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ABSTRACT

Aleatoric uncertainty characterizes the variability of features found in natural im-
ages, and echoes the epistemic uncertainty ubiquitously found in computer vision
models. We explore this ”uncertainty in, uncertainty out” relationship by gener-
ating convolutional sparse coding dictionaries with parametric epistemic uncer-
tainty. This improves sparseness, resilience and reconstruction of natural images
by providing the model a way to explicitly represent the aleatoric uncertainty of its
input. We demonstrate how hierarchical processing can make use of this scheme
by training a deep convolutional neural network to classify a sparse-coded CIFAR-
10 dataset, showing that encoding uncertainty in a sparse code is as efficient as
using conventional images, with additional beneficial computational properties.
Overall, this work empirically demonstrates the advantage of partitioning epis-
temic uncertainty in sparse coding algorithms.

1 INTRODUCTION

Sensory processing is constrained by both uncertainty outside and uncertainty within, respectfully
designated as aleatoric and epistemic uncertainty (Hüllermeier & Waegeman, 2021). The former
arises due to inherent stochasticity in the structure of the inputs to a sensory system, and is a
characteristic property of many naturalistic inputs, such as sounds (Nakamura & Nakadai, 2015),
haptics (Pettypiece et al., 2010) and images (Ruderman, 1994). This aleatoric uncertainty is chal-
lenging to predict, as it often relies on factors that are outside possible measurements or control,
and has proven to be an arduous modeling challenge to computer vision (Gousseau & Morel, 2001).
On the other hand, epistemic uncertainty arises due to the lack of knowledge about the global input
and model system, and can stem from various sources, the foremost being due to inputs that have
ambiguous visual parameters properties, such as lighting conditions, object pose, or orientation.
This creates aleatoric uncertainty in the input, which then results in epistemic uncertainty in the
model (Coppola et al., 1998).

An optimal policy to describe the relationship between the two types of uncertainty is crucial to max-
imize the performance of a model, and to try to minimize decision uncertainty. Certain frameworks,
such as Bayesian modeling, offer an explicit rule to connect the squared inverse of both uncertainties
(i.e., precisions) and guide the model’s updates accordingly, which is well-accounted for by neuro-
scientific models of sensory processing (Helmholtz, 1924; Orbán et al., 2016; Hénaff et al., 2020;
Ladret et al., 2022). Yet, even if a model does not explicitly take into account aleatoric uncertainty, it
cannot escape being under its implicit constraint. For instance, fundamental machine learning mod-
els such as sparse coding (Olshausen & Field, 1996), that forms the basis of many computer vision
algorithms (Zhang & Ghanem, 2018), display parameters (dictionaries) that are strikingly similar to
their biological counterparts (Olshausen & Field, 1997). Notably, they display heterogeneous epis-
temic uncertainty, feature positioning and scaling (Figure 1). Position- and scale-free representation
of features provides the basis for convolutional sparse algorithms, yet these models cannot represent
a single feature at multiple uncertainty levels.
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Figure 1: Aleatoric uncertainty reflects epistemic uncertainty. (a) High (blue) and low (red)
aleatoric uncertainty in the feature (orientation WRT the vertical) space from two patches of a nat-
ural image (using a Histogram of Oriented Gradients on 32 × 32 pixel patches from an image of
the Kodak dataset (Franzen, 2013)). (b) High and low epistemic uncertainty emerging by learning
statistics of natural images (Olshausen & Field, 1996) using a Sparse Coding algorithm. (c) Com-
parison with receptive fields of cat primary visual cortex.

Here, we sought to alleviate this shortcoming, by showing how convolutional sparse coding might
benefit from factoring-in uncertainty. We present a generative model of dictionary with parametrized
feature uncertainty. This shows that heterogeneous epistemic uncertainty in features dictionaries
improves sparsity, PSNR and resilience of convolutional sparse coding algorithms. We then provide
evidence that this structure also naturally emerges from training on a dataset of natural images,
supporting the idea that epistemic uncertainty is causal and advantageous when dealing with datasets
that contain high levels of aleatoric uncertainty. Finally, we show that sparse-coded natural images
can be re-used as inputs to deep neural networks, boosting performance and providing resilience to
input degradation.

2 BACKGROUND

2.1 SPARSE CODING

Sparse coding (SC) is a widely used model for learning the inverse representation of an input sig-
nal (Lee et al., 2006). Given the assumption that a signal can be represented as a linear mixture
of basis functions, the optimization problem solved by sparse coding is one that tries to minimize
the number of basis functions that are used to represent the input signal, yielding a compact and
efficient representation of the original signal (Perrinet, 2015). Here, we focused on sparse coding
as the problem of reconstructing an image S from sparse representations x while minimizing a ℓ1
norm of the representation. This problem can be formulated as:

argmin
x

1

2
||S − Dx||2 + λ||x||1 (1)

where D is a dictionary (i.e. a set of basis functions used to represent S) and λ a regularization
parameter that controls the trade-off between fidelity and sparsity. This problem can be approached
with a Basis Pursuit DeNoising (BPDN) algorithm (Chen et al., 2001).

Convolutional sparse coding (CSC) uses dictionary elements (kernels) that are spatially localized
and replicated on the full input space, resulting in convolutional kernels. The number of basis func-
tions in the dictionary defines the number of features, or channels, which is multiplied by the number
of position, compared to standard SC. As a result, a convolution allows to explicitly represent the
spatial structure of the signal to be reconstructed. This further allows reducing the number of basis
functions required to achieve a good performance of the image whilst providing shift-invariant rep-
resentations. As the convolution is a linear operator, CSC problems can be solved with convolutional
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BPDN algorithms (Wohlberg, 2015) by extending equation (1):

argmin
{xk}

1

2
||S −

K∑
k=1

dk ∗ xk||2 + λ

K∑
k=1

||xk||1 (2)

where xk is an N2 dimensional coefficient map (given an N2 sized image), dk is one kernel
(among K channels) and ∗ is the convolution operator. Here, we used the Python SPORCO pack-
age (Wohlberg, 2017) to implement sparse coding methods, using an Alternating Direction Method
of Multipliers (ADMM) algorithm (Wang et al., 2019) which splits Convolutional Sparse Coding
problems into two sub-problems. In our setting, by introducing an auxiliary variable Y (Wohlberg,
2014), the ADMM problems can be decomposed into a standard form:

argmin
x,y

f(x) + g(y) (3)

with the constraint x = y. ADMM can be readily applied to equation (2), such that the BPDN
problem becomes:

argmin
{xk},{yk}

1

2
||

K∑
k=1

dk ∗ xk − S||22 + λ
K∑

k=1

||yk||1 s.t. xk =yk (4)

which is solved by alternating between the two equations:

{xk}i+1 = argmin
{xk}

1

2
||

K∑
k=1

dk ∗ xk − S||2 + ρ

2
||xk − yk,i + uk,i||2 (5)

{yk}i+1 = argmin
{yk}

λ

K∑
k=1

||yk||1 +
ρ

2
||xk,i+1 − yk + uk,i||2 (6)

where ρ is a penalty parameter that controls the convergence rate of the iterations. x and y are
residuals whose equality is enforced by the prediction error :

uk,i+1 = uk,i + xk,i+1 − yk,i+1 (7)

CSC was performed on the “targe” subset of the database from Serre et al. (2007), which consists of
600 high-quality color images (256× 256 pixel size) that were grayscaled and high-passed filtered.

2.2 DICTIONARIES

We built dictionaries made of localized, oriented elements (Olshausen & Field, 1996) in a parametric
fashion, using a set of log-Gabor filters that captures the log-frequency structure of the image and
ensure its optimal reconstruction (Fischer et al., 2007a). Each filter is defined in the frequency
plane by polar coordinates (f, θ) by a bi-dimensional log-Gabor filter (Fischer et al., 2007b), whose
envelope is given by:

G(f, θ) = exp

(
−1

2
· log(f/f0)

2

log(σf/f0)2

)
· exp

(
cos(2 · (θ − θ0))

4 · σ2
θ

)
(8)

where f0 is the center frequency, σf the bandwidth parameter for the frequency, θ0 the center orien-
tation and σθ the standard deviation for the orientation. We kept f0 = σf = 0.4 cpd and varied only
the orientation parameters to build the dictionaries. From σθ (in octaves), we defined the angular
bandwidth (in degrees) of the log-Gabor filter as Bθ = σθ

√
2 log 2 (Swindale, 1998).

Dictionaries could also undergo learning based on the dataset, in which case convolutional sparse
coding was alternated with a dictionary update equation in a multi-image setting:

argmin
{xk,j}

1

2

J∑
j=1

||
K∑

k=1

dk ∗ xk,j − Sj ||2 + λ

K∑
k

J∑
j

||xk,j ||1 s.t. ∀k, ||dk||2 = 1 (9)

where Sj is the j-th image in the dataset and xk,j is the coefficient map for the k-th filter and the
j-th image. We evaluated the performance of the convolutional sparse coding algorithm with two
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Figure 2: Epistemic uncertainty in a CSC dictionary improves both sparseness and reconstruction
performance. (a) Elements from dictionaries with fixed epistemic uncertainty before (green) and
after dictionary learning (orange). (b) Elements from a dictionary with heterogeneous epistemic un-
certainty before (blue) and after dictionary learning (purple). (c) Elements from a dictionary learned
from scratch. (d) Distribution of the sparseness (top) and Peak Signal-to-Noise Ratio (PSNR, right)
of the five dictionaries, shown as a scatter plot for each of the 600 images of the dataset (center).
Median values are shown as dashed line on the histograms.

metrics. The reconstruction quality was measured using the Peak Signal-to-Noise Ratio (PSNR),
which for grayscale images used here is defined as:

PSNR(I1, I2) = 20 log10(maxI1)− 10 log10

 1

mn

m∑
i=1

n∑
j=1

(I1 − I2)
2

 (10)

where (max I1) is the maximum pixel intensity of the source image. The right hand-side term of the
PSNR is the log10 of the mean squared error, where I1 and I2 represent the pixel intensity in the
source and reconstructed images, respectively. We also measured the sparseness of the algorithm,
defined as the ratio of zero/non-zero coefficients used in reconstruction.

2.3 IMAGE CLASSIFICATION USING DEEP LEARNING

We sparse-coded the images from the CIFAR-10 dataset, which consists of 32 color images, making
up 10 classes of 6000 images. Images were upscaled to a 128 × 128 resolution with bilinear inter-
polation, then grayscaled. After sparse coding, they were used as inputs to a convolutional neural
network from the Visual Geometry Group (Simonyan & Zisserman, 2014) with 16-layers configu-
ration (VGG-16), which was retrained from scratch using a standard PyTorch implementation. We
split the data into a training set of 50000 images and a test set of 10000 images, and trained VGG-16
using stochastic gradient descent, using a learning rate of 0.001 and a momentum of 0.9. The cross-
entropy loss function was minimized on batches of 64 sparse-coded images for 100 epochs while
applying a weight decay of 5e− 4 for every iteration of the gradient descent to prevent overfitting.
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3 RESULTS

3.1 EPISTEMIC UNCERTAINTY IMPROVES PSNR AND SPARSENESS

We used five types of dictionaries to probe the role of epistemic uncertainty in the encoding of natural
images, all with similar size and with duplicated atoms over two phases (0;π). Two dictionaries
were built with Log-Gabor filters: either with one fixed epistemic uncertainty (Bθ = 12.0°) and
72 orientations θ0 ranging from 0° to 180° (as shown in Figure 2a, green), or with 12 values of
θ0 but heterogeneous epistemic uncertainty, i.e. 6 values of Bθ from 3° to 30° (Figure 2b, blue).
These two dictionaries were compared with versions that learned features on a dataset of natural
images (Figure 2a, orange; b, purple) and with another dictionary learned from scratch on the same
dataset (Figure 2c, black). All dictionaries had consistent performance across the 600 images (Figure
2d). The reconstruction with heterogeneous epistemic uncertainty outperformed the reconstruction
with fixed epistemic uncertainty in both PSNR (U = 15503.0, p < 0.001, Mann-Whitney U-test)
and sparseness (U = 66793.0, p < 0.001). The learning procedure nonetheless yielded superior
results in terms of PSNR (U = 93.0, p < 0.001) when comparing the scratch version to both
non-learned. This same learning also improved the Log-Gabor dictionaries, resulting in an increase
in PSNR (U = 0.0, p < 0.001 ; U = 177128.0, p < 0.001, fixed and heterogeneous epistemic
dictionary, respectively) and sparseness (U = 14520.0, p < 0.001 ; U = 205670.0, p < 0.001) after
learning. The post-learning heterogeneous epistemic dictionary had higher sparseness compared to
the post-learned fixed uncertainty dictionary (U = 205670.0, p < 0.001), but similar PSNR (U =
177128.0, p = 0.31). As both have comparable reconstruction quality, we will now concentrate
on comparing the two Log-Gabor dictionaries prior to learning and the heterogeneous epistemic
uncertainty dictionary post-learning. Further information regarding the post-learning version of the
dictionary with fixed epistemic uncertainty can be found in Appendix B.

Overall, without learning, the optimal dictionary for encoding natural images contains epistemic
uncertainty. Even though learned dictionaries have a higher computational cost, they exhibit more
gain in PSNR and sparseness than by simply adding heterogeneous epistemic uncertainty into a dic-
tionary. The learning procedure led to changes in the coefficients of the dictionary, both in terms
of features (orientations θ0) and their epistemic uncertainty (Bθ). Learning from the dataset intro-
duced a new bias towards the cardinal orientations (Figure 2a, upper), which reflects the bias present
in natural images (Appelle, 1972), but which was absent from the initial dictionary. The coefficients
also became distributed non-uniformly across multiple levels of epistemic uncertainty (Figure 2a,
lower). Notably, learning from the dataset resulted in coefficients that were completely unused (i.e.
sparseness = 1) for higher Bθ (Figure 2d, blue) becoming active (Figure 2d, purple). The resulting
patterns of coefficient distribution became consistent over multiple levels of epistemic uncertainty
(Figure 2b), aligning with the multiple levels of aleatoric uncertainty present in the dataset. Thus,
the improvement in performance resulting from the learning procedure relies on a bias of features
θ0 and a redistribution of epistemic uncertainty Bθ, both of which reflect the structure of the dataset.

3.2 EPISTEMIC UNCERTAINTY BOOSTS RESILIENCE OF THE NEURAL CODE

The coefficients of all dictionaries followed a prototypical Dirac-Laplacian function, enforced by the
l1 norm of the algorithm (see Appendix A). The parameters of the function were highly stereotypical
across images for a given dictionary, indicating a common structure, which opens up the possibility
of manipulating the dictionary’s activation. By utilizing the stereotypical pattern of activation, it
is possible to remove the less activated coefficients (described by the Dirac function) to further
increase sparseness and evaluate the resilience of the code to the removal of its less used elements.
We zero-ed the activation of coefficients whose absolute value fell under a given threshold, iterating
from 0.001 to 0.5 in 8 steps. The resulting pruning increased sparseness, which correlated non-
linearly with a decrease in PSNR for all dictionaries (Figure 4a). The pre-learning heterogeneous
epistemic dictionary’s PSNR was significantly more resilient to coefficient degradation than the pre-
learning fixed epistemic dictionary (p < 0.05 for all pruning levels). Post-learning, both the fixed
and heterogeneous epistemic uncertainty dictionary showed similar PSNR for pruning < 0.1, as
would be expected from the similar PSNR already found without pruning (Figure 2). However,
the post-learning heterogeneous epistemic uncertainty dictionary emerged as the clear winner for
all other pruning levels (> 0.1, p < 0.001), outperforming all the other dictionaries in the test.
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Figure 3: Learning balances coefficient distribution and reflects dataset structure. (a) Distribu-
tion of coefficients over θ0 and Bθ after learning. (b) Kernel density estimation of the coefficients
before and after learning. (c) Example images from the dataset (first row), sparse coded (second
row, color coded by each coefficient’s θ0) and reconstructed (third row), for pre- and post-learning
heterogeneous uncertainty dictionaries. (d) Sparseness of the dictionaries as a function of epistemic
uncertainty Bθ. Sparseness = 1 (i.e. no activation) is represented as a gray dashed line.

This highlights the superiority of the heterogeneous epistemic uncertainty dictionary in terms of
resilience and encoding efficiency for natural images.

Overall, these findings demonstrate that epistemic uncertainty in sparse codes exhibits desirable
properties : improved reconstruction quality and sparseness (Figure 2d), more evenly distributed
activation (Figure 3b) and greater resilience to code degradation (Figure 4a).

3.3 EPISTEMIC UNCERTAINTY IMPROVES DEEP NEURAL NETWORK PERFORMANCES

We used a deep convolutional neural network trained to classify sparse-coded images, to see whether
the desirable properties of the sparse code could improve deep networks. Here, we used VGG-16
to classify with high accuracy up- and gray-scaled images from the CIFAR-10 dataset (see Meth-
ods), reaching a maximum top-1 accuracy of 82.27 in 60 epochs (Table 3.3). After sparse coding of
the dataset, the dictionary with heterogeneous epistemic uncertainty post-learning had the highest
classification accuracy (82.63 top-1 accuracy in 72 epochs). Similarly, at high degradation condi-
tion, this dictionary showed the highest resilience, maintaining 80.68 top-1 accuracy, compared to
a 75.73 top-1 accuracy for the pre-learned dictionary and a 74.44 top-1 accuracy for the fixed epis-
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Figure 4: Sparse coefficients can be pruned to boost sparsity. (a) Pruning of the coefficients based
on their values and resulting sparseness/PSNR for both dictionaries. (b) Reconstruction of the image
shown in Figure 1 with different cutoff levels. (c) Coefficients for the same image, for the minimum
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Table 1: Top-1 accuracy of VGG-16 for varying CIFAR-10 encoding schemes. c = 0.2 and c = 0.5
indicate the cutoff of the coefficient’s activations, as done in Figure 4.

Encoding scheme full accuracy c=0.2 accuracy c=0.5 accuracy
Upscaled, no sparse coding 82.27
Heterogeneous, pre-learning 81.69 75.73 67.22
Heterogeneous, post-learning 82.63 80.68 74.28
Fixed, pre-learning 79.71 74.44 67.82
Fixed, post-learning 82.45 80.2 69.14

temic uncertainty dictionary. Thus, learning with epistemic uncertainty provided the best accuracy
and resilience, outperforming the classification on the raw dataset. Despite the removal of informa-
tion from the images by the sparse coding process, the usage of heterogeneous levels of epistemic
uncertainty allows outperforming by a small margin the dense classification performance.
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4 CONCLUSION

In this study, we investigated the impact of incorporating heterogeneous epistemic uncertainty in a
convolutional sparse coding dictionary. Our results demonstrate that this approach outperforms tra-
ditional dictionaries with fixed epistemic uncertainty in terms of reconstruction performance, sparse-
ness, and resilience. Additionally, we have shown that these dictionaries can be effectively utilized in
subsequent stages of visual processing, leading to improved classification performance in deep net-
works. These findings suggest that incorporating epistemic uncertainty in sparse coding dictionaries
can significantly enhance the encoding and processing of natural images. While the performance of
the deep network is lower than the current state-of-the-art (94.71% accuracy), we did not use color
images nor specific performance tuning (Zhu et al., 2021), but rather sought to compare the perfor-
mance of models with different levels of epistemic uncertainty in their first layer. Future directions
could also include using the sparse coefficients directly, rather than the reconstructed images, as an
input to a deep network. This would enable highly sparse deep learning, which might also prove to
be more robust by eliminating low-level noise and making the network more resilient to adversarial
attacks (Madry et al., 2017).
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A APPENDIX A
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Appendix A Figure 1: Sparse coefficients of natural images follow a Dirac-Laplacian distribution.
(a) Distribution of the coefficients’ activation from the fixed uncertainty (top, green); heterogeneous
uncertainty pre-learning (middle, blue) and post-learning (bottom, purple) dictionaries. Each solid
line represents a single Dirac-Laplacian fit of the activations over a single image. (b) Distribution
of the parameters of the Dirac-Laplacian fit, showing that the best invariance is obtained with the
heterogeneous uncertainty post-learning dictionary.

For each of the images in the dataset, the pattern of activations of the dictionary, i.e. the usage of
coefficients for the reconstruction of a single an image, were highly stereotypical. The relationship
between a coefficient’s absolute activation and its density (the inverse of its sparseness) was well
described by a mixture of Dirac and Laplacian functions:

y(x) = (1−A0) exp

(
−|x|
B

)
A+A0 (11)

where B is the rate parameter of the exponential function, A0 is a baseline parameter and A the
gain of the function. This function captured the activation of all dictionaries, regardless of their
structure (Figure 1a). However, the specific parametrization of the function depended on the dictio-
nary, and revealed functional differences that echoed their structural differences. For instance, the
heterogeneous epistemic uncertainty dictionary showed significantly higher exponential rate param-
eter B (U = 255133.0, p < 0.001) and baseline gain A0 (U = 90642.0, p < 0.001) compared
to the fixed epistemic dictionary (Figure 1a, green and blue). Fewer extreme coefficients were thus
used (less spread function), but overall more coefficients were used, which resulted in a smaller
spread function and a greater use of coefficients, leading to higher global sparseness for the hetero-
geneous epistemic dictionary (as seen in Figure 2d). This suggests that the encoding process was
achieved with increased efficiency. Post-learning, the exponential rate parameter increased signifi-
cantly (U = 65922.0, p < 0.001) while the baseline gained decreased (U = 106921.0, p < 0.001)
compared to the pre-learning heterogeneous epistemic uncertainty dictionary. This implies less base-
line activation, which can be attributed to better distribution of the coefficients with respect to the
dataset (Figure 3b, d).
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APPENDIX B

Results from the main text are shown here for the fixed epistemic uncertainty dictionary, post-
learning (i.e. Figure 2a, orange).
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Appendix B Figure 1: Learning balances coefficient distribution. (a) Distribution of coefficients
over θ0 and Bθ after learning. (b) Sparseness of coefficients for each Bθ. Sparseness = 1 is
represented as a gray dashed line.
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Appendix B Figure 2: Sparse coefficients of natural images follow a Dirac-Laplacian distribution.
(a) Distribution of the coefficients’ activation from the fixed uncertainty dictionary post-learning.
Each solid line represents a single Dirac-Laplacian fit from the activation over a single image. (b)
Distribution of the parameters of the Dirac-Laplacian fit.
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Appendix B Figure 3: Sparse coefficients can be pruned to boost sparsity. (a) Pruning of the coeffi-
cients based on their values and resulting sparseness/PSNR for both dictionaries. (b) Reconstruction
of the image shown in Figure 1 with different cutoff levels. (c) Coefficients for the same image, for
the minimum and maximum epistemic uncertainty and for different cutoff levels.
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