2001).
It can also be expanded to understand how different motion com-
ponents are integrated. Again, by varying the tuned component of
the normalization model, ones can predict different solutions, from
vector averaging to winner-take-all.

Since motion components can be presented either at the same
location (i.e. plaids pattern, mf stimuli,. . .) or split among distant
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

retinal loci, with different directions, ocular following offers an
excellent probe to tease apart the contribution of global and local
inhibitory interactions. In particular, interactions between motion
stimuli of same or opposite directions behave differently when dif-
ferent motion signals are kept separated (Sheliga et al., 2008b).

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 8. Spatial summation for ocular following in humans (upper row) and monkeys (lower row). (a) Mean velocity profiles of ocular responses to a drifting grating presented
behind an aperture of increasing diameter (from 3.5 to 43◦). During the earliest part of ocular following, response amplitude rapidly grows and then saturate for diameters
larger that 15◦ . (b) Such saturation is evident when plotting response amplitude against stimulus diameter. Continuous line is the best-fit obtained with a Difference-of-
Gaussians. For low spatial frequencies, response amplitude saturates with little hyper-saturation for largest diameters. Temporal integration results in larger summation
area as illustrated by the estimated Gaussian integration profiles for the earliest (grey) and latest (black) part of the ocular following responses. Modified from Barthélemy
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t al. (2006). (c,d) Left-hand plots illustrate mean eye velocity profiles for stimuli o
emoving central parts of the motion stimulus and therefore probing the contributi
etween change in eye position and center diameter for both disk (open symbols) a

onlinear interactions between opposite motion directions disap-
ear when the two components are presented within narrow paral-

el stripes separated by more than 1◦. Above this, ocular responses
atch the linear prediction. On the contrary, motion signals of same

irection interact over much larger retinal distances. For inter-
tripes gap of 8◦ (the largest separation tried), ocular following
esponses were still substantially less than predicted by the linear
um. Sheliga et al. (2008a,b) postulated the existence of two nonlin-
ar interactions: local mutual inhibition resulting in winner-take-
ll effects and more global inhibition, resulting in normalization
ffects. Using multiple components stimuli, they found that motion
nputs whose influence had been suppressed by local inhibition
etween opponent motions where excluded from global normal-

zation. This suggests that local interactions occur at an earlier level
han global normalization (Fig. 7d). The spatial extent of the global
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

ormalization signal is largely unknown. We can however assume
hat it covers a very large part of the receptive field given the facts
hat, (i) macaque ocular following can be driven by signals pre-
ented at eccentricities greater than 30◦ (see below and Fig. 8f) and
ii) that peripheral suppression of pursuit initiation in monkeys can
anding center diameter. Notice that in the annulus condition, this is equivalent to
motion sensors of growing eccentricity. See text for explanations. (e) Relationships
nulus (closed symbols) conditions.

be seen when a textured static background is set at a distance as
large as 30◦ from the moving target (Kimmig et al., 1992).

If gain control mechanisms operate so as to selectively integrate
motion signals from different parts of the visual field, it should
have an impact on spatial summation, as shown for V1 neurons
for instance (Cavanaugh et al., 2002a,b). Hence, we could probe the
contrast dynamics of ocular following in the presence of surround
motion of different directions. Several studies have been conducted
to document these two aspects in both humans and monkeys: spa-
tial summation and contextual modulation.

6.3. Early motion integration: local and global divisive gain
control

6.3.1. Nonlinear spatial summation for ocular following
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

Miles and colleagues originally observed that, in monkeys,
amplitude of early ocular following increases as the stimulus size
increases up to 40◦ diameter in the center of the visual field (Miles
et al., 1986). However, they also found evidence that initial eye
velocity does not monotonically increase with stimulus size but

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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how signs of saturation. It was only recently that the link was
stablished between nonlinear spatial summation and global divi-
ive inhibition effects. Breaking a moving vertical drifting grating
nto small (1◦ width) parallel stripes, Sheliga et al. (2008b) found
hat increasing the number of stripes (and this the total size of
he stimulus) resulted at first in an increase in response ampli-
ude, then a plateau and a decrease in initial eye velocity when
he image filled the screen. They interpreted this as evidence for
nhibitory surround input acting as a (divisive) response normal-
zation. However, two effects were not explained. First, response
atency decreases with total stimulus size. Second, changes in eye
elocity were seen only in the later part of the response, that is
40 ms after response onset. This is reminiscent to the early obser-
ation of Miles et al. (1986) that antagonistic surround motion does
nfluence ocular following but only in the late part of the response.
ne potential problem with the studies of Miles and colleagues
as that each competing motion elicited an oculomotor response

n itself, opening the door for motor rather than visual interactions.
We documented a more direct set of evidence for surround mod-

lation in both humans and monkeys. First, we closely re-examined
patial summation in both humans and monkeys to measure the
ntegrative zone of the behavioral receptive field (Barthélemy et al.,
006). In humans, increasing the size of the stimulus results in a
harp increase of response amplitude, for diameters up to ∼15–20◦.
arger stimulus sizes did not further boost the response amplitude
Fig. 8a). Such saturation with grating diameter indicates that sum-

ation of motion information occurs within a limited integrative
one, which we defined as the central, driving part of the behav-
oral receptive field (Barthélemy et al., 2006). Moreover, at least
or medium spatial frequency (0.4 cpd), we found little evidence
or hyper-saturation indicating a weak inhibition due to peripheral
nputs of same motion direction (Fig. 8b). In monkeys, we further
xplored the properties of the integrative zone in two different
ays. First, we titrated the contribution of peripheral neurons using

nnuli of increasing center diameter (Fig. 8c,e) and compared this
ith the effect of disks of expanding size (Fig. 8d,e). Second, we var-

ed the spatial frequency content of the stimulus to see if the spatial
ummation function varies with spatial frequency for ocular follow-
ng as it does for single neurons (Daugman, 1985; DeAngelis et al.,
994). As shown by the two arrows in the upper-left plot, increas-

ng stimulus size first resulted in increasing responses (continuous
ines) although further expanding the grating diameter resulted in
reduction of the ocular responses (broken curves). Such nonlinear
patial summation function is best illustrated by plotting response
mplitude against stimulus diameter (open symbols, Fig. 8e). Such
eduction with sizes larger than optimal is often seen as a signa-
ure of surround inhibition. Notice that hyper-saturation was larger
han observed in humans for similar spatial (0.4 cpd) and temporal
10 Hz) frequencies. Notice also that decrease in response ampli-
ude was always seen as early as response initiation, but that in
umans smaller stimuli resulted in longer latencies.

Such a nonlinear spatial summation with response reduction
or larger than optimal sizes is classically seen as a signature of a
esponse inhibition from surrounding motion (Allman et al., 1985).
he fact that surround suppression asymptote to some less than
aximal response amplitude can be explained by the distribu-

ion and size of motion detectors across the visual field. Using an
nnular stimulus, we documented the weight of peripheral motion
etectors (Fig. 8e, closed symbols). Increasing the inner diameter
f the ring exponentially reduces the response amplitude, demon-
trating that the contribution of local motion detectors decreases
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

ith eccentricity. Neurons selective for higher spatial frequency
ave smaller receptive fields (i.e. smaller optimal size of stimu-

us) (Daugman, 1985) and are less represented in the periphery
f the visual field since receptive field size increases linearly with
ccentricity in both macaque areas V1 and MT (Dow et al., 1981;
 PRESS
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Albright and Desimone, 1987). Consistently, with higher spatial
frequency gratings, we found a sharper decrease, zeroing with rel-
atively small inner diameter. At these high spatial frequencies, no
hypersaturation was observed in the spatial summation function,
demonstrating that this latter is produced by peripheral motion
detectors tuned for the same direction of motion as the center. This
is consistent with the global normalization model postulated by
Sheliga et al. (2008b).

Spatial summation is slightly, but significantly affected by con-
trast. In humans, we found a larger optimal size at very low contrast
(inset Fig. 8b). Such contrast modulation of spatial summation has
been reported at both psychophysical (Tadin et al., 2003; Tadin
and Lappin, 2005) and neuronal (Cavanaugh et al., 2002a; Sceniak
et al., 1999; Pack et al., 2005) levels. Moreover, surround suppres-
sion is often more pronounced at high contrast (e.g. Cavanaugh
et al., 2002a; Pack et al., 2005). These results strongly suggest that
surround inhibition acts as a gain control. Models postulating a
divisive inhibition of the center of behavioral receptive field pre-
dict that contrast response function shall be strongly modulated
by surround motion (e.g. Cavanaugh et al., 2002a; Schwartz and
Simoncelli, 2001; Xing and Heeger, 2000, 2001). Such contextual
modulation shall then be dependent on the relative contrast and
direction of center and surround motions. We investigated the
dynamics of this gain control in both humans and monkeys ocular
following.

6.3.2. Contextual modulation of center motion: contrast gain
control

To investigate gain control mechanisms, Sheliga et al. (2006a,b,
2008b) used different grating motion moving simultaneously in
opposite direction. Since the peripheral motion can drive ocular
responses on its own, it remains uncertain whether a reduction
in response amplitude reflects inhibitory interactions at visual or
motor levels. We have investigated these inhibitory interactions
using a different approach. In both human and non-human pri-
mates, we documented contrast response function of responses
driven by central grating motion (20◦ diameter) presented either
alone or surrounded by a dynamical surround. Here, the surround-
ing motion was a counterphase grating, i.e. the sum of two gratings
with similar spatiotemporal frequencies and contrast but moving
in opposite directions. One advantage of such contextual stimuli
was that it did not drive any significant eye movements when pre-
sented alone, discarding the possibility that changes observed in
the amplitude of center-driven grating were due to some interac-
tions between competing motor responses (Barthélemy et al., 2006;
Barthélemy and Masson, 2006).

Fig. 8a illustrates results obtained in human subjects. As can be
seen from comparing eye velocity profiles, a flickering surround
has a strong suppressive effect on ocular following responses to
the center moving grating. However such suppressive effect was
mostly seen on the later part of the responses. This is even more evi-
dent when comparing contrast response functions obtained with
or without a flickering surround. In the earliest time window (light
grey bar), locked with response onset, no differences were seen
between the two sets of curves. It looks like as if the surround was
ineffective in this early period. On the contrary, a strong differ-
ence can be observed in the later time window (dark grey bar).
Adding a surround both lowered the slope of the Naka–Rushton
function and increased half-saturation contrast from 10 to 30%. In
other words, the surround had a strong divisive effect on the center-
driven responses. Notice that the grey symbols, nearly aligned with
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

the horizontal line at 0◦ amplitude response, indicate that when
presented alone the flickering surround did not elicited any sig-
nificant eye movements. A closer look at the dynamics of contrast
gain control indicates that the effect of the surround was mostly to
clamp the contrast gain of ocular following to the level originally

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 9. Contrast gain control and contextual information in human (a) and macaque (b) ocular following. (a) Left-hand plots are eye velocity profiles of responses to a single
grating, presented at seven different contrasts (from 2.5 to 80%). Light and dark grey bars indicate early and late time windows for quantitative analysis. Middle plots are eye
velocity profiles of responses to same grating motion stimulus (contrast range: 2.5–80%) but now presented with a full contrast flickering grating in the surround. Right-hand
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lots illustrate the contrast response functions for ocular following to the center gra
ifferent time windows. Reprinted from Reprinted from Barthélemy et al. (2006), J
btained with or without a flickering surround, measured at 3 different time windo

et at response onset, prevailing the leftward shift of the curve due
o temporal integration.

How to explain that surround inhibition was delayed relative
o tracking onset? One simple explanation could be that, due to
he rather large diameter of our central stimulus (20◦), peripheral
ignals were delayed. Two experiments were conducted to reject
uch explanation. First, we reduced the size of the center–surround
timuli to ∼6◦. Second, we broke the motion stimulus into a set
f nine small patches, all having a surround set to either 80 or
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

% (i.e. no surround). Overall, the temporal dynamics of surround
ivisive inhibition was strictly similar to that reported for large
otion stimuli. This result suggests that interactions were mostly

ocal between motion detectors tuned for opposite motion direc-
ion. This results in consistent with the experiments done by the
lone (open symbols) or with an iso-oriented surround (closed symbols), for the two
ophysiol. with permission from Am. Physiol. Soc. (b) Contrast responses functions
ter stimulus onset. (Barthelemy et al., in preparation).

group of Miles using small bands and single gratings of opposite
motion directions. Moreover, at least in humans, divisive surround
effect was tuned for relative orientation/direction between center
and surround motions: inhibition was strongest for iso-oriented
surrounds and weakest for cross-oriented ones.

Similar results were found in macaque monkeys (Barthélemy
and Masson, 2006). As shown in Fig. 8b, ocular following driven
by center motion was largely suppressed by adding a flickering
surround. The difference between iso- and cross-oriented sur-
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

rounds was found to be smaller than observed in humans. However,
the temporal dynamics of surround suppression is very similar
to that observed in humans. The earliest phase (55-75 ms after
motion onset) of ocular following was unaffected by a dynamical
surround. Surround motion began to have a significant, suppres-

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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ive effect only ∼15 ms after response onset. From then, surround
nhibition grew over time. The facts that surround influence was
elayed are consistent with the timing of surround inhibition
ound at single unit level in area V1 of macaque monkeys (Bair
t al., 2003, see also Knierim and Van Essen, 1992; Lamme, 1995).
ecently, we investigated this dynamics with a scaled-version of
he center–surround stimuli used for ocular following (Reynaud
t al., 2007). Recording population activity with voltage-sensitive
yes optical imaging, they found that surround activity suppressed
he neuronal responses driven by center stimuli in area V1 of alert

acaque monkeys. Such surround suppression was delayed by
10 ms and this delay was dependent on the distance between

he center and surround parts of the stimulus. Since more periph-
ral surround stimulus elicits neuronal responses in a more distant
art of the cortex relative to center retinotopic representation,
e can assume that timing of surround suppression is mostly

xplained by the dynamics of lateral interactions within area
1 and not by feedback modulations from higher areas such as
rea MT.

.3.3. A divisive normalization for ocular following: gain control
nd automatic selection

Altogether, the results presented above strongly support the
dea that sensory processing for ocular following involves sev-
ral nonlinearities. Changes in response amplitudes when varying
timulus size, contrast and surround suggest that these nonlinear-
ties result from at least two divisive normalization mechanisms.

first divisive inhibition occurs between units tuned for opponent
otions and operates at small spatial scales. This mechanism is

uned for motion direction, co-linear gratings producing the great-
st suppression and orthogonal ones the weakest (Barthélemy et al.,
006; Barthélemy and Masson, 2006). Rust et al. (2006) have sug-
ested that such tuned divisive normalization occurs at the level of
T neurons. If this is true, local inhibition shall be implemented in

ocus II rather in locus I in the general schema proposed by Sheliga
t al. (2008b) and illustrated in Fig. 7f.

We, and others, found that a significant fraction of surround
uppression is not tuned for direction. Such global suppression
lso scales with the contrast of the surround motion but emerges
lightly before the tuned suppression (Barthélemy et al., 2006;
arthélemy and Masson, 2006). This global suppression would
orrespond to the global divisive normalization postulated by
arthélemy et al. (2006) and then Sheliga et al. (2008a,b) on dif-

erent experimental grounds. Such global divisive normalization
ight be implemented at an early level such as area V1 as suggested

y Simoncelli and Heeger (1996) and supported by the timing of
urround suppression for ocular following as well as the tempo-
al dynamics of population gain control in primary visual cortex
Reynaud et al., 2007; Sit et al., 2010). This latter aspect is critical
o tease apart the contribution of these different stages. We have
hown in both human and monkeys that we can track the differ-
nt inhibitory mechanism at the ms time scale by looking at the
ime course of ocular following. Most current models using divisive
ormalization for motion integration are static models. Because
enter–surround mechanisms present different timings along the
ortical motion pathway, future work will attempt to dissect the
emporal architecture of this cascade.

Divisive normalization offers an integrative framework to elu-
idate two nonlinear properties of the behavioral receptive field:
ain control and automatic selection. We have shown that the
ompetition model implements a tuned divisive inhibition. A gen-
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

ral property of tuned divisive normalization is that it amplifies
ertain motion components while damping the contribution of oth-
rs. Such a mechanism could act to single out the global motion
ignal in different domains (spatial location, spatio-temporal prop-
rties, direction and speed). It correspond to the early suggestion
 PRESS
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of Miles et al. (1986) that ocular following is not driven by en
masse motion but rather relies on complex front-end process-
ing that quickly and automatically segment the object motion of
interest.

7. Comparison with voluntary smooth pursuit

Above, we have summarized experimental data collected with
ocular following eye movements, which are reflexive tracking
eye movements. We must say a few words about the similarities
and differences between reflexive ocular following and volun-
tary smooth pursuit. Steve Lisberger and his colleagues at USCF
have performed a long series of experiments to investigate how
local motion information is encoded by population of MT neu-
rons to drive the initial eye acceleration of voluntary tracking (see
Lisberger, 2010 for a review of their work). Overall, they found that
target speed is encoded by a population of MT neurons perform-
ing local motion integration (Priebe et al., 2001), with extended
spatio-temporal bandwidths that make them speed tuned (Priebe
et al., 2003; Priebe and Lisberger, 2004). This is consistent with
earlier report that target velocity, and in a much lesser extent
target motion acceleration is represented in area MT when anes-
thetized monkeys are presented with small targets similar to those
used for driven smooth pursuit (Lisberger and Movshon, 1999).
More recently, they investigated how motion direction informa-
tion is build-up in such MT neurons population. Using information
theory, they proposed that behavioral performance is essentially
constrained by noise level within the sensory part of the visuo-
motor transformation (Osborne et al., 2005) and that direction
information is quickly accumulated in MT neurons so that only
a few spikes are needed to correctly trigger an ocular responses
with latency ∼100 ms (Osborne et al., 2004, 2007). Another ear-
lier important observation from the same group was that, when
presented with multiple target motions, initial eye acceleration
of voluntary pursuit in macaques is driven by the vector average
solution (Lisberger and Ferrera, 1997). Similarly, direction tun-
ing of MT neurons was found to encode the same vector average
computation (Recanzone et al., 1997) at least until target selec-
tion has occurred (Recanzone and Wurtz, 1999, 2000; Wilmer and
Nakayama, 2007).

Altogether, this summary points out that similar computa-
tional rules apply to both voluntary and reflexive tracking eye
movements. Moreover, the two series of studies have highlighted
different aspects of automatic motion integration. In particular, the
work of Lisberger and colleagues favors the hypothesis that pursuit
initiation is based upon a linear read-out of a population of speed
tuned neurons located in area MT, implemented as a weighted vec-
tor average computation (see Lisberger, 2010). However, ocular
following (Masson and Castet, 2002; Sheliga et al., 2006a,b; Drewes
et al., 2007) as well as pursuit responses (Priebe and Lisberger,
2004) to compound stimuli pin point the fact that dissimilar inputs
can be nonlinearly integrated, depending for instance upon their
relative contrast or spatial frequency. Future work should further
explore this aspect since information about speed and direction of a
natural objects are available at multiple spatial scales and therefore
through a set of different spatio-temporal channels (Drewes et al.,
2007; Simoncini et al., 2010). Since ocular following more heav-
ily relies on spatial integration of motion signals to active template
detectors such as found in area MST, it is more probable that nonlin-
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

than smooth pursuit of a single, point-like motion stimulus. Lastly,
we are still lacking trial-by-trial correlation between single unit
responses in areas MT/MST and ocular following, similar to what
has been done for voluntary smooth pursuit eye movements (see
Lisberger, 2010 for a review).

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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Fig. 10. A functional model for linear and nonlinear visual properties of ocular following. (a) Motion signals are extracted through spatio-temporal filters whose relative
contribution defines the spatial and temporal tunings of the behavioral receptive field, that is the optimal window of visibility for these behavioral responses. (b) Integrative
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. A functional description of the behavioral receptive field

All these results presented above can be captured in a descrip-
ive model of a behavioral receptive field. Fig. 10 summarizes
he essential computational properties of this behavioral recep-
ive field. Table 1 provides a mathematical description for each
tep, together with mean best estimates of the parameters, for
oth humans and monkeys. Overall, three essential mechanisms
re involved: spatio-temporal filtering with a bank of linear filters,
ontext-dependent integration implemented as center–surround
echanisms and gain control through a cascade of tuned and un-

uned divisive normalizations. We will describe these three steps.
Local changes in luminance are sampled by a set of linear filters

xtracting the spatial and temporal profiles in a small image patch.
hese filters have a temporal impulse response (Sheliga et al., 2005)
hat can be fitted by Eq. (1), similar to both cells found in primary
isual cortex and psychophysical performance (De Valois and De
alois, 1990). These spatio-temporal filters are pooled together to

orm the spatial and temporal envelopes of the behavioral receptive
elds (Miles et al., 1986; Gellman et al., 1990). These envelopes are
est fitted with log-skewed Gaussian functions (Eqs. (2) and (3)),
gain similar to that used previously for single neurons or popula-
ion measurements (e.g. Albrecht, 1995; Henriksson et al., 2008).
nterestingly, these envelopes are both band-pass tuned, indicat-
ng that ocular following samples motion over a limited window
f visibility. This suggests that the population of MT/MST neu-
ons that reconstructs object speed pools information only over
restricted subset of V1 neurons. Consistently, the tuning func-

ions found for ocular following correspond to those observed with
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

1 neurons projecting to MT area (Movshon and Newsome, 1996).
e obtained very similar best fitting parameters, in particular opti-
al temporal frequency (∼5 Hz) at low spatial frequencies. These

patio-temporal properties implement a first automatic segmenta-
ion, filtering out motion from a given range of spatial and temporal
he driving part of the visual field, pooling signals from different (mainly opposite)
e output of the integrative stage by a signal proportional to the global and local

mulates several nonlinear properties of ocular following such as contrast response

scales corresponding to that of large objects whose images undergo
retinal translation during head movements (Miles et al., 1986)
(Fig. 10).

The behavioral receptive field captures the behavioral conse-
quences of two nonlinear mechanisms documented at the early
visual motion processing stage: a non-linear relationship between
response amplitude and stimulus size and a sigmoid-like contrast
response function that can be shifted along contrast axis, depending
on context. We have shown above that such nonlinear relationship
between response amplitude and contrast can modeled by Eq. (5)
also called the Naka–Rushton function. Interestingly, the best-fit
parameters found for both human and monkeys are consistent with
those reported for populations of MT and MST neurons in macaque
(see Fig. 6a). The correlation is even stronger between MST popula-
tion and ocular responses in monkeys. This suggests strongly that
dynamical properties of ocular following are indeed set at this level.

MT and MST neurons show strong center–surround interac-
tions. These interactions have been largely investigated in primary
area V1 but are less documented in these areas. In both humans
and monkeys we found that surround motion affects the contrast
response function in a consistent way: the Naka–Rushton function
becomes less steep and half-saturation contrast increases. In mon-
keys, we found that on average the slope shifted from ∼2 to ∼1.5
and C50 increased from 10 to 20%. More work is needed to compare
these values to those observed at population level for both MT and
MST areas. However, the fact that breaking the center–surround
stimulus into smaller patches does not change this effect strongly
suggests that context-dependent gain control mechanisms arise
principally in area MT where neurons have smaller receptive fields.
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

Another evidence for a key role of area MT in shaping the
behavioral receptive field is given by the OFR spatial summation
function. Relationships between response amplitude and stimulus
size exhibit a highly nonlinear shape that is best fitted with Eq. (6).
At neuronal levels, center–surround interactions underlying non-

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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inear spatial summation and tuned/un-tuned gain control can be
odeled as divisive interactions between pools of neurons cover-

ng overlapping parts of the visual field. Cavanaugh et al. (2002a,b)
ave proposed that a Ratio-of-Gaussian model can simulate most
f these properties for V1 neurons. This RoG model implements a
eneral divisive normalization, in particular to model the effects
f grating surround on the neuron’s contrast response (Chen et al.,
001). They found that kc and ks are non-linearly dependent upon
ontrast (k ∝ Cn) and therefore that contrast would change the gain
atio between the two populations such that suppression was pro-
ortional to kc/(1 + ks). Such gain model is sufficient to explain
hanges in the summation function with lower contrast (Sceniak
t al., 1999) without the need of postulating changes in spatial
xtent of excitatory and inhibitory fields. We applied the same logic
o ocular following and found that the optimal spatial summation
unction can be fitted with Eq. (6). Of particular interest, motion sig-
als are optimally integrated over the central 10–15◦ of the visual
eld. Moreover, spatial integration is modulated by a suppressive
eld of much larger size (Table 1). Such suppressive field could

mplement context-dependent gain settings as reported above (see
ig. 9). In humans, surround suppression is modulated by the con-
rast ratio between center and surround motion (Barthélemy et al.,
006). However, further work is needed to investigate whether the
oG model can also describe these center–surround modulations.
till, the current results support the view that spatial properties of
otion integration can be seen as the product of excitatory (driv-

ng) and suppressive (modulating) mechanisms implementing both
on-specific and direction-selective normalization (Barthélemy
t al., 2006; Sheliga et al., 2008a,b; Miles and Sheliga, 2010).

We have seen that most of these nonlinear interactions have
luggish temporal dynamics: contrast gain rapidly changes over
ime and surround inhibition is delayed relative to center-driven
esponses. This could respectively correspond to two properties of
1 neurons: local temporal integration (Albrecht et al., 2002) and
elayed input from the surround (Bair et al., 2003; Reynaud et al.,
007). Moreover, the fact that surround inhibition builds up over
ime indicate that the strength of the inhibitory pool grows over
ime, something observed at population level in macaque area V1
Reynaud et al., 2007). In the model, this could be described by
wo different temporal integration mechanisms, one being local
pooling of similar motion signals) and the other being global (nor-

alization signals). These two time scales could correspond to the
ifferent temporal dynamics of local (i.e. short-range) and global
i.e. long-range) cortico-cortical interactions.

Table 1 shows that input–output relationships between ampli-
ude or latency of ocular following and the properties of visual

otion stimuli can be collapsed into a set of descriptive functions
hat form the core of the spatial interactions between driving and
uppressive populations of neurons tuned for motion directions.

e have proposed that such a set of functions defines a behav-
oral receptive field. Moreover, it becomes possible to clarify the
patial scales at which each linear or non-linear processing occurs.
owever, such behavioral receptive field must be seen as a read-
ut of neuronal populations activity. This is further illustrated by
he fact that MST neurons have themselves receptive fields with

any properties that are homogeneous with what is observed at
ehavioral level: large, but finite integration zone, broad speed tun-

ng, disparity-tuning peaking around 1–2◦ and so on and so forth.
hus a linear pooling of MST neurons can yield to a set of tuning
urves, in both spatial and temporal domains, which in principle
orrespond to the properties of the behavioral receptive field. This
Please cite this article in press as: Masson, G.S., Perrinet, L.U., The beh
tracking eye movements. Neurosci. Biobehav. Rev. (2011), doi:10.101

pproach is similar to population analysis methods that reconstruct
population receptive field from single measurements of individ-
al neurons (see Erlhagen et al., 1999; Jancke et al., 1999).

In Section 4, we introduced the idea of the behavioral receptive
eld as a much more constrained framework than the original con-
 PRESS
obehavioral Reviews xxx (2011) xxx–xxx 21

cept of perceptive fields. Table 1 illustrates the advantages of ocular
following to map the functional properties of motion detection
and integration stages. In its original description, the perceptive
field was mostly seen as a description of human perception, trying
to link phenomenology of both psychophysical performances and
neuronal properties. We provide a more quantitative framework
where best fitting parameters for a given functional step can be
compared to the neuronal population characteristics (see Fig. 6 for
instance). Moreover, ones can measure the temporal dynamics of
ocular responses and compare it to time courses of neuronal activ-
ity. Such approach can be extended to 2D motion integration for
which we demonstrated that time course of eye movements closely
follow that of the neuronal solution of the aperture problem in area
MT (see Fig. 4 in Barthélemy et al., 2010; see also Fig. 8.2, Masson
et al., 2010). In the future, we will relate some of the nonlinear
properties of the behavioral receptive field to the characteristics
of early and late phases of ocular following when presented with
plaids or barber-poles. We will then be able to test some predictions
made by the behavioral receptive field model such as the similarity
between in the temporal dynamics of center–surround interactions
and 2D motion integration (Masson et al., 2000; Barthélemy et al.,
2010), similar to some recent models of MT neurons responses to
2D motion (Tsui et al., 2010). One last advantage of the behavioral
receptive field upon the perceptive field is its limited numbers of
steps that make it suitable for realistic modeling using dynamical
models. Future work will then target neural modeling of the bRF,
focusing in particular on the spatio-temporal network properties
(Perrinet and Masson, 2007).

9. Conclusions

In the present review, we have summarized a large bulk of
results obtained with ocular following responses in human and
non-human primates. We have shown that these data are a mine
of information at different levels: (i) to identify what are the basic
mechanisms involved in motion detection, and their timing, (ii)
identify the rules of automatic motion integration and segmenta-
tion to single-out the part of the image corresponding to the object
of interest, (iii) map linear and nonlinear characteristics of visual
motion processing with different stages along the cortical motion
pathways. We have shown how these different computational steps
can be condensed into the idea of a behavioral receptive field. Such
bRF describes how most relevant information is extracted to drive
the eyes. Our hope is that we have convinced readers that small,
reflexive eye movements offer us a delicate tool to probe cortical
dynamics in both humans and monkeys.

Understanding how these non-linearities are related to decision
mechanisms operating on cascaded and distributed representa-
tions of motion information is one of the future challenges. To meet
this objective, we need population recordings at different spatial
and temporal scales as well as correlation studies between neuronal
and behavioral responses on a trial-by-trial basis. Such approaches
have been pioneered for smooth pursuit (Lisberger, 2010), but ocu-
lar following offers a better window onto the temporal dynamics
of context-dependent pooling mechanisms. Just as spatial orienta-
tion, ocular following could then be another example of how to link
the transfer function approaches to dynamical Bayesian inference
(MacNeilage et al., 2008; Perrinet and Masson, 2007).

Another challenge is to link the temporal dynamics of early
motion detection and integration to that of two-dimensional (2D)
avioral receptive field underlying motion integration for primate
6/j.neubiorev.2011.03.009

motion integration. Several studies have demonstrated that lin-
ear averaging of Fourier motion is not sufficient to reconstruct the
global 2D trajectory of a moving surface (e.g. Adelson and Movshon,
1982; Wilson et al., 1992). Further computational steps are neces-
sary (e.g. Movshon et al., 1985; Wilson et al., 1992; Rust et al., 2006;

dx.doi.org/10.1016/j.neubiorev.2011.03.009
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sui et al., 2010) as well as the diffusion of information into layered,
etinotopically organized maps (e.g. Grossberg et al., 2001; Tlapale
t al., 2010). The last decade has unveiled that MT motion integra-
ion is a highly dynamical computation (Pack et al., 2001, 2004; Pack
nd Born, 2001; Smith et al., 2005). Again, the temporal dynamics
f both reflexive (Masson et al., 2000; Masson and Castet, 2002) and
oluntary (Masson and Stone, 2002; Wallace et al., 2005; Born et al.,
006) tracking reflects these different computational steps. More-
ver, time course of ocular following strictly mimics (on a ms time
cale!) that of MT neuronal populations when tested with ambigu-
us 2D motion patterns such as plaids or barberpoles (Barthélemy
t al., 2010). Interestingly, this dynamics is also consistent with that
eported above for center–surround interactions at population lev-
ls. We need to elaborate a common theoretical framework to relate
hese two mechanisms and therefore unveil how V1 and MT neu-
al populations interact to compute global speed and direction of
oving objects.
Investigating visual motion processing in the context of track-

ng eye movements has long been trapped between a search for
bjective estimates of perceptual processes and a source of noise
nd caveats that you should eliminate to decipher the underlying
otor apparatus. After two decades of intensive works by only a

ew groups, tracking eye movements appear as an exquisite tool to
nderstand in the finest details how the brain senses our world to
apidly and accurately guide our actions.
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