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Abstract Neurons in the neocortex receive a large
number of excitatory and inhibitory synaptic inputs.
Excitation and inhibition dynamically balance each
other, with inhibition lagging excitation by only few
milliseconds. To characterize the functional conse-
quences of such correlated excitation and inhibition,
we studied models in which this correlation structure
is induced by feedforward inhibition (FFI). Simple cir-
cuits show that an effective FFI changes the integrative
behavior of neurons such that only synchronous inputs
can elicit spikes, causing the responses to be sparse and
precise. Further, effective FFI increases the selectivity
for propagation of synchrony through a feedforward
network, thereby increasing the stability to background
activity. Last, we show that recurrent random networks
with effective inhibition are more likely to exhibit dy-
namical network activity states as have been observed
in vivo. Thus, when a feedforward signal path is em-
bedded in such recurrent network, the stabilizing effect
of effective inhibition creates an suitable substrate for
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signal propagation. In conclusion, correlated excitation
and inhibition support the notion that synchronous
spiking may be important for cortical processing.
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1 Introduction

Cortical neurons receive large numbers of excita-
tory and inhibitory synaptic inputs whose temporal
interplay determines the neuron’s spiking behavior.
On average, excitation and inhibition balance each
other, such that spikes are elicited by membrane po-
tential fluctuations (Gerstein and Mandelbrot 1964;
van Vreeswijk and Sompolinsky 1996; Shadlen and
Newsome 1998; Kumar et al. 2008b). In addition, it has
been shown in vivo that excitation and inhibition are
correlated, with inhibition lagging excitation by only
few milliseconds, creating a small temporal integration
window (Okun and Lampl 2008; Hasenstaub et al. 2005;
Atallah and Scanziani 2009). This correlation struc-
ture could be induced by feedforward inhibition (FFI).
Here, an excitatory projection directly synapses onto
a neuron, whereas inhibition is provided disynaptically
by local inhibitory neurons which also receive excita-
tory inputs from the same projection (Fig. 1(a)). This
type of connectivity pattern has been shown to be ubiq-
uitous in the central nervous system. Its importance in
the hippocampal formation was reviewed by Buzsáki
(1984), this review discussed the potential differences
between feedforward and feedback inhibition in shap-
ing the responses to the afferent input. For the thala-
mocortical connection it has been studied in detail
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Fig. 1 Correlated inhibition induced by FFI. (a) Minimal FFI
circuit. (b) Integration of a synchronous pulse packet with-
out inhibition. Shown are the excitatory conductance (Gexc),
the resulting membrane potential and the spiking responses.
(c) Integration of an asynchronous pulse packet without inhibi-
tion. (d) Response to synchronous input when Gexc is accompa-

nied by correlated inhibitory conductance (Ginh). (e) Responses
to asynchronous input with correlated Ginh. In each case, the
spike responses are shown for ten consecutive trials, whereas
the excitatory conductance (Gexc) and the resulting membrane
potential are shown for a single (the 10th) trial

(Swadlow 2003; Cruikshank et al. 2007). Within the
cortical micro-circuitry, this connection scheme seems
to be functional as recently demonstrated in slices of rat
somatosensory cortex (Silberberg and Markram 2007;
Kapfer et al. 2007), where disynaptic inhibition was
found in the very local neighborhood, that is within a
lateral distance of around 100 µm. In addition, studies
of the synaptic physiology of horizontal connections
in the visual cortex of the cat (Hirsch and Gilbert
1991) provide evidence that horizontal projections that
synapse over some hundreds of micrometers can imple-
ment far reaching feedforward inhibition. Thus, elec-
trically stimulating the cortical surface some hundreds
of micrometers away from an intracellular electrode
may result in excitation, closely followed by inhibition.
Since inhibitory connections are generally only local,
the source of this inhibition is most likely the activa-
tion of inhibitory neurons in the local neighborhood
of the recording electrode. These findings have been
confirmed by a combination of optical imaging and in-
tracellular recordings of the layer 2/3 network in ferrets
(Tucker and Katz 2003a, b).

In view of the many experimental reports document-
ing the existence of feedforward inhibition, it is impor-
tant to improve our understanding of its effects on the

dynamics of cortical processing. So far, this question
has been addressed either in single neuron models,
mainly to explain experimental data (Wehr and Zador
2003), in models of cortical integration of thalamic in-
puts to show differences between cortical amplification
(Somers et al. 1995) and cortical dampening hypothesis
(Pinto et al. 2003), or in a complex network model of
the olfactory system (Assisi et al. 2007).

Nevertheless, a comprehensive study to understand
in details the effects of FFI at different spatial scales,
from single neurons to feedforward networks and re-
current networks, is still lacking. Here we study the
functional properties of FFI in different scenarios with
increasing complexity. First, we will use simple stim-
uli such as pulse packets (PP) (Aertsen et al. 1996;
Diesmann et al. 1999), i.e. spike volleys with gaussian
distributed spike times, to investigate the integration
behaviors of simple circuits in response to stimuli with
a differing degree of synchrony. Next, we assess the
signal propagation through a feedforward network (i.e.
a synfire chain) made of a sequence of such elementary
FFI circuits Furthermore, we characterize the dynami-
cal states of recurrent random networks with effective
inhibition. Lastly, we document the state dependent
signal-to-noise level in a feedforward network which is
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embedded in a random recurrent network. Preliminary
results have been presented in abstract form (Kremkow
et al. 2008a, 2009).

2 Materials and methods

2.1 Biophysical prerequisites for effective
feedforward inhibition

One important requirement for FFI to be effective is
that the inhibitory neurons are very reliably activated
to provide efficient inhibition. In other words, they
need to have a lower effective spiking threshold than
excitatory neurons. This could be achieved in several
different ways: by changing the passive cell properties
of the inhibitory neurons, by connecting more synapses
onto the inhibitory neurons, or by increasing the synap-
tic weight onto the inhibitory neurons. Although it is
know that different neuron types have different pas-
sive properties (Nowak et al. 2003) that contribute in
facilitating the response of inhibitory neurons, it is less
clear if, in addition, a stronger drive is achieved by
having more and/or stronger synapses. For the thala-
mocortical connection, it was shown that the unitary
excitatory conductances onto inhibitory neurons are
larger and more reliable than those onto excitatory
neurons (Cruikshank et al. 2007), thus resulting in
larger postsynaptic potentials (Cruikshank et al. 2007;
Gibson et al. 1999). Similar findings for the recurrent
cortical network were reported by (Povysheva et al.
2006) and were recently confirmed in human cortex
(Molnár et al. 2008). However, other studies of cor-
tical synaptic weight distributions could not confirm
these findings (Thomson et al. 2002; Brémaud et al.
2007).

Although, in vivo it is more likely that a mixture of
the above mentioned factors will ensure effective FFI,
in the present study we will simplify that problem by
having only one parameter controlling the difference
in spike probability between the two populations of
neurons: the excitatory weights onto the inhibitory neu-
ron (gexc−inh). Adopting any of the other mentioned
mechanisms as a control parameter would give rise to
equivalent results.

2.2 Models

The neurons in the different network models under
study were all modeled as leaky-integrate-and-fire neu-
rons, with the subthreshold dynamics of the membrane

potential Vi(t) in neuron i described by the following
equation:

C
d
dt

Vi(t) + Grest[Vi(t) − Vrest] = Ii
syn (1)

where Ii
syn is the total synaptic input current into neu-

ron i, and C and Grest denote the passive electrical
properties of its membrane at rest (Vrest). When the
membrane potential reached a fixed spike threshold
Vthresh above rest, a spike was emitted, the membrane
potential was reset to its resting value, and synaptic
integration was halted for 2 ms to mimic the refractory
period observed in real neurons. The parameters used
in the simulations were: C = 290 pF, Grest = 29 nS,
Vrest = −70 mV and Vthresh = −57 mV. Synaptic input
was modeled as transient conductance changes (Kuhn
et al. 2004), using exponential functions with τexc =
1.5 ms and τinh = 10 ms. Parameters of the passive
cell properties as well as synaptic time constants were
taken from Muller et al. (2007) and Destexhe et al.
(1998). In addition to the synaptic input, each neuron
received an independent Gaussian noise current to in-
troduce trial-by-trial variability. The standard deviation
of the noise was adjusted to induce membrane potential
fluctuations as observed in vivo (Destexhe et al. 2003;
Rudolph et al. 2007). In all network models studied
here, except for the minimal FFI circuit, the mean noise
current was set to induce realistic low background firing
rates of few spikes per second (Abeles 1991; Diesmann
et al. 1999; Gewaltig et al. 2001).

2.2.1 Network architectures

FFI circuit The minimal cortical circuit we studied
contained only two types of cells: excitatory (regular-
spiking, RS) and inhibitory (fast-spiking, FS) neurons.
In the circuit we included one RS neuron and a pool of
FS neurons (Fig. 1(a)). The size of the inhibitory pool
was set to nFS = 25 when investigating the effect of
FFI onto the spiking response of the RS neuron (Inoue
and Imoto 2006). For the control condition, in which
excitation was not accompanied by inhibition, we set
nFS = 0. The input to the circuit was a spike volley from
a population of 100 pre-synaptic neurons, the spike
times of which were drawn from a gaussian distribu-
tion, creating a pulse packet (Aertsen et al. 1996;
Diesmann et al. 1999) with strength (number of spikes/
pre-synaptic neuron) ‘a’ and temporal dispersion ‘σ ’.
Each cortical neuron received 60 randomly chosen
weak excitatory synapses (gexc−exc, gexc−inh = 1 nS)
from the pre-synaptic population (Bruno and Sakmann
2006), except in the cases where we increased the
effectivity of FFI by strengthening the excitatory
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synapses onto FS neurons to 3.5 nS (Cruikshank et al.
2007). Due to the limited size of the pre-synaptic pop-
ulation, the cortical neurons received highly similar
synaptic inputs (’shared input’, (Lampl et al. 1999)).
The inhibitory synaptic conductance was set to 2 nS
to balance the incoming excitation. The synaptic de-
lay from FS to RS neurons (delayinh−exc) was set to
2 ms (Cruikshank et al. 2007). Since in this minimal
FFI circuit we were primarily interested in the stimu-
lus induced spike-timing precision, we prevented any
background spiking by adjusting the mean of the noise
such that without synaptic input the membrane poten-
tial stayed below the spiking threshold. Furthermore,
to avoid trial-by-trial variability within the stimulating
pulse packets, for each (a, σ )-combination we only once
drew a pulse packet realization from the respective
gaussian distribution and presented this same pulse
packe repeatedly in each trial.

Feedforward network The feedforward network was
inspired by the synfire chain architecture (Abeles 1991;
Aertsen et al. 1996; Diesmann et al. 1999; Gewaltig
et al. 2001) in which a group of neurons projects in
a divergent-convergent way onto another group of
neurons. Repeating this scheme for ten subsequent
groups creates a feedforward network (Fig. 3(a)). In
the classical synfire chain, these groups contain only RS
neurons. Here we extend this architecture by including
FS neurons into each group. The FS neurons from
one group receive excitatory inputs from the preceding
group and make local inhibitory connections within
their own group, thus providing correlated and bal-
anced inhibition. To have a sufficiently large number
of neurons in the projecting population, we included
100 RS neurons in each group. In this network, as
well as in the further network models in this study,
the two classes of neurons appeared in the ratio 4:1,
following numbers from the classical neuroanatomical
literature on neocortex (Braitenberg and Schüz 1991).
Each group had 100 RS and 25 FS neurons with each
neuron receiving 60 excitatory synapses from the pre-
ceding group. Otherwise, synapses and the synaptic
conductances were identical to those in the minimal
model. Note that the synfire chains used in (Litvak et al.
2003; Aviel et al. 2003; Kumar et al. 2008a) also con-
tained balanced inhibition within the chain (referred to
as ‘double balance’ or ‘shadow inhibition’), but it was
implemented in a different manner. There, FS neurons
projected to the next group, but not within their own
group. As a consequence, there was no delay between
excitation and inhibition arriving at the target neurons.
Because inhibitory neurons only connect to neurons in
the local neighborhood, Litvak et al. (2003) concluded

that their model would not be applicable to long-range
patchy connections. Our model is different, in that it
generalizes also to long-range connections (Hirsch and
Gilbert 1991) and that it includes more biophysical
details, in particular more realistic time delays and
synaptic weights.

Recurrent network The recurrent cortical network
contained 10,000 neurons (80% RS and 20% FS,
Braitenberg and Schüz (1991)). The connectivity prob-
ability was low (c = 0.1), creating a sparsely con-
nected network (Fig. 5(a); Kumar et al. 2008b).
The synaptic weights for all four connection types
(gexc−exc,exc−inh,inh−inh,inh−exc) were set to 1 nS. When
characterizing the dynamical network states, all in-
hibitory synaptic conductances (ginh−inh,inh−exc) were
scaled by a factor G (similar to Brunel 2000; Kumar
et al. 2008b). For example, G = 2 would mean that
with a gexc−exc of 1 nS, the inhibition ginh−inh,inh−exc

would be 2 nS. For the experiments in which we in-
creased the effective inhibition, the unitary excitatory
conductance onto FS neurons (gexc−inh) was increased
to 3.5 times the conductance onto RS neurons (gexc−exc)
(Povysheva et al. 2006; Cruikshank et al. 2007). A
uniform transmission delay of 2 ms was imposed for
all synapses. Next to the synapses from the network,
neurons also received an external poissonian input with
rate ‘νext’, mimicking non-local cortico-cortical inputs to
the local network.

Recurrent network with embedded signal path To
study signal propagation in a more realistic scenario,
we embedded the feedforward network into a lam-
inar patch of cortical neurons (in a similar manner
as in Kumar et al. (2008a) and Vogels and Abbott
(2009)). We used 28125 leaky integrate-and-fire neu-
rons, 22,500 excitatory and 5,625 inhibitory, to repre-
sent a small cortical sheet of 1 × 1 mm (Fig. 6(a)).
The network was folded as a torus to avoid bound-
ary effects. As in Kumar et al. (2008a) we assumed
a sparsely connected network (c = 0.05) and de-
scribed the distance dependent connection probability
with a Gaussian profile (Hellwig 2000; Mehring et al.
2003). The spatial widths were set to: σexc−exc = 0.4 mm,
σexc−inh = 0.2 mm, σinh−inh,inh−exc = 0.1 mm, taking into
account differences in the spatial extent of connection
types (Stepanyants et al. 2008). As in the other models
throughout this paper, all synaptic weights were set to
1 nS. Again the factor ‘G’ scaled the overall inhibition
while gexc−inh controlled the effectiveness of the inhibi-
tion. A uniform transmission delay of 2 ms was imposed
for all synapses. Next to the synapses from the network,
neurons also received an external poissonian input with
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rate ‘νext’, mimicking non-local cortico-cortical inputs to
the local network.

To investigate signal propagation we embedded
a feedforward network, composed of three synfire
groups, into the cortical sheet (Fig. 6(a)). The number
of neurons within a group as well as the number of
synapses between two groups were the same as in
Section 2.2.1. To maintain a balanced connectivity
in the overall network, neurons in the feedforward
network made accordingly fewer synapses with the
embedding recurrent network, such that all neurons,
irrespective of whether they were in the feedforward or
in the recurrent network, received and projected equal
numbers of synapses (Kumar et al. 2008a). The delay
from one group in the feedforward network to the next
was set to 40 ms for illustrative purposes.

2.3 Characterization of the spike response

Single neuron integration The response strength, that
is the number of spikes per pulse packet stimulus
recorded in the RS neuron, was measured by dividing
the total spike count by the number of stimulus presen-
tations. To quantify the trial-by-trial precision of the re-
sponse, we simulated multiple trials and estimated the
correlation coefficient of the binned (binwidth: 1 ms)
spike trials, excluding the correlation of each trial with
itself.

Feedforward network To characterize the spiking ac-
tivity of each group and, thus, the ‘a’ and ‘σ ’ of the pulse
packet sent to the next group, we measured ‘events’,
i.e. distinct peaks in the peri stimulus time histogram
(PSTH) of all neurons from the RS group (similar
to Kumbhani et al. 2007). The PSTH was calculated
by binning (binwidth 1 ms) the spiking activity and
convolving it with a triangular kernel of 2 ms. The
beginning and end of an event was set by thresholding
the PSTH, to avoid background activity from being
detected as events, and searching for gaps within the
PSTH which were separated by at least 4 ms. All
spike times occurring within the region between the
gaps were collected and thus defined an event. The
mean spike count of all RS neurons in such an event
described the response strength and defined the next
‘a’. Likewise, the temporal spread of the spike times,
estimated by the standard deviation of the spike times
within the event, constituted the new ‘σ ’ (as in Gewaltig
et al. 2001).

We could thereby determine whether the signal
could propagate from one group to the next and, if
so, whether it synchronized while propagating along
the chain. An activation of the synfire attractor would

express itself in a small ‘σ ’ and a value of ‘a’ close to 1 in
the last group. To calculate the separatrix, we fitted the
function: f = a + (b ∗ xc) as a smooth approximation
to the gridwise-determined border separating success-
ful activation of the synfire attractor from propagation
failures in the parameter space of ‘σ ’ and ‘a’. In other
words, the border between successful propagation and
failure was the right-most grid position on the ‘σ ’-axis
(the horizontal axis in the panels in Fig. 4) in which
stimulus related activity was detectable in the last group
of the feedforward network.

Recurrent network We characterized the spiking ac-
tivity using the methods in (Kumar et al. 2008b). In
short, the mean activity in the network was assessed
by measuring the mean firing rate of all active neurons.
The degree of synchrony among neurons in the popula-
tion was measured by the pairwise correlation, defined
as the correlation coefficient of the binned (binwidth:
2 ms) spiking activities of 500 randomly selected neuron
pairs (400 pairs in the RS and 100 pairs in the FS
population). The CV of the inter-spike-interval (ISI)
distribution of individual neurons was used to quantify
the irregularity of spiking. The CV was given by:

CV2
ISI = Var[ISI]/E[ISI]2. (2)

Low values reflect more regular spiking and high value
irregular spiking.

Since estimates of spike train irregularity from finite
length experimental observations suffered from a ten-
dency to under-estimate its value, we adopted the cri-
terion established in (Nawrot et al. 2008) to use ‘long
enough’ observation windows (30 s) that comprised at
least 10 spikes.

Recurrent network with embedded signal path To
characterize the state dependent quality of signal prop-
agation, we analyzed the spiking activity in the last
group of the embedded feedforward network and com-
pared it to the spiking activity of the embedding recur-
rent network. For this, we estimated the spike count in
the 100 RS neurons of the last group in a 4 ms window
around the expected arrival time of the signal (Kumar
et al. 2008a). The background activity was character-
ized in the same 4 ms window in 100 randomly chosen
RS neurons from the embedding recurrent network.

2.4 Simulation and data analysis tools

Simulations were written in python using PyNN
(Davison et al. 2009) as interface to the simulation
environment NEST (Gewaltig and Diesmann 2007;
Morrison et al. 2005; Eppler et al. 2009). Simulation
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management and data analysis were performed using
the python package NeuroTools (Yger et al. 2009).

3 Results

3.1 Single neuron integration

To characterize the effect of feedforward inhibition on
single neuron integration, we first constructed a min-
imal cortical circuit containing the principal elements
(Fig. 1(a) and see Section 2). As stimuli we applied
pulse packets (Diesmann et al. 1999) with strength
(number of spikes/pre-synaptic neuron) ‘a’ and tempo-
ral width ‘σ ’ (see Section 2). Using the pulse packet
framework we were then in the position to compare
the interaction of stimuli with differing degrees of syn-
chrony with the model circuit (Diesmann et al. 1999;
Kumar et al. 2008a).

3.1.1 Example of single neuron integration
with and without correlated inhibition

To illustrate the influence of the correlated inhibi-
tion on the integration of incoming pulse packets, we
recorded the total impinging conductance, the result-
ing membrane potential, and the response spikes of
the RS neuron. Because we were interested in the
stimulus-induced variability of the neuronal response,
we adjusted the mean noise level such that, without a
stimulus, the membrane potential stayed below spiking
threshold (see Section 2). Thus, all spikes were induced
by synaptic input from the stimulus. When the neuron
could integrate a synchronous pulse packet without
receiving inhibition (σ = 1 ms, a = 1), it typically re-
sponded with one precise spike per trial (Fig. 1(b)).
However, when the pulse packet was composed of
many asynchronously arriving spikes (σ = 20 ms, a =
5), the neuron responded with multiple, variable spikes
(Fig. 1(c)). These spikes were caused by the long lasting
depolarization of the membrane potential, due to the
interaction of the impinging excitatory conductances
(Gexc) with the membrane time constant. This firing
behavior changed when, in addition, correlated inhi-
bition (Ginh) was provided by the feedforward cir-
cuit. Whereas the synchronous pulse packets could
still induce one precise spike per trial (Fig. 1(d)), the
asynchronous pulse packet could hardly elicit a spike
response, if at all (Fig. 1(e)). The Ginh induced by
the FFI was now balancing the impinging Gexc and,
as a result, the mean membrane potential remained
almost stationary and clearly below threshold, thereby
diminishing the response to at most a single spike in

only few trials (none in the ones shown in Fig. 1(e)),
with highly variable spike timing. The fact that feedfor-
ward inhibition may increase the temporal fidelity of
the spiking response is in agreement with experimental
results obtained with hippocampal neurons (Pouille
and Scanziani 2001). In fact, this differential behavior
of the effective temporal integration in the receiving
neuron, depending on the temporal properties of the in-
put stimulus and the presence of correlated inhibition,
should be measurable in spike correlation functions,
measured extra-cellularly between the pre- and post-
synaptic excitatory neurons in Fig. 1(a). In case of no
inhibition (Fig. 1(b), (c)), we would expect a delayed
peak in the cross-correlogram, narrow for synchronous
input (Fig. 1(b)), possibly followed by a small negativity
reflecting refractoriness, and broader for asynchronous
input (Fig. 1(c)), reflecting the increased jitter in spike
response in the latter case. In the case of correlated
inhibition (Fig. 1(d), (e)), we would expect a delayed
peak in the cross-correlogram, narrow for synchro-
nous input (Fig. 1(d)), followed by a clear negativity
reflecting the absence of later spiking due to corre-
lated inhibition, and a strongly reduced positivity for
asynchronous input (Fig. 1(e)), reflecting the response
reduction due to correlated inhibition. Indeed, some
such observations have been reported in the literature,
both for in vitro recordings (Hirsch and Gilbert 1991)
and in network models (Fig. 4 in Kumar et al. 2008a).

3.1.2 Pulse packet state space

To systematically study the circuit properties we ap-
plied a range of differently shaped pulse packets. We
varied ‘σ ’ from 1 ms (synchronous) to 30 ms (asynchro-
nous) and ‘a’ from 1 spike/pre-synaptic neuron (low
signal-to-noise ratio) to 14 spikes/pre-synaptic neuron
(high signal-to-noise ratio). For very small ‘σ ’, ‘a’ might
become unrealistically high: i.e. 10 spikes per pre-
synaptic neuron within 5 ms is not physiologically real-
istic. However, since our aim was to obtain a complete
overview of all possible combinations of ‘σ ’ and ‘a’, we
chose not to exclude such unrealistic combinations—
they should, however, be interpreted with great care.
As the neuronal membrane acts as an integrator, we
expected that with increasing temporal width and num-
ber of spikes, the response to the incoming pulse
packet should increase. Indeed, when the RS neuron
integrated the impinging pulse packet without being
constrained by inhibition, the response strength showed
the expected trend (Diesmann et al. 1999; Kumar et al.
2008a). Thus, for small ‘a’, the pulse packet needed to
be very synchronous (σ < 5 ms) to be able to elicit a
response spike reliably (Fig. 2(a)). Pulse packets that
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Fig. 2 Sparse and precise coding by effective FFI. (a) Response
strength when pulse packets of various parameters are integrated
in the absence of inhibition. Responses < 0.1 spikes/stimulus are
shown as white entries in (a)–(f). (b) Response timing precision
of the responses in the absence of inhibition. (c, d) With FFI,
with the excitatory synaptic weight onto the FS neurons and
RS neurons both 1 nS, the FS induced ineffective inhibition.

(e, f) With the excitatory weight onto FS 3.5 nS, inhibition was
more effective and suppressed the responses to asynchronous in-
puts. (g) Probability of response strengths. Correlated inhibition
suppressed dense responses. (h) Probability of response timing
precision. Effective inhibition increased the probability of precise
responses, whereas ineffective inhibition failed to do so

were either not synchronous or strong enough failed
to elicit response spikes altogether (responses <0.1
spikes/stimulus are shown as white entries in Fig. 2(a)–
(f)). With increasing ‘a’, even larger ‘σ ’ could induce
a response, often in the form of multiple spikes. The
temporal precision was highest for synchronous pulse
packets, i.e. with small ‘σ ’ (Fig. 2(b); Mainen and
Sejnowski 1995; Diesmann et al. 1999). For asynchro-
nous inputs (large σ ), the timing of response spikes was
more variable, as the background noise had more time
to interact with the less transient input.

When the RS neuron received correlated inhibi-
tion together with the excitation (FFI), the state space
changed considerably, with the change stronger for less
synchronous input (i.e. going towards the right in the
panels in Fig. 2), especially in the case of effective in-
hibition. As mentioned in Section 2.1, an effective FFI
requires that the FS neuron already spikes for smaller
stimulus input than the RS neuron. To test whether this
is indeed the case, we simulated the same state space
for two different values of gexc−inh (1 and 3.5 nS).

First, we studied a case where RS and FS neurons
received the same amount of conductances from the
pre-synaptic population (gexc−inh = 1 nS). Under this

condition, the response rate was considerably reduced
(Fig. 2(c)). Nevertheless, FFI could not effectively and
fully prevent the spiking response to asynchronous
pulse packets (large σ ), because RS and FS neurons
reached threshold at about the same input strength.
The remaining RS spike times were again variable
(Fig. 2(d)).

Increasing gexc−inh to 3.5 nS (Cruikshank et al. 2007)
induced a clearly more effective FFI. The responses
to asynchronous pulse packets were now suppressed
(large white area in Fig. 2(e) for large σ ), whereas
a synchronous input could still elicit a spike response
(Fig. 2(e), small σ ). However, the response magnitude
was also reduced for more synchronous inputs, as the
RS neuron could not fully integrate the excitatory in-
put, except for the most synchronous case (σ = 1). The
temporal precision showed a similar trend as before,
however, by effectively suppressing the responses to
less transient inputs, the FFI increased the overall tem-
poral precision of the response (Fig. 2(f)).

In summary, correlated excitation and inhibition,
such as induced by FFI, changes dynamically the
effective integration behavior of the neuron. The small
time lag between the incoming excitation and inhibition
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results in high-pass filtering properties and, thus, low-
ers the effective membrane time-constant. Therefore,
only synchronous inputs can reach threshold. These
synchronous inputs induce only few (i.e. sparse) but
highly precise response spikes. In addition, by reducing
multiple spiking, effective FFI renders the responses to
become even more sparse, such that the response often
contains only one spike (Fig. 2(g)). By contrast, with-
out correlated inhibition, asynchronous inputs reached
threshold and induced multiple threshold crossings
(Fig. 2(g)), resulting in dense and temporally imprecise
spike responses (Fig. 2(h)).

3.2 Signal propagation through feedforward networks
(synfire chains)

Next, we studied how the FFI affects the signal prop-
agation through a feedforward network architecture,
often called a synfire chain. Synfire chains are known
to have a stable fix-point (Diesmann et al. 1999) at
small ‘σ ’, with the basin of attraction (BOA) spanning
a wide range of pulse packet parameters. Whereas
‘σ ’ has to be small at small ‘a’, it can become wider
with increasing ‘a’ (Diesmann et al. 1999), introducing
serious problems for the stability of the ground state of
the feedforward network: synchronous activity can be
spontaneously induced by random fluctuations of back-
ground activity or by a stimulus induced rate increase
(Tetzlaff et al. 2002).

In the previous section we argued that effective
FFI induces an increased selectivity for synchronous
inputs. We therefore predicted that embedding FFI
into feedforward networks could stabilize the ground
state of such networks. To study the effect of FFI onto
the signal propagation, we constructed a synfire chain
embedding inhibitory populations within each group
to generate local FFI connections within each of them
(Fig. 3(a); see Section 2).

3.2.1 FFI shapes the selectivity of synf ire chains

The FFI had differential effects on the synfire dynam-
ics, depending on the parameters of the pulse packet.
When the pulse packet presented to the first group
was synchronous (small σ , 1 ms; a, 1 spike), the synfire
chain propagated it both with and without correlated
Ginh (Figs. 3(b, d)). In either case, the pulse packet
was strong and precise enough to elicit spikes in enough
neurons of the first group, such that, in turn, it could
activate the next group, and reach the BOA, rapidly
converging into the fix-point. However, when the pulse
packet was asynchronous (large σ , 20 ms) and stronger
(larger a, 5 spikes), resembling asynchronous rate input,

the FFI had a strong effect. Without correlated Ginh,
the rate input resulted in an elevated firing rate in the
neurons of the first group (Fig. 3(c)), which was high
enough to fall into the BOA and, hence, to synchronize
over subsequent groups. By contrast, the FFI prevented
strong spiking responses in the first group (Fig. 3(e)),
thereby prohibiting asynchronous inputs from induc-
ing synchronous activity to propagate in subsequent
groups.

To assess the change of the BOA upon incorporating
FFI into the chain, we again scanned a parameter range
of the pulse packets similar to the one used in the
Section 3.1. Without FFI, the ‘σ ’ for which one can
detect a synfire chain propagation in the last group
depended on the number of input spikes (Fig. 4(a)).
The direction and length of the arrows at any particular
position represent the direction and strength of the
local activity gradient, i.e. how, on average, a pulse
packet starting at this position is transformed into a
pulse packet in the subsequent neuron group in the
feedforward chain (as in Diesmann et al. 1999). The
blue line shows the separatrix between failure and suc-
cessful propagation (see Section 2). Already with one
spike in each neuron of the pre-synaptic population,
the stimulus could propagate through the network. This
low activation threshold is not surprising as the mem-
brane potentials are close to threshold. Embedding
FFI into the synfire chain resulted in a change of the
BOA. Pulse packets that could elicit synfire activity
without FFI now failed to do so (Fig. 4(b)). Thus,
the synfire chain with FFI was more selective than
without FFI, as it was activated by fewer combinations
of pulse packet parameters. To study the effect of the
different temporal delays between excitation and inhi-
bition (delaying−exc), we varied the synaptic delay from
2 ms to 8 ms (2 ms was the default value, see Section 2).
Since the delay regulates the integration window of the
RS neurons, it also controls the selectivity of the synfire
chain. To test this, we calculated again the separatrix
between failure and successful propagation for each
delay value (Fig. 4(c); see Section 2). At 2 ms delay,
activation of the synfire chain was only possible for
sufficiently large ‘a’ at very small ‘σ ’. Increasing the
delayinh−exc resulted in a widening of the integration
window and, thereby, in a reduction of the selectivity
(Fig. 4(c)). The input selectivity of the synfire chain is
critical when one wants to embed multiple chains in a
network. Without FFI, the probability of falling into
the BOA is higher, and the synchronization process
over subsequent groups will ensure stable propagation,
even for asynchronous input, see also (Kumar et al.
2008a). By contrast, with FFI, the propagation of spik-
ing activity along the feedforward chain is restricted to
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Fig. 3 Conditions for signal propagation through a feedforward
network with correlated inhibition. (a) Model of a feedforward
network with correlated inhibition induced by FFI. (b) Signal
propagation of a synchronous input through the network when
each group projects only onto the RS population of the follow-
ing group. Due to the instability of the ground-state of purely
excitatory feedforward networks (Tetzlaff et al. 2002), transient
random fluctuations in the asynchronous background activity
may occasionally induce spontaneously propagating synchrony,

as can be observed here some 50 ms before the stimulus onset.
(c) Propagation of an asynchronous input through the same
network. The asynchronous input induced elevated firing rates in
the first groups. However, the activity rapidly synchronized over
subsequent groups. (d) Propagation of synchronous input was
hardly affected by correlated inhibition, induced by including the
FS neurons in the target population of the successive group. (e)
FFI in the feedforward network prevented asynchronous inputs
from inducing synchronous activity in subsequent groups

synchronous pulse packets, with the required degree
of synchrony being determined by the delay between
excitation and inhibition in the FFI.

3.3 Stability of random recurrent networks

A common model of the cortical architecture is the
randomly connected recurrent network (Fig. 5(a)). Its
dynamical states have been well studied (Brunel 2000;
Kumar et al. 2008b) and can be categorized, depend-
ing on the regularity of the single neuron spike trains
(regular ‘R’ or irregular ‘I’) and on the synchrony

across neurons (synchronous ‘S’ or asynchronous ‘A’).
Spontaneous in vivo activity is best described by the
asynchronous irregular state (AI), even though high
correlations between spatially close neurons have been
reported both in in vivo recordings from cortex (Lampl
et al. 1999; Okun and Lampl 2008; Smith and Kohn
2008) and in theoretical studies on network models with
distance-dependent connectivity (e.g. Mehring et al.
2003). In random networks, the AI state is only pos-
sible in a restricted parameter regime, such that the
network evolves towards a synchronous state for most
parameter values considered. Also, stable propagation
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Fig. 4 Correlated inhibition shapes selectivity of feedforward
networks. (a) Basin of attraction (BAO) when excitation can be
integrated, without being constrained by inhibition. Arrows rep-
resent the local evolution of the pulse packet parameters ‘a’ and
‘σ ’, i.e. how, on average, a pulse packet starting at this position is
transformed into a pulse packet in the subsequent neuron group
in the feedforward chain (as in Diesmann et al. 1999). The green

marker represents the synfire attractor, the red marker indicates
the case when no event could be detected in the last group. The
BOA for the feedforward network without inhibition is large.
(b) Including FFI in the feedforward network changes the BOA.
Only synchronous inputs can propagate through the network.
(c) The temporal delay between Gexc and Ginh controls the
selectivity of the feedforward network

of synfire activity is easier in AI type background ac-
tivity than in synchronous network states (Kumar et al.
2008a).

In blocking experiments using bicuculline to pre-
vent GABA-ergic inhibition, (Hirsch and Gilbert 1991)
showed that responses to electrical stimuli became

Fig. 5 Stability of recurrent random networks by effective inhibi-
tion. (a) Model of recurrent cortical random network. (b) Spiking
activity of the network with ineffective inhibition (gexc−inh =
1 nS). The network shows population wide synchronous events.
(c) With effective inhibition (gexc−inh = 3.5 nS), the network
is stable and shows asynchronous irregular (AI) activity. (d–f)
Characterization of the network states with ineffective inhibition

as a function of G and νext. (g–h) Likewise, characterization of
the network states with effective inhibition. (d, g) Firing rate.
(e, i) Synchrony. (f, h) Irregularity. White labels in panels (d)
and (g) exemplarily indicate prototypical network states—further
explanation in the main text. Note that for the CV measurement
we set a minimum of 10 spikes per trial; data that remained below
that number are shown as white entries in (f) and (h)
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Fig. 6 Signal-to-noise level in
embedded feedforward
networks depends on efficacy
of inhibition. (a) Model of
locally connected random
network with embedded
signal path. (b) Spiking
activity of recurrent network
with embedded signal path
with ineffective inhibition
(gexc−inh = 1 nS,
νext = 3,000). (c) Spiking
activity with effective
inhibition (gexc−inh = 3.5 nS,
νext = 3,000). (d) Spiking
activity in the background RS
neurons (RSbkg) and in the
RS neurons of the last group
of the signal path (RSsp) in
both network configurations

unstable and resulted in a burst of activity. This suggests
that inhibition is crucial in preventing runaway excita-
tory processes and, hence, can increase the stability of
the cortical network.

To show that effective FFI not only results in sparse
and precise responses in simple circuits, but can also
help stabilizing a recurrent network, we constructed a
random recurrent network (see Section 2) and studied
its state space. Usually the parameters that are used
to study the dynamical states of random networks are
the rate (νext) of the external inputs (typically modeled
by poisson processes) and the relative strength of the
inhibition (G). The excitatory synaptic strength is as-
sumed identical for both RS and FS neurons. To test the
stabilizing effect of effective FFI in recurrent networks,
we increased the synaptic strength from RS onto FS
neurons (gexc−inh) by a factor of 3.5 (Povysheva et al.
2006; Cruikshank et al. 2007), in the same manner as in
the previous section. We found that, indeed, increasing
gexc−inh had a stabilizing effect on the recurrent network
dynamics. Thus, with a parameter combination of ‘νext’
and ‘G’ at which a classical network (gexc−inh = 1 nS)
exhibits population wide synchronizations (Fig. 5(b)),
a network with effective inhibition (gexc−inh = 3.5 nS)
showed a stable AI state (Fig. 5(c)). To further charac-
terize the effect of the effective inhibition over a wide
parameter space, we then studied the νext-G state-space

for both a classical random network (gexc−inh = 1) and
an enhanced FS network (gexc−inh = 3.5). The classi-
cal random network exhibited the expected dynamical
states (Brunel 2000; Kumar et al. 2008b), indicated here
by white labels in Fig. 5(d): with increasing νext, the
mean firing rate increased (Fig. 5(d)) and, depending
on G, the network exhibited the various states regard-
ing population synchrony (Fig. 5(e)) and spiking irregu-
larity (Fig. 5(f)). Note that for the CV measurement we
set a minimum of 10 spikes per trial (Nawrot et al. 2008)
(see Section 2); data that remained below that number
are shown as white entries in Fig. 5(f) and (h).

For small G, increasing νext resulted in synchronous
and regular (SR) spiking activity. With increasing G,
the responses became more irregular (Fig. 5(f)), how-
ever, for most of the tested νext they remained syn-
chronous (SI). Only for small external input νext, the
network showed AI type activity.

By contrast, the state space of the enhanced FS
network changed drastically. Although the mean firing
rate increased with νext (Fig. 5(g)), it remained quite
low compared to the classical network (Fig. 5(d)). The
recurrent network now was much more stable and did
not elicit a population wide synchronization at parame-
ter combinations which did induce those in the classical
network (compare Fig. 5(e), (i)). A similar effect was
observed for the irregularity of the single neuron spike
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trains (compare Fig. 5(f), (h)). Thus, due to this large
increase in stability, the parameter regime for which
the network could sustain AI type activity was vastly
increased, now covering most of the state space (com-
pare positions of white labels in Figs. 5(d, g)).

3.4 High signal-to-noise level in embedded
feedforward network with effective inhibition

It has been previously shown that propagation of syn-
chrony in embedded feedforward networks is more
robust when the embedding recurrent network is in
a low rate, low synchrony AI-regime (Kumar et al.
2008a). To test whether effective inhibition, both at
the global network level and as FFI in the feedfor-
ward network, results in a substrate that supports the
propagation of synchrony, we embedded a feedforward
network composed of three groups as a signal path
into the recurrent background network. As recurrent
background network we used a locally connected ran-
dom network (Kumar et al. 2008a; Mehring et al. 2003)
which represents a cortical sheet of about 1 × 1 mm
(Fig. 6(a); see Section 2). We then compared the quality
of signal propagation in the network with and in one
without effective inhibition. For this we choose a νext

value which resulted in a synchronous state of the back-
ground network in the case of ineffective inhibition
(νext = 3,000). G was set to 2, such that the inhibitory
synapses had the same value as in the first two sections.
We then applied a pulse packet stimulus (σ = 1 ms, a =
1 spike) to the first group of the embedded feedforward
network. The quality of signal propagation was assessed
by analyzing the spiking activity of the 100 RS neurons
in the last group (signal, RSsp) and 100 RS neurons
randomly chosen from the background network (noise,
RSbkg). We made sure that none of the 100 RS neu-
rons of the last group were among the 100 randomly
chosen RS background neurons. We then estimated
the spike count in a small time window (4 ms) around
the expected time of arrival of the propagating pulse
packet in the last group. We expected that the signal-
to-noise level would depend on the state of the back-
ground network (Kumar et al. 2008a). With ineffective
inhibition, the recurrent network could sustain a high
rate and high synchrony regime (Fig. 6(b), note that
for illustrative purposes only a subset of RS and FS
neurons in the background (RSbkg, black; FSbkg, gray)
is shown. The number of neurons was set to be the
same as in the signal path (RSsp, green; FSsp, orange).
Activating the signal pathway in such a state gave rise
to a signal that was very difficult to distinguish from the
dominant background activity (Fig. 6(b)). Figure 6(b)
shows a 50 ms time-window around the expected arrival

time (583 ms) of the pulse packet in the last group.
By contrast, with effective inhibition the same combi-
nation of νext and G induced only a low rate regime,
with only occasionally a very partial and short-lasting
synchronization among a small fraction of the neurons
(Fig. 6(c)). Here, the start of the signal and its propa-
gation through the groups is easily discernible (please
note that the time axis was changed from Fig. 6(b)
to Fig. 6(c) to show the successful propagation from
group 1 to group 3). The activity in the FSbkg during the
signal propagation is the so called after-activity or halo
(Kumar et al. 2008a). Here the traveling pulse packet
excites the neighborhood of a group after one synaptic
delay. Due to the rather low number of FS neurons
in this study many FS neurons were affected by the
halo. Comparing the spike counts in the background
and in the last group measures the state dependent
quality of signal propagation. In the case of ineffective
inhibition, the spiking activity in the last group was
controlled by the background network (Fig. 6(b), (d)).
In this situation, it was not evident whether or not a
signal arrived in the last group. This changed clearly
with effective inhibition. Now the recurrent network
was much more stable, providing a substrate in which
synchronous spiking activity propagates more robustly.
The background activity was low and the signal in the
last group could be read out easily (Fig. 6(c), (d)).

4 Discussion

We characterized the consequences of correlated and
lagged inhibition, as implemented by the feedforward
inhibition scheme, on different network scales.

At the single neuron level, we found that feedfor-
ward inhibition changes the effective integration behav-
ior of the neuron, such that only transient inputs can
induce spiking. The main critical parameter to induce
effective and correlated inhibition was the stronger uni-
tary synaptic weight onto FS neurons, consistent with
biological findings (Cruikshank et al. 2007). It is known
that neurons respond more precisely to transient inputs
(Mainen and Sejnowski 1995). The imprecision is re-
lated to the membrane potential variability just prior
to the spike (Tiesinga et al. 2008). The FFI architec-
ture used here ensures that the amount of inhibition
balances the amount of excitation (Wehr and Zador
2003). As a result, the mean membrane potential is
below threshold, such that spikes are mainly driven by
transient fluctuations (the fluctuation-driven regime:
Shadlen and Newsome 1994, 1998; Kuhn et al. 2004).
In the present study all synapses were static. However,
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it has been shown that this precise balance is also main-
tained when the synapses show depressing dynamics
(Higley and Contreras 2006). That such gain control
can indeed result in sparse responses over a wide range
of input intensities has been already demonstrated in
a model of the olfactory system (Assisi et al. 2007).
In the visual system, balancing feedforward inhibition
was proposed as a candidate mechanism to explain
the invariant orientation tuning observed with drift-
ing gratings (Troyer et al. 1998). Interestingly, it was
shown in vivo (Marre et al. 2005; Haider et al. 2010)
and in a model of the early visual system (Kremkow
et al. 2008b) that conductances are indeed correlated
during natural viewing. In the model, the correla-
tion of the conductances was related to the correla-
tion of the contrast polarity in the receptive fields
of cortical layer 4 neurons. Thus, FFI not only con-
trols the sparseness, but also induces basic functional
properties in thalamic input receiving neurons in the
cortex.

In recurrent networks, an effective synaptic connec-
tion from excitatory for inhibitory neurons drastically
increased the network stability. The same network,
which exhibited unstable synchronous states, showed
stable AI type activity when effective inhibition was
present. It was recently shown that the conditions for
signal propagation through feedforward networks em-
bedded in a recurrent network, depend on the activity
state of the embedding network (Kumar et al. 2008a).
In that study, synchrony could optimally propagate
in an AI activity state, although successful propaga-
tion was also possible in more synchronous states. By
contrast, asynchronous rate inputs could not propa-
gate, because of the synchronizing effect of the feed-
forward network. This property introduces a problem
for the selectivity of the feedforward network. High
background activity can de-stabilize the ground state
by spontaneously activating the feedforward network
by random activity transients and, thereby, create a
false-positive response (Tetzlaff et al. 2002). We have
shown here how incorporating inhibition into the feed-
forward network can solve this problem. The corre-
lated inhibition drastically changed the conditions for
propagating signals through the feedforward network.
Synchronous inputs to the first group could propagate
with or without correlated inhibition. However, strong
asynchronous inputs such as those inducing propaga-
tion dynamics in a synfire chain without FFI, failed
to do so with FFI, thereby increasing the selectivity
of the chain. Similar findings were recently reported
by Vogels and Abbott (2009). These authors studied
rate propagation from one sender group through a re-
ceiver group. Similar to the architecture used here, the

receiving group consisted of excitatory and inhibitory
neurons, thus excitation and inhibition were balanced
in the receiving group. The authors showed that in
this configuration, rates could not propagate through
the receiving group. Only when the gain of the in-
hibitory neurons was reduced, such that excitation was
no longer balanced by inhibition, the firing rate in the
receiving neurons could be elevated. Only at stimulus
onset, when responses were more synchronized, the
receiving group responded transiently, thus confirming
our results.

Interestingly, the integration time window, that is
shaped by the time lag between excitation and inhi-
bition, controlled the selectivity of the synfire chains.
Thereby, this parameter gives the possibility to dynam-
ically regulate the signal flow in cortical networks as it
can be controlled by delaying or advancing the spiking
of the inhibitory neurons. We have shown that recur-
rent networks with effective inhibition provide a sub-
strate in which synchronous spiking activity propagates
more robustly. The stabilizing effect of the effective in-
hibition results in low rate background regimes in which
synchrony can propagate through an embedded signal
path and be easily detected in later groups (Kumar et al.
2008a). Thus, effective inhibition, both on the global
scale and in the signal path, facilitates the propagation
of synchrony. The two observations, that effective inhi-
bition in the random network results in asynchronous
low rate activity, while effective FFI in the signal path
induces selectivity for synchronous inputs, may seem
contradictory at first sight. However, the difference is
that the response of the embedding network reflects
the overall dynamical behavior of the system, whereas
the feedforward network rather demonstrates signal
propagation through a structured network. In the case
of the random network, effective inhibition prevents
run-away excitatory processes and, thus, stabilizes the
system. In the feedforward network, FFI induces the
short integration time window and, thereby, makes
the transmission more selective.

Furthermore, it was shown that classical feedforward
networks, which share a minimum number of group
members by coexisting in the same cortical network
space, may interact and activate each other (Kumar
et al. 2008a). This mutual activation is an interest-
ing concept for compositionality (Abeles et al. 2004;
Schrader et al. 2007). However, it necessitates that the
mutual activation is selective, such that many feedfor-
ward networks can coexist in the same cortical network,
in a stable manner and without necessarily activating
each other by undesired cross-talks. In this context,
embedded FFI could increase the memory capacity, i.e.
the number of possible chains that can be embedded in
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the network. More work, however, is needed to clarify
how, or indeed whether, such synfire dynamics can
support computation in cortical networks.

Our goal was to investigate how a balanced se-
quence of excitation and inhibition can shape spike-
pattern output in sensory cortical neurons and help
in transmitting this information in a reliable manner.
We investigated this at different scales (single neurons
and different network configurations) and showed that
balanced sequences are helpful in propagating informa-
tion along multiple processing stages. Moreover, it has
been suggested that such balanced sequences may help
in processing sensory information and improving de-
tection and discrimination performance. For instance,
it was shown that such excitation/inhibition sequences
may produce a computationally efficient neural code in
the visual system, latency rank order coding (Delorme
2003). This opens the possibility for future investiga-
tions into its functional role when the incoming flow
is modulated by local oscillatory activity and top-down
inputs (see Tiesinga et al. 2008).

5 Conclusion

In summary, the reported results add evidence that cor-
related excitation and inhibition found in vivo are im-
portant for computational processes in cortical circuits.
In particular, our study suggests that the brain takes ad-
vantages of a simple architecture to filter, process and
propagate synchronous events in complex networks. By
investigating how these properties are important in a
more functional context, such as processing in the visual
system (Kremkow et al. 2008b), future work will be able
to address the functional impact of such architecture
onto the dynamics of information processing.
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