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During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by
blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source),
the visual system is most often able to maintain a continuous representation of motion. For instance, it
maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the
existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this
paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank
using motion-based prediction. This implies that using a prior on the coherency of motion, the system
may integrate previous motion information even in the absence of a stimulus. In order to compare with
experimental results, we simulated tracking velocity responses. We found that the response of the
motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly
recovers the information on the trajectory after reappearance. This is compatible with behavioral and
neural observations on motion extrapolation. To understand these mechanisms, we have recorded the
response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at
the global level as a gain control mechanism and that we could switch from a smooth regime to a binary
tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing
motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more
global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a cer-
tain value, where motion coherency and predictability fail to hold longer. In particular, we found that
motion-based prediction leads to the emergence of a tracking behavior only when enough information
from the trajectory has been accumulated. Then, during tracking, trajectory estimation is robust to blanks
even in the presence of relatively high levels of noise. Moreover, we found that tracking is necessary for
motion extrapolation, this calls for further experimental work exploring the role of noise in motion
extrapolation.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Problem statement

The continuous flow of information originating from the visual
world is constantly fragmented by different sources of noise, occlu-
sions or blanks. For instance, the path of a moving object can often be
transiently blocked from the observer’s line of sight. However, one is
still able to judge the current position of a moving object during such
periods of occlusion as well as estimate its future trajectory at its
reappearance. This ability to transform such fragmented sensory in-
puts into a correct continuous representation has been a major pres-
sure in the evolution of visual systems because it leads to
appropriate reactions matched to the physical evidences: It is vital
to accurately follow the trajectory of a fleeing prey and stabilize its
image onto the retina in order to catch it or, on the contrary, to es-
cape from an approaching predator, despite the fact that it can tran-
siently disappear from the line of sight (Gollisch and Meister, 2010).
The problem of motion occlusion is a particular case of a more gen-
eral problem in neuroscience: motion extrapolation. In the absence of
sensory input, the visual system can extrapolate the instantaneous
position of a moving object from its past trajectory.

An essential clue to solve that problem is the prior knowledge
that objects follow smooth, coherent trajectories. Following the
first law of newtonian mechanics, the trajectory of an object is only
perturbed by external forces. Since we know a priori that these
forces are more likely to be small compared to the inertia of an ob-
ject of relevance, the trajectory of objects in the physical world
tend to follow smooth, straight trajectories. As such, the projection
of these trajectories on the retinotopic space is such that the
statistics of natural images also exhibit similar regularities regard-
ing their visual trajectories. Such prior knowledge may be the basis
of learning processes based on the prediction of the path of the tra-
jectory. During transient blanking, it is most likely that such pro-
cesses (along with the knowledge that the sensory input was
indeed blanked and not definitively removed) are at the root of
the mechanisms underlying motion extrapolation. Their behavioral
consequences are well known. For instance, when a moving target
disappears, smooth pursuit eye movements continue at the same
velocity during the initial period of occlusion (Bennett and Barnes,
2003) and such a feat is only possible when observers have some
knowledge on the path of motion (Graf et al., 2003). Therefore,
there must be some underlying neural computations but it is yet
not clear how this can be done efficiently and where it is imple-
mented in the visual system.

This perceptual phenomenon provides invaluable tools with
which we may study the mechanisms of motion detection and
draw inferences about the properties of underlying neural popula-
tions. First, it is involved in different sensory modalities as sensory
fragmentation exists in vision but also for instance in haptic tasks
(hence in the somatosensory system). Second, it is a powerful
mean to distinguish between the different computational steps of
the visual motion system. Object motion information is extracted
along a cascade of feedforward cortical areas, where area V1 ex-
tracts local motion information that is integrated in extra-striate
middle temporal (MT) and medial superior temporal (MST) areas.

The middle temporal (MT) and medial superior temporal (MST)
areas in the superior temporal sulcus (STS) process visual motion
and oculomotor signals driving pursuit (see (Ilg, 1997) for a re-
view) and are therefore key elements in motion extrapolation.
Early physiological studies in macaque monkey identified area
MT as a specialized module for visual motion processing (Allman
et al., 1973; Dubner and Zeki, 1971). This involves extracting the
speed and direction of the moving object. MT neurons respond
selectively to visual motion and tuned for local speed and direction
of luminance features moving in their receptive fields (Maunsell
and Van Essen, 1983). Pack and Born (2001) have shown that the
temporal dynamics of motion integration can be seen from time-
varying firing rates. They showed that neuronal responses quickly
progress from local to global motion direction in about 100 ms sug-
gesting that such mechanisms are dynamical and progressive.
These results pinpoint the key role of MT neurons in local motion
analysis as well as global motion integration. However, these neu-
rons respond only when the retinal image motion is present while
MST neurons maintain their firing activity when there is no retinal
image motion as during a transient image occlusion (Newsome and
Paré, 1988) or during tracking imaginary target covering the visual
field outside of the receptive field currently recorded (Ilg and Thier,
2003). Similar sustained activity during target occlusion has been
found in monkey posterior parietal cortex, and it is linked to an im-
age motion prior to target disappearance (Assad and Maunsell,
1995). In another study (Schwartz and Berry, 2008) have stimu-
lated the retina of tiger salamander with a periodically flashing
stimulus and have found various firing patterns when a flash is
omitted. This sustained activity is known as ‘‘omitted stimulus re-
sponse’’ (OSR) and is explained by a model based on tunable oscil-
lators which extrapolate the response to the periodic stimulation
even at times matched to the missing stimulus. OSR has also been
reported in the flicker electroretinogram (ERG) of the human cone
system (McAnany and Alexander, 2009).

What is the link between behavioral and neuronal signatures of
motion extrapolation? Visual motion information is primarily used
for gaze stabilization (Ilg, 1997; Kawano, 1999; Masson et al.,
2010) and sensorimotor transformation underlying smooth pursuit
eye movements (Lisberger et al., 1987). The fact that sustained
activity in area MST was seen during transient occlusion of a mov-
ing target supports the notion that the two phenomena are closely
related (Newsome and Paré, 1988). On the other hand, since mo-
tion extrapolation is also seen in lower level neuronal structures,
such as the retina, this calls for a more generic computational
framework. Since motion extrapolation is implemented at the scale
of a single cortical area, this would suggest that such a mechanism
would be implemented by a finely structured set of diffusive mech-
anisms. A potential candidate is naturally the dense network of lat-
eral interactions as found in sub-cortical and cortical structures
involved in sensory processing as well as sensorimotor control.
However, direct evidence for such neural mechanisms is still lack-
ing. Before proposing a solution using motion-based prediction, we
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will first review some existing experimental and theoretical
evidences.
1.2. Different types of motion extrapolation

A classical way of studying motion extrapolation is by present-
ing a moving target that travels behind an occluder for a short per-
iod of time. A seminal study used timing estimation by asking
participants to make a button press response at the time they
judge the occluded target to have reached a particular point
(Rosenbaum, 1975). Since then, this phenomenon has been studied
at various levels (behavioral or neural), across species and modal-
ities. For instance, motion extrapolation has been under study by
focusing on various specific questions in physiology or behavior.
In physiology, motion extrapolation was shown to occur in retina
(Gollisch and Meister, 2010; Schwartz and Berry, 2008) or in higher
cortical areas (Assad and Maunsell, 1995). Behaviorally, motion
extrapolation was studied in the context of target catching (Nijha-
wan, 1994), apparent motion (Hogendoorn et al., 2008) and trajec-
tory extrapolation for occluded or disappeared stimuli (Makin
et al., 2009), perceptual extrapolation of blurred visual target (Fu
et al., 2001), in audio visual targets (Wuerger, 2010), role of motion
extrapolation in control of eye movements (Makin and Poliakoff,
2011). Motion extrapolation can be carried out for lateral motion,
with the target moving across the fronto-parallel plane, or for ap-
proach motion, when the object moves towards the observer
(DeLucia, 2004). Herein, we investigate visual, lateral motion
extrapolation as a generic paradigm to challenge prediction
algorithms.

A tightly coupled phenomenon is motion inertia, which might
be regarded as the perceptual equivalent of motion extrapolation
for object identification. To put motion inertia in evidence, it has
been shown in experiments that when one object moves and
breaks into two trajectories, the trajectory that tends to be per-
ceived as pursuing its motion is the one corresponding to the least
perturbation (acceleration or curvature). Equivalently, if a moving
object has been presented before, there is a strong perceptual ten-
dency to continue seeing it in previous direction (Ramachandran
and Anstis, 1983). These findings also imply that the interactions
Fig. 1. The problem of fragmented trajectories and motion extrapolation. As an
object moves in visual space (as represented here for commodity by the red
trajectory of a tennis ball in a space–time diagram with a one-dimensional space on
the vertical axis), the sensory flux may be interrupted by a sudden and transient
blank (as denoted by the vertical, gray area and the dashed trajectory). How can the
instantaneous position of the dot be estimated at the time of reappearance? This
mechanism is the basis of motion extrapolation and is rooted on the prior knowledge
on the coherency of trajectories in natural images. We show below the typical eye
velocity profile that is observed during Smooth Pursuit Eye Movements (SPEM) as a
prototypical sensory response. It consists of three phases: first, a convergence of the
eye velocity toward the physical speed, second, a drop of velocity during the blank
and finally, a sudden catch-up of speed at reappearance (Becker and Fuchs, 1985).
between pairs of dots seen in sequence is affected by the history
of their interactions, suggesting that probably the neurons
responding to motion are directionally coupled in a feed forward
way which facilitates the perception of unidirectional movement
(Anstis and Ramachandran, 1987). Assuming the existence of such
a strategy, it needs to be clarified how such rules may be related to
the spread of neural activity and how a neural system uses accu-
mulated information from the trajectory of moving object in order
to favor the detection of a unique, global motion. This was studied
by looking at how people may extrapolate motion on a straight line
(Pavel et al., 1992). One can interpret that in a Bayesian way: as a
prior, motion is temporally coherent, and motion inertia is a built
in strategy of the visual system to respect this prior. As such mo-
tion inertia and motion extrapolation certainly share some com-
mon mechanisms, though here, we focus on the later.

1.3. Experimental evidence of motion extrapolation

The neural systems controlling smooth pursuit eye movements
(SPEMs) are likely to be critically dependent upon motion extrap-
olation, in close synergy with saccades (de Xivry and Lefévre,
2007)). Several studies have shown that blanking a small moving
target results in a very typical temporal profile of eye velocity
(see Fig. 1). Eckmiller and Mackeben (1978) investigated monkey
smooth pursuit behavior when a moving target briefly disappeared
and then reappeared. They found that monkeys are able to con-
tinue pursuing when the target disappears for up to 800 ms. Using
a similar paradigm, Becker and Fuchs (1985) showed that humans
maintain smooth pursuit up to 4 s after the disappearance of the
target. They found that the eye velocity rapidly decreased about
200 ms after target disappearance. This deceleration phase lasted
for about 280 ms and then the eye velocity stabilized at approxi-
mately 40–60% of the normal pursuit velocity. To develop an eye
velocity related to the velocity of the target that preceded the
extinction, the subjects needed to see the motion for at least
300 ms. Becker and Fuchs (1985) referred to this phenomenon as
predictive pursuit. This mechanism can also be at play during other
open-loop responses such as anticipatory smooth tracking of a
highly predictable target motion (Barnes and Asselman, 1991).
There is an ongoing debate of whether the origin of motion extrap-
olation is within the oculomotor control system (Makin and Poliak-
off, 2011) or rather occurs at the sensory level. Using event related
potentials, Makin et al. (2009) have suggested on electrophysiolog-
ical grounds that both systems may be contributing. To tease apart
the relative contribution of retinal (i.e. image-driven) and extra-
retinal (i.e. eye movements-driven) in the phenomenon of motion
extrapolation is out of the scope of the present study and we will
restrict ourselves herein to the open-loop, image-driven pursuit
behavior.

Motion extrapolation seems to be a highly adaptable mecha-
nism. We have already suggested that such behavior may be re-
lated to the regularities observed in natural scenes. One may
then wonder how this may be affected by experimental conditions
such as learning or reinforcement (Madelain and Krauzlis, 2003).
Becker and Fuchs (1985) had already examined the effect of train-
ing on predictive pursuit and reported only a modest change, indi-
cating that such a response could be under adaptive control. Using
an operant conditioning procedure, Madelain and Krauzlis (2003)
found that human subjects instructed to track a small spot, tend
to follow it even during the absence of sensory input. The speed de-
creased however to a smaller plateau value and subject often per-
formed a catch-up saccade to track the object again. Crucially, their
performance increased across sessions and subjects could pursue
dots up to 4 s after the onset of a blank after intensive learning.
One important aspect for prediction to occur is that target trajecto-
ries must be regular and clear. In another study, (Bogadhi et al.,
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submitted for publication) investigated the aperture problem to
probe the impact of visual motion information at target reappear-
ance. A moving tilted bar produces a small direction bias at pursuit
initiation in the direction orthogonal to the bar’s orientation. They
found a significant, albeit much smaller bias at target reappear-
ance, as compared to pursuit initiation. Moreover, they put in evi-
dence a strong difference in the amplitude of such a bias,
depending on whether the blanking onset occurred in either the
open- or closed-loop phase of pursuit. The tracking direction bias
introduced by the aperture problem was significantly less in the
late phase, suggesting that the oculo-motor system would switch
from a preference for the sensory input (early phase) to an internal
(motor-based) signal in the late phase. All these results raise the
question of how we can model the different facets of motion
extrapolation in a common framework.

1.4. Existing theories on motion extrapolation

There are a variety of models proposing different mechanisms
underlying motion extrapolation. A first class of models are built
upon control-like models of the visuo-oculomotor system (Robin-
son et al., 1986). Such models were refined to specifically address
the problem of motion extrapolation (Churchland et al., 2003) by
including additional layers in a cascade model from Goldreich
et al. (1992). These models may be subdivided into those where
the predicted signal is based of some motor command (Bennett
and Barnes, 2003) and those that specifically use the adaptation
of an internal model (Madelain and Krauzlis, 2003). Still, while
these different behavioral models can fit some data very nicely,
they lack a global explanation of the mechanisms underlying mo-
tion extrapolation.

Most of these models share a common mechanism: during blank-
ing, information is inferred from past information using a smooth-
ness constraint on possible trajectories. This is well formulated by
smoothing the inferred velocity in control models with an internal
positive feedback (Krauzlis and Lisberger, 1989; Robinson, 1973;
Robinson et al., 1986). An engineering answer for such an adaptive
system is a Kalman filter. It involves projecting the current estimate
of the system based on the prior knowledge and correcting the pre-
dictions based on the measurement. A mix of measurement and pre-
diction are used to estimate the current state based on their
reliability reflected from their variances. Studies investigating sen-
sory-motor transformation already suggest for a mix of measure-
ment based signal and an internal signal based on reliability
extracted from their respective uncertainties for an optimal perfor-
mance in a motor task (van Beers et al., 2002). Similarly, this may be
expressed in as a Kalman filter, that is in a generic Bayesian frame-
work with a clear hypothesis (Welch and Bishop, 1995).

Following the idea of Kalman filter, Montagnini (2007) and
Bogadhi et al. (submitted for publication) proposed a hierarchical
recurrent Bayesian framework to understand both motion integra-
tion as observed in smooth pursuit and also the predictive nature
of pursuit. Probabilistic inference has been successful in explaining
motion perception to a variety of stimuli (Weiss et al., 2002). They
are somewhat similar to some of the engineering models proposed
earlier (Nowlan and Sejnowski, 1995) but allow for a more explicit
formulation of the underlying hypothesis. Such a framework
accommodates uncertainty in the motion information in the mea-
surement likelihoods (Hedges et al., 2011; Stocker and Simoncelli,
2006; Weiss et al., 2002) and also expectation can be represented
through the prior which can alter motion perception (Sotiropoulos
et al., 2011). Representing uncertainty in the measurements and
prior expectation gives a simple, yet powerful framework to inves-
tigate predictive behavior of the system under investigation possi-
bly to optimally adapt to changes in the measurements. As shown
by Wuerger (2010) in a temporal localization task, the bias and
variability show similar patterns for motion defined by vision,
audition or both. Such optimal integration is consistent with a
probabilistic representation of motion. The framework implements
Bayesian estimation utilizing motion measurements and motion
prediction. Measurements of observed input are interpreted prob-
abilistically by a likelihood function. To detect straight trajectories
with constant velocity, input motion can be temporally grouped
and expressed in terms of a Bayesian generalization of a Kalman
filtering (Welch and Bishop, 1995), as standard Kalman filter mod-
els are not able to account for psychophysical data. A neural net-
work model of described probabilistic framework shares
interesting similarities with known properties of visual cortex
and qualitatively accounts for psychophysical experiments on mo-
tion occluders and motion outliers. The approach from Bogadhi
et al. (submitted for publication) allows for a mix of prediction
and measurement based on their reliability, as measured from
their respective variances. The combined estimate is used to drive
the pursuit response. The hierarchical framework allows to inves-
tigate the adaptive behavior of pursuit as well as the role of predic-
tion on motion integration as observed in pursuit responses.
However, this model may still be seen as an incremental refine-
ment of previous results and does not yield a generic account on
the motion extrapolation mechanism.

As we have seen, most theoretical efforts to study motion
extrapolation is based on temporal coherency of motion. This
assumption, as understood in a Bayesian framework, may be repre-
sented by defining a prior in the probabilistic representation of
motion. This will then be integrated in the dynamical motion inte-
gration process: In a probabilistic representation of motion, poster-
ior estimation of motion is the product of this prior and current
sensory evidence (likelihood). An important question is therefore
to know how to define this prior function.

1.5. Motion extrapolation and motion-based prediction

Yuille and Grzywacz (1989) have shown that the efficiency of
motion integration was highly dependent on the smoothness of
the trajectory of the stimulus. Behavioral data showed that humans
can detect a target dot moving in a smooth trajectory embedded in
randomly moving dots, while the target dot is not distinguishable
from noise in each frame separately. This challenging detection task
is called outlier detection and might be explained by a network of
interconnected motion detectors (Watamaniuk et al., 1995). In such
a network, every stimulated local motion detector sends a facilita-
tory signal to adjacent units. These are in turn stimulated and this se-
quence goes on, ultimately implementing a direction selective
spatiotemporal integration. Signals from local motion detectors
are made coherent in space and time and lower the threshold for
detecting stimuli moving in smooth versus segmented trajectories
(Grzywacz et al., 1995). In the outlier detection case, distractor dots
do not move coherently enough to accumulate information while for
the target dot, precision increases gradually and as a consequence,
the accuracy of velocity estimation is improved. During occlusion
of target motion, that is without likelihood measurements, velocity
estimation is degraded and probabilities are diffused in space and
time. However, the model may still have enough momentum or mo-
tion inertia to propagate estimations of target dot’s position. This
process will break down if the occluder gets too long but the motion
inertia effect of target motion on distractors is visible (Watamaniuk
et al., 1995). As a consequence, an important aspect of this prior is a
motion-based prediction, that is, including both the position and
velocity from the trajectory of motion.

Such a prior on the temporal coherency of motion can
be defined in a probabilistic framework. This was formulated
theoretically by Burgi et al. (2000) but their neural network imple-
mentation lacked the precision needed to work on realistic input



M.A. Khoei et al. / Journal of Physiology - Paris 107 (2013) 409–420 413
sequences. In our earlier work (Perrinet and Masson, 2012), we
implemented efficiently such a prior to investigate different as-
pects of spatiotemporal motion integration. Particularly, this mod-
el focused on the aperture problem and proposed that motion-
based predictive coding is sufficient to infer global motion from
all local ambiguous signals. The aperture problem is a challenging
problem to study integration of local motion information (Castet,
1993; Lorenceau, 1992; Pack and Born, 2001). The model proposed
that instead of specific mechanisms such as line-endings detectors,
the gradual spatio-temporal integration of motion. It accounts for
the properties of physiological and behavioral responses to the
aperture problem. First, the temporal dynamics of the solution to
the aperture problem and its dependence on several properties of
input such as contrast or bar length can be represented. Second,
end stop cells emerge from the dynamics of the model instead of
having ad hoc rules such as line-ending detectors.

The hypothesis of independence of motion signals in neighbor-
ing parts of visual space results in the failure of feedforward mod-
els in accounting for temporal dynamic of global motion
integration. In those models, local measurement of global motion
is the same everywhere independent of position. In motion-based
prediction, the retinotopic position of motion is an essential piece
of information to be represented. By explicitly including the inter-
dependence of local motion signals between neighboring times
and positions knowing the current speed along a smooth trajec-
tory, incoherent features are explained away, while coherent infor-
mation is progressively integrated. This context-dependent,
anisotropic diffusion in the probabilistic representation of motion
also results in the formation of a tracking behavior favoring tempo-
rally coherent features. Herein, we will challenge such a model to
account for the different properties of motion extrapolation.

1.6. Objectives and outline

This paper has been prepared in following order: In Section 2 we
develop the same probabilistic modeling framework as the one pro-
posed for the solution to the aperture problem (Perrinet and Masson,
2012). Moreover, we include details on the structure and implemen-
tation of the model but also details on the experimental and numer-
ical aspects of the model. Then, we report in Section 3 results from
experiments where we studied motion extrapolation under three
different conditions for a horizontally moving dot: moving in a
blanked trajectory, moving in presence of high background noise
and moving in a blanked trajectory with high background noise. In
the first condition, extrapolation of motion information during a
blank has been studied compared to a control stimulus without
blank. To stress on the role of prediction in motion extrapolation,
we have done all experiments under three configuration of the mod-
el which correspond to motion estimations with and without predic-
tion in position or velocity of stimulus. In the second condition, we
have surveyed motion extrapolation by looking at states of motion
tracking and its stability. In the last condition, we predict that mo-
tion extrapolation is dependent on noise and propose a behavioral
experiment to test this prediction.

Finally in the discussion (Section 4), we will interpret these re-
sults in the light of current knowledge on probabilistic inference
and dynamical systems and we will discuss the limitations of the
current study along with suggestions for future work.

2. Model and methods

2.1. Probabilistic detection of motion

First, we define a generic probabilistic framework for studying
motion integration. The translation of an object in the planar visual
space at a given time is fully given by the probability distribution
of its position and velocity, that is, as a distribution of our value
of belief among a set of possible positions and velocities. It is usual
to define motion probability at any given location. If one particular
velocity is certain, its probability becomes 1 while other probabil-
ities are 0. The more the measurement is uncertain (for instance
when increasing noise), the more the distribution of probabilities
will be spread around this peak. This type of representation can
be successfully used to solve a large range of problems related to
visual motion detection. These problems belong to the more gen-
eral framework of the optimal detection of a signal perturbed by
different sources of noise and ambiguity.

In such a framework, Bayesian models make explicit the opti-
mal integration of sensory information with prior information.
These models may be decomposed in three stages. First, one de-
fines likelihoods as a measure of belief knowing the sensory data.
This likelihood is based on the definition of a generative model.
Second, any prior distribution, that is, any information on the data
that is known before observing it, may be combined to the likeli-
hood distribution to compute a posterior probability using Bayes’
rule. The prior defines generic knowledge on the generative model
over a set of inputs, such as regularities observed in the statistics of
natural images or behaviorally relevant motions. Finally, a decision
can be made by optimizing a behavioral cost dependent on this
posterior probability. An often used choice is to choose the belief
that corresponds to the maximum a posteriori probability.

2.2. Luminance-based detection of motion

Such a Bayesian scheme can be applied to motion detection
using a generative model of the luminance profile in the image
(Weiss et al., 2002). This is first based on the luminance conserva-
tion equation. Knowing the velocity ~V ¼ ðu;vÞ, we can assume that
luminance is approximately conserved along this direction, that is,
that after a small lapse dt:

Itþdtðxþ u � dt; yþ v � dtÞ ¼ Itðx; yÞ þ mI ð1Þ

where we define luminance at time t by It(x,y) as a function of posi-
tion x,y and mI is the observation noise. This noise is assumed to be
Gaussian with zero mean and variance r2

I =dt, that is,
mI /NðI; 0;r2

I =dtÞ. Note that for convenience we scaled variance
by dt such that the variance r2

I can be represented per unit of time,
independently of the time step dt. Using the Laplacian approxima-
tion, one can derive the likelihood probability distribution
pðItðx; yÞ j ~VÞ as a Gaussian distribution. In such a representation,
precision is finer for a lower variance. Indeed, it is easy to show that
the logarithm of pðItðx; yÞ j ~VÞ is proportional to the output of a cor-
relation-based elementary motion sensors or equivalently to a mo-
tion-energy detector (Adelson and Bergen, 1985). Interestingly,
lower contrast motion results in wider distributions of likelihood
and thus posterior pð~V j Itðx; yÞÞ. Therefore, contrast dynamics for
a wide variety of simple motion stimuli is determined by the shape
of the probability distribution (i.e. Gaussian-like distributions) and
the ratio between variances of likelihood and prior distributions
as was validated experimentally on behavioral data (Barthélemy,
2008).

The generative model explicitly assumes a translational motion
~V over the observation aperture, such as the receptive field of a
motion-sensitive cell. Usually, a distributed set ~Vtðx; yÞ of motion
estimations at time t over fixed positions x, y in the visual field
gives a fair approximation of a generic, complex motion that can
be represented in a retinotopic map such as areas V1 and MT. This
provides a field of probabilistic motion measures pðItðx; yÞ j
~Vtðx; yÞÞÞ. To generate a global read-out from this local information,
we may integrate these local probabilities over the whole visual
field. Assuming independence of the local information as in Weiss
et al. (2002), spatio-temporal integration is modeled at time T by,
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pð~V j I0:TÞ /
Y

x;y;06t6T

pðItðx; yÞj~Vðx; yÞÞpð~VÞ ð2Þ

where we write as I0:t the information on luminance from time 0 to
t. Such models of spatio-temporal integration can account for sev-
eral nonlinear properties of motion integration such as monotonic
spatial summation and contrast gain control and are successful in
explaining a wide range of neurophysiological and behavioral data.

2.3. Motion-based predictive coding

The independence hypothesis set above formally states that the
local measurement of global motion is the same everywhere, inde-
pendently of the position of different motion parts. In fact, the
independence hypothesis assumes that if local motion signals
would be randomly shuffled in position, they would still yield
the same global motion output (e.g. Movshon, 1985). As shown
by Watamaniuk et al. (1995), this hypothesis is particularly at
stake for motions along coherent trajectories: motion as a whole
is more than the sum of its parts. A first assumption is that the reti-
notopic position of motion is an essential piece of information to be
represented. In particular, in order to achieve fine-grained predic-
tions, it is essential to consider that the spatial position of motion
x,y, instead of being a given parameter (classically, a value on a
grid), is an additional random variable for representing motion
along with ~V . Compared to the representation pð~Vðx; yÞ j IÞ used
in previous studies (Burgi et al., 2000; Weiss et al., 2002), the prob-
ability distribution pðx; y; ~V j IÞ more completely describes motion
by explicitly representing its spatial position jointly with its veloc-
ity. Indeed, it is more generic as it is possible to represent any dis-
tribution pð~Vðx; yÞ j IÞ with a distribution pðx; y; ~V j IÞ, while the
reverse is not true without knowing the spatial distribution of
the position of motion p(x,yjI). By doing so, we introduce an expli-
cit representation of the segmentation of motion in visual space as
an essential ingredient in motion-based predictive coding.

Here, we explore the hypothesis that we may take into account
most dependence of local motion signals between neighboring times
and positions by implementing a predictive dependence of succes-
sive measurements of motion along a smooth trajectory. In fact,
we know a priori that natural scenes are predictable due to both
rigidity and inertia of physical objects. Due to the projection of their
motion in visual space, visual objects preferentially follow smooth
trajectories. We may implement this constraint into a generative
model by using the transport equation on the motion itself. Assum-
ing for simplicity that the sensory representation is updated at dis-
crete, regularly spaced times, then, at time t, during the small lapse
dt, motion is approximately translated with respect to its velocity:

xtþdt ¼ xt þ ut � dt þ mx

ytþdt ¼ yt þ v t � dt þ my ð3Þ

utþdt ¼ c � ut þ mu

v tþdt ¼ c � v t þ mv ð4Þ

with

mx; my /Nðx; y; 0;DX � dtÞ ð5Þ

mu; mv /Nðu; v; 0; ðr�2
p þ D�1

V Þ
�1 � dtÞ ð6Þ

where mx, my, mu and mv are random variables that blur position and
velocity at each time step. These are centered Gaussians defined by
their variances in position space by DX � dt and in velocity space de-

fined as in Weiss et al. (2002) by ðr�2
p þ D�1

V Þ
�1 � dt (where the stan-

dard deviation of the prior is defined as rp). Note that for
convenience we scaled variance by dt such that the diffusion coeffi-
cients can be represented per unit of time, independently of the time

step dt. Here, c ¼ ð1þ D2
V

r2
p
Þ
�1

is the damping factor introduced by the

prior and c � 1 for a high value of rp. The update rule (see (Perrinet
and Masson, 2007) for a derivation) assumes independence of the
prior on slow speeds with respect to predictive prior on smooth tra-
jectories. Eqs. 3 and 4 describe the internal model of motion, while
Eqs. 5 and 6 give a model for the noise in this model.

As a consequence, the estimated positions and velocities are
slightly randomized at each frame. We controlled that this proce-
dure led to similar results as (Weiss et al., 2002) (see also (Perrinet
and Masson, 2007) for an analytical solution). Note that we return
to the usual formulation described in Perrinet and Masson (2012)
when setting rp to a high value (100 was sufficient in our numer-
ical simulations). We define DX and DV as the diffusion coefficients
of position and velocity, respectively in a generative model of dif-
fusion which are scaled to be represented in units of time, indepen-
dently of dt. In fact, it is important to properly tune DX and DV since
they explicitly quantify the precision of the prediction.

We may now use this generative model to integrate motion
information using a Markov random chain on joint random vari-
ables zt = xt, yt, ut, vt:

pðztþdtjI0:tÞ ¼
Z

dztpðztþdtjztÞ � pðztjI0:tÞ ð7Þ

pðztþdtjI0:tþdtÞ ¼ pðItþdtjztþdtÞ � pðztþdt jI0:tÞ=pðItþdtjI0:tÞ ð8Þ

To implement this recursion, we first compute p(Itjzt) from the
observation model (Eq. (1)). The predictive prior probability p(zt-

jzt�dt) is defined by the generative model in Eqs. (3) and (4). Note
that prediction (Eq. (7)) always increases the variance by ‘‘diffusing’’
information. On the other hand, during estimation (Eq. (8)), coher-
ent data increases precision of the estimation while incoherent data
increases the variance. This balance between diffusion and reaction
will be the most important factor for the convergence of the dynam-
ical system. Overall, these master equations, along with the defini-
tion of the prior transition p(ztjzt�dt), define our model as a
dynamical system with a simple global architecture but yet with
complex recurrent loops.

Unfortunately, the dimensionality of the probabilistic represen-
tation makes it impossible to implement a realistic simulation of
the full dynamical system on classical computer hardware. In fact,
even with a moderate quantization of the relevant representation
spaces, computing integrals over hidden variables in the filtering
and prediction equations (respectively Eqs. (7) and (8)) leads to a
combinatorial explosion of parameters that is intractable with
the limited memory of current sequential computers. Alterna-
tively, if we assume that all probability distributions are Gaussian,
this formulation is equivalent to Kalman filtering on joint variables.
Such an implementation may be achieved using for instance a neu-
romorphic approximation of the equations mentioned above (Bur-
gi et al., 2000). Indeed, one may assume that master equations are
implemented by a finely tuned network of lateral and feed-back
interactions. One advantage of this recursive definition in the mas-
ter equations is that it gives a simple framework for the implemen-
tation of association fields. However, this implementation has the
consequence of blurring predictions. To describe some nonlinear
aspects of motion integration we have used particle filtering in
our previous work (Perrinet and Masson, 2012) and here we will
use it to tackle the motion extrapolation problem.

2.4. Numerical simulations

Master equations can be approximated using Sequential Monte
Carlo (SMC) (Perrinet and Masson, 2012). The SMC algorithm itself
is controlled by only two parameters. The first one is the number of
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particles N which tunes the algorithmic complexity of the repre-
sentation. In general, N should be large enough and an order of
magnitude of N � 210 was always sufficient in our simulations. In
the experimental settings that defined here (moving dots), the
complexity of the scene is well controlled and remains low. Control
experiments have tested the behavior for several numbers of par-
ticles (from 25 to 216). We found that, except with N smaller than
100, results were always very similar. However, we kept N to this
quite high value to maintain the generality of the results in the per-
spective of further extensions of the model. The other parameter is
the threshold above which particles are resampled. We found that
this parameter had little qualitative influence providing that its va-
lue is large enough to avoid staying in a local minima. Typically, a
resampling threshold of 20% was sufficient.

Once the parameters of the SMC were fixed, the only free
parameters of the system were the variances used to define the
likelihood and the noise model. The likelihood of sensory motion
was computed using Eq. (1) using the same method as Weiss
et al. (2002). We defined space and time as the regular grid on
the toroidal space to avoid border effects. Next, visual inputs were
128 � 128 grayscale images on 150 frames. All dimensions were
set in arbitrary units and we defined speed such that V = 1 corre-
sponds in toroidal space to the velocity of one spatial period within
one temporal period that we defined arbitrarily to 100 ms biolog-
ical time. Raw images were preprocessed (whitening, normaliza-
tion) and we computed at each processing step the likelihood
locally at each point of the particle set. This computation was
dependent only upon image contrast and the width of the recep-
tive field over which likelihood was integrated. We tested different
parameters values that resulted in different motion direction or
spatio-temporal resolution selectivities. For instance, a larger
receptive field size gave a better estimate of velocity but a poorer
precision for position, and reciprocally. Therefore, we set the
receptive fields size to a value yielding to a good trade-off between
precision and localization (that is 5% of the image’s width in our
simulations). Similarly, the contrast of the likelihood was tuned
to match the average noise value in the set of images. Once fixed,
these two values were kept constant across all simulations. All
simulations were performed using python with modules numpy
(Oliphant, 2007) and scipy (respectively version 2.6, 1.5.1 and
0.8.0) on a cluster of linux nodes. Visualization was performed
using matplotlib (Hunter, 2007). All scripts are available upon re-
quest from the corresponding author.

2.5. Experimental procedure

All of our experimental conditions include a single dot moving
horizontally at constant speed, albeit in different contexts. The
dot could be blanked transiently during its displacement (blank
condition), presented with a high level of noise (noise condition)
or blanked with a high level of background noise (blank + noise
condition). In the two blanking conditions, the target disappeared
for a duration of 28% of its whole spatial period. It then reappeared
at the location it should be with a continuous motion and followed
the same trajectory some the remaining lapse of time. Note that as
V = 1, the blank duration is also 28% of a temporal period. We con-
trolled that during the blank, the local motion energy gave an uni-
form likelihood for all velocities, as expected. To investigate the
effects of background noise, we added to the signal one of 20 line-
arly increasing values of standard deviation of independent, iden-
tically distributed gaussian noise (from 0.01 to 0.20 relative to a
peak signal value of 1). This noise could be added to a normal tra-
jectory of a partially blanked one.

To quantify the efficiency of motion detection, we computed
different statistics. A first representation looked at the temporal
dynamics of motion distribution. For this we estimated the histo-
grams of estimated position and velocity signals along both hori-
zontal and vertical axis. When adding noise to the motion
stimulus, we also measured contrast gain in order to quantify the
tracking performance by plotting the estimated values of eye
velocity as a function of contrast. All simulations were repeated
for 20 trials and below we plot average values across trials. Error
bars are their standard deviation across trials.

One main objective of the study was to compare our motion-
based prediction (MBP) model with different controls. We defined
two models as limiting cases of the MBP model. A first control
model is obtained when motion estimation is made dependent
upon the velocity prediction but not upon the position prediction.
We called this model PV, and it corresponds to the model of Weiss
et al. (2002) as defined by Eq. 2. Then, the motion-based prediction
was similar but we switched off the prediction in position by set-
ting a high value for DX with respect to the spatial period (see
Eqs. (3)–(5)). Typically, a value of 100 was sufficient. Equations
of motion’s position in the generative model then were simplified
to xt ; yt /Nðx; y; 0;DX � tÞ.

A second control model was by making motion estimation
dependent upon the position prediction but not the velocity pre-
diction. We called it PX and set an high value for DV with respect
to the typical physical speed of stimuli (see Eqs. (4) and (6)). Typ-
ically a value of 100 was sufficient in our simulations. The equa-
tions for the velocity in the generative model can then be
simplified to ut ;v t /Nðu;v ; 0;r2

pÞ. This PX model will perform
an isotropic diffusion of information since it lacks any prediction
on the velocity component of motion. This is similar to the isotro-
pic diffusion model of Tlapale et al. (2010) when removing the con-
tour-based information.
3. Results

Our goal was to investigate the role of prediction in motion
extrapolation in the presence of different sources of uncertainty
such as a transient disappearance of the target and high background
noise. We tested the dependency of our model upon prediction ver-
sus current sensory input. Motion extrapolation for a single dot mov-
ing at constant velocity was tested in three different conditions: a
transient blanking trajectory in absence of background noise; a com-
plete trajectory with different background noise levels and a tran-
sient blanking trajectory with background noise.
3.1. Extrapolation of motion information in a blanked trajectory

We first used as an input the movie of single dot translating
along a straight trajectory and that is transiently blanked after a
short period of visible displacement. This situation is similar to
those used previously in physiological (Assad and Maunsell,
1995), behavioral (Bogadhi et al., submitted for publication) and
theoretical studies (Burgi et al., 2000). By doing so, we can chal-
lenge the dynamics of information being accumulated along the
occluded trajectory that is, in absence of sensory input. We mea-
sured the estimated positions and velocities of dot motion at time
windows located just before, during and after the blank.

In Fig. 2, we plot the histogram of the estimated positions and
velocities obtained with the three different models: PX (motion
estimation is only predictive in position, not velocity), PV (motion
estimation is only predictive in velocity, not position) and MBP
that is the full motion-based model where there is a predictive mo-
tion estimation both in position and velocity. Remind that PX and
PV were obtained simply by choosing high values of DV and DX,
respectively.

In Fig. 2, for the earliest frames, velocity histograms first spread
over a larger area but progressively fit into a narrow band centered



Fig. 2. Histograms of estimated motion for a horizontally moving dot with a blanked trajectory under three predictive configurations of the model. Blanking period is
indicated with dashed white lines and each row represents full motion estimation under the configuration denoted by the inner title. Each plot illustrates the probability
distribution function of a relevant variable (vertical axis) with respect to time (horizontal axis) as in Fig. 1. The color bar on top indicates the value of probability as it is
estimated for each frame (one column in each image). In each configuration, the two left columns correspond to estimated positions (x and y) while the right columns
represent estimated velocities (u and v). At the earliest frames, for all configurations, estimated variables are scattered in a rather wide area but then gradually converge to the
veridical solution (x,y,u,v) = (1,0,1,0)). (First row) PX configuration: motion estimation is only predictive in position of motion and not in velocity. (Second row) PV
configuration: Motion estimation is only predictive in velocity of motion and not in position. (Third row) MBP configuration: in this configuration, motion estimation is
predictive in both position and velocity of motion and predictive information is transported anisotropically using the velocity information (compare variable x with
configurations PX and PV).

Fig. 3. Estimated velocity in PV and MBP configurations of (Fig. 2). Estimation is
measured as the response of the model to a horizontally moving dot with u = 1 and
a short blank in the trajectory. Blanking period has been shown with shaded area.
The trace in black dashed lines represent the control condition in which trajectory
of stimulus includes no blank. Error bars show standard deviation of error over 20
trials. Note the quick catch up after reappearance of stimulus in MBP configuration.
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on the physical velocity (u = 1 and v = 0, see rightmost columns).
This strongly suggests a convergence of the estimated motion
direction towards the veridical movement of the stimulus. During
the blanking period marked by vertical white dashed lines, the his-
tograms illustrate different states. In the PX control model (upper
row), velocity estimations (u and v) are largely scattered around
zero, favoring the occurrence of slow speeds. Because of the mea-
surements, the estimations still became narrower and centered on
the physical velocity of stimulus both before and after blanking.
During blanking, estimated positions diffused in an isotropic man-
ner (two leftmost columns). With both PV and MBP model config-
urations, the dynamics of velocity estimations paused during
blanking and distributions were maintained around the last esti-
mated values computed right before target disappearance. At stim-
ulus reappearance, the distributions immediately resume their
convergence. The estimated positions (x and y) computed with
the full MBP model exhibited a dynamics similar to velocity esti-
mations suggesting the existence of an internal model that updates
the estimations with a slow diffusion. By contrast, in the PV control
model, there is no prediction to update the next stimulus position
and therefore estimation histograms spread across all possible
positions (see second row, left columns). This difference between
PV and MBP model performance is summarized in Fig. 3. We plot
the estimated velocity obtained with each model (mean and stan-
dard deviation) together with the control condition where the dot
was continuously visible. Clearly, when the stimulus reappeared
after blanking, motion-based predictive estimation tend to con-
verge immediately back to the control speed with a quick catch
up. Such dynamics was more sluggish with the PV model (blue
curve): motion integration did resume but at roughly the same
slope as observed at the onset of the blank. Note that we did not
plot the performance of the PX model in Fig. 3, because of the very



Fig. 4. Estimated velocity of PV and MBP configurations averaged over 20 trials.
Stimulus is a horizontally moving dot with u = 1 which includes different noise
values at background and no blank in trajectory. Colors from dark to light
correspond to the response to the stimulus with noise levels between 0.01 and 0.2.
(Top) Estimated velocity of (PV) configuration while motion estimation only
benefits from predictions in velocity of stimulus. (Bottom) Estimated velocity of
motion-based prediction (MBP) configuration, where estimation is predictive in
both position and velocity of motion. This configuration tracks well up to
approximate noise value of 0.13 and after that enters into the ‘‘no tracking’’ state.
For PV configuration this state transfer happens at noise value 0.06. As noise
increases, in both configurations we observe a slower convergence in estimated
velocity and more importantly a temporal shift of the emergence of tracking.

Fig. 5. Response gain functions are plotted with best-fit Naka–Rushton functions
(Perrinet and Masson, 2007) for both PV and MBP models. Increasing contrast
produces a S-shape increase in response gain whose shape changes with both time
and model configurations. Similar to the psychophysical reports by Watamaniuk
et al. (1995), gain and half-saturation values increase from the early to late tracking
phases. There is an increase in the slope of the contrast response curve in the late
response of the motion-based prediction configuration indicating a transition from
no-tracking to tracking states.
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large variability of estimated velocity observed across trials (see
Fig. 2). Moreover, the rather small difference observed between
PV and MBP models is due to the rather simplistic dot motions
used in the present study. As explained above, the sensory layer
of both models is made of a bank of motion energy filters which
are highly efficient in locally detecting straight dot translations.
Choosing a high value for DX and DV in PV and PX models is then
equivalent to switching to basic sensory level without prediction
in position and velocity respectively. That is to say, our working
hypothesis imposes a large scale coherency constraint on stimulus
trajectory as reflected in the range of values for DX and for DV. Still,
we can observe the temporal dynamics of motion estimation as al-
ready shown with more ambiguous inputs (Perrinet and Masson,
2012).

3.2. Predictive tracking in the presence of varying noise levels

In the next step, we tested the robustness of our model when
using more realistic conditions such as low contrast (or low sig-
nal-to-noise ratio) inputs. This approach is similar to the previous
psychophysical work on temporal coherency and predictability of
motion (Watamaniuk et al., 1995). Below, we report the perfor-
mance of two model configurations (PV and MBP) when gradually
increasing the level of background noise to an horizontally moving
dot. We first did it for a fully visible trajectory in order to estimate
the contrast (or SNR) thresholds at which the tracking states of the
model change (Perrinet and Masson, 2012).

We measured the estimated velocity averaged over 20 trials
when the input image was corrupted by an independent and iden-
tically distributed Gaussian noise (see Fig. 4). In order to first ex-
plore the role of prediction for overcoming the distracting effect
of noise, we set our motion estimation routine to the PV case to
minimally rely on position predictions. To do so, we chose a DX va-
lue high enough so that the model did favor any estimation in par-
ticular. We then repeated the same experiment but with the full
MBP model. We found that including motion-based prediction
led to a more precise tracking than in the PV case, at both low
and high levels of noise. We found a range of contrast (or SNR) in
which the MBP model was still maintaining perfect tracking while
the PV model was in the no tracking state. Two particular aspects
shall be noticed. First, with the PV model, increasing the noise level
gradually decreased the convergence rate of the motion detection
process. Second, with the full MBP model, we observed a binary re-
sponse mode (i.e. the dot is either tracked or not tracked). In the
tracking state, the convergence rate was found to be dependent
upon the level of noise, as in the PV configuration. Increasing noise
up to a certain level results in a shift of the onset of the tracking
state, until the model reached the no tracking state. Our results
in Fig. 4 are similar to the outlier detection experiment observed
in psychophysics by Watamaniuk et al. (1995) where a horizon-
tally moving dot was surrounded by many other distractor dots
with random movements. This psychophysical study showed that
the temporal coherency of the target dot motion rendered it
detectable with a high confidence as measured by a tenfold in-
crease of detection threshold. Our modeling results are consistent
with this behavioral observation. As a consequence, we similarly
found a binary tracking response in the sense that tracking is
rather good up to some noise level. Therefore we have either track-
ing or not tracking states. Furthermore, increasing the noise level
imposes a delay on emergence of tracking state which is reflected
in smooth slowing of initial raising in velocity traces.

To summarize the effects of noise, we plotted the efficiency of
model with and without prediction in position (i.e. the MBP and
PV models) for a range of contrasts and fitted them with the



Fig. 6. Motion extrapolation with sensory noise: Stimulus is a horizontally moving
dot with u = 1 which includes a blank as shown with shaded area. In addition there
is a sensory noise and colors from dark to light correspond to noise levels increasing
linearly between 0.01 and 0.2. (Top) Estimated velocity of model under PV
configuration while motion estimation only benefits from predictions in velocity
space. (Bottom) Estimated velocity of motion-based prediction (MBP) configura-
tion, where estimation is predictive in both position and velocity of motion. In both
configurations, increasing of noise corrupts tracking performance and after blank
response converge only for noise values under a threshold and then enters to no
tracking state. This threshold for PV and MBP configurations are 0.05 and 0.11
respectively. Note that the quick catch up after reappearance of stimulus never
appears in PV but only in MBP in the cases in which a tracking state stabilized
before blank.
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Naka–Rushton function (Naka and Rushton, 1966) that can ade-
quately describe the different aspects of motion integration (e.g.
Perrinet and Masson, 2007) (see Fig. 5). The gain was defined as
the average estimated speed and contrast as the signal-to-noise ra-
tio. The contrast response functions were plotted for both early and
late phases (as defined in Fig. 2) of tracking. Remind that here the
dot trajectory was fully visible. In the early phase (red curve), both
models have very different best-fit contrast saturation values (C50

of 10.35 and 27.37, respectively) and exponents (n of 7.7 and
2.19, respectively). Interestingly, one can see in the late phase (blue
curve) a global increase in contrast gain for both models, as illus-
trated by a leftward shift of the curves. The PV model led to a
change in only the contrast saturation parameter (from C50 = 7.71
to n = 3.42), while the full MBP model exhibited a significant
change in both in half-saturation (C50 = 7.15) and slope
(n = 20.89) parameters of the contrast response function. This is
characteristic of the emergence of the tracking behavior in the mo-
tion-based prediction model and complements the analysis done
in Perrinet and Masson (2012). As a consequence, we have demon-
strated here that this model is sufficient to explain some well-
known static non-linear computations such as the gain control
mechanism implemented by divisive normalization (Rust, 2006;
Simoncelli and Heeger, 1998). These are essential components of
neural computations and we show here that they may emerge
from a predictive coding formulation instead of an explicit descrip-
tive mechanism. In a final experiment, we will see the potential
function of this tracking response.

3.3. Motion extrapolation in noisy blanked trajectory

In the last series on experiments, we combined the different
sources of uncertainty studied above by simulating a noisy dot
moving along a partially blanked trajectory. Above, we have shown
that motion extrapolation requires enough accumulation of infor-
mation from the observed trajectory parts for allowing the emer-
gence of the tracking state. Moreover, we found that there is
contrast threshold for reaching this tracking state. Since our goal
is to investigate the temporal evolution of the information that is
accumulated from the observed trajectory, by imposing two inde-
pendent sources of uncertainty (i.e. noise and blanking) we can
highlight the differences between predictive and non-predictive
motion estimation.

As in the previous sections, we quantified the efficiency of mo-
tion estimation by the estimated velocity of the tracking responses
(see Fig. 6). We extend the results shown in Fig. 3 by now using
blanked trajectory with low noise to higher levels of noise. As we
mentioned before, a quick velocity catch up as illustrated in
Fig. 3 indicates the emergence of a tracking state after stimulus
reappearance. Such catch up was still visible in the presence of
strong noise levels, at least up to a certain threshold. We expected
a general degradation of motion extrapolation by increasing noise
level and consequently a lower tracking performance, down to the
no tracking state. For noises higher than contrast thresholds, no
such velocity catch up was observed and the models in fact re-
mained in the no tracking state (see Fig. 6). At all noise levels,
incorporating position prediction as in the full MBP model revealed
several differences in performance, when compared to the PV mod-
el. In particular, the MBP model was less sensitive to noise and its
dynamics at intermediate signal-to-noise ratio was brisker than
the PV case. Indeed, the MBP model remained able to match the
stimulus trajectory after target reappearance in the presence of rel-
atively high noise level (up to 0.11). In comparison, the PV model
remained in the no tracking state for noise levels higher than 0.05.

In summary, we found that making the motion extrapolation
task more difficult by mixing two uncertainty sources deteriorates
the tracking response. This can be explained by an insufficiently
accumulated information about dot trajectory in the noisy and
blanking conditions. This is evidenced by the comparison of re-
sponses at corresponding contrasts between Figs. 4 and 6. The full
MBP model takes advantage from predictions in position and
velocity domains, in comparison to the PV case and can accommo-
date higher noise levels before losing its tracking ability. In addi-
tion, a stronger internal representation of motion is maintained
during blanking in this case (see MBP estimations in Fig. 2). It also
more quickly converges to the true, physical motion after reap-
pearance. These results call for similar experiments to be done psy-
chophysically by combining these different sources of uncertainty.

4. Discussion

In the present study, we investigated the role of motion-based
prediction (Perrinet and Masson, 2012) in motion extrapolation
during target blanking, a condition frequently used in psychophys-
ical, behavioral and neuronal studies to measure how the brain
maintains an accurate representation of target motion despite
large fluctuations in the input (e.g. Assad and Maunsell, 1995;
Becker and Fuchs, 1985; Bogadhi et al., submitted for publication).
Our goal was to test how the motion prediction framework
described in our previous work (Perrinet and Masson, 2012) can
be extended to these conditions.
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First, we probed the dynamics of motion extrapolation by mea-
suring the impact of a transient absence of the stimulus, as imposed
by a short blank in trajectory of the stimulus. We found a prototyp-
ical temporal pattern characterized by a pause in the motion inte-
gration process during the blank and a quick recovery of the actual
position of the dot. This model behavior was largely different when
turning off the anisotropic component of motion-based prediction.
In this PV incomplete model, at the end of the blank, the integration
dynamics resumed at a convergence rate similar to the one observed
at the initial target motion onset. This difference can be explained by
the fact that the full model can maintain a nearly accurate represen-
tation of the target trajectory in both position and velocity domain.
In this regard, the full MBP model is more consistent with both phys-
iological (e.g. Assad and Maunsell (1995) and Newsome and Paré
(1988)) and behavioral (e.g. Becker and Fuchs, 1985; Bennett and
Barnes, 2003; Bogadhi et al., submitted for publication) observa-
tions. Interestingly, the comparison between PV, PX and the full
MBP model further highlights the need of both position and velocity
informations for correctly maintaining and predicting an accurate
representation of target motion, an aspect that has been already
introduced at the theoretical level (Burgi et al., 2000; Perrinet and
Masson, 2012; de Xivry and Lefévre, 2007).

An important issue was to answer to the question raised by the
experimental study of Assad and Maunsell (1995). In monkeys,
while MT does not represent motion during the blank, it seems that
such information can be preserved in upstream cortical areas such as
MST (Newsome and Paré, 1988). This later result is compatible with
our approach, where neurons remain active during the transient dis-
appearance of the stimulus, but it is still largely not known how and
why such a dichotomy would emerge in the visual system. We dem-
onstrate that a two layer model where motion information is pri-
marily extracted locally before being diffused along a particular
path can provide a solution. Such architecture presents the advan-
tage of mixing different spatial and temporal scales and can be
implemented in many biological systems, from retina to cortex. Fu-
ture works will be conducted to propose a biological plausible
implementation of our diffusion mechanism.

To further explore the model dynamics, we tested its robustness
by adding background noise in different trajectory conditions.
Increasing the background noise induced at some threshold value
a sharp change in the dynamics, the model shifting from tracking
to no tracking states. Such sharp transition as a function of signal-
to-noise ratio is consistent with behavioral studies (e.g. Spering,
2005) showing a strong nonlinear relationship between pursuit gain
and contrast (see (Masson and Perrinet, 2012) for a review). Interest-
ingly, this sharp nonlinearity of the transition between tracking and
non-tracking states —and which is classically implemented by some
well-known static non-linear computations such as divisive normal-
ization (Rust, 2006; Simoncelli and Heeger, 1998)— emerges here as
a property of the dynamical system. The theoretical link between
Bayesian inference and divisive normalization has been already sug-
gested by several authors (e.g. Hürlimann et al., 2002) including us
(Barthélemy, 2008). The current study emphasizes that dynamical
inference as implemented here can also reproduce the temporal
dynamics of normalization mechanisms through lateral interactions
(Reynaud et al., 2012). Further work remains to be done to validate
this analogy in particular with respect to the adaptation of this non-
linearity to the dynamical statistics of the input.

Our model investigates at an abstract level, the computational
advantages of anisotropic diffusion of information within a proba-
bilistic representation of motion. Previous work from Burgi et al.
(2000) has suggested that there are multiple analogies of this com-
puting architecture with the structure of neural computation in
cortical areas. They originally proposed a constructive approach
to implement such motion-based prediction with neural fields.
However, their implementation was limited by severe constraints
on the simulation of such neural-networks on classical computers.
Indeed, this parallel structure is rather not optimal for a sequential
computer and necessitate a large amount of memory to achieve a
sufficient precision. Hopefully, the advent of novel computational
architectures (clusters, neuromorphic hardware) will foster the
precision of the implementation of such models in a more biolog-
ically realistic fashion.

A last advance of our model is its ability to reproduce the
dynamics of different brain responses to transiently occluded tar-
get, from neuronal activity up to highly accurate behaviors such
a voluntary pursuit eye movements. Thus, our model has the po-
tential to unify different approaches that were previously proposed
to understand motion extrapolation. For instance, recent behav-
ioral experiments imposing a blank during the straight trajectory
of a tilted line shows complementing results in the light of our
own results (Bogadhi et al., submitted for publication). Indeed,
they show that if the object is tracked long enough and the blank
is short enough, the bias that is characteristic of the aperture prob-
lem (the eye following first the direction perpendicular to the seg-
ment) disappears. This data is well fitted by a two-layer Bayesian
network stacking a sensory and a motor levels. They explain mo-
tion extrapolation as a feed-back loop from the representation of
the position of the eye to the sensory stage. Our model proposes
that a complementary mechanism could be motion-based predic-
tion and that the sensory representation of motion is sufficient to
explain motion extrapolation. As we were careful to study the early
stage of the tracking response (such that there can be no feedback
from a motor stage), we predict that such systems should work in
synergy and allow a more complete modeling of motion extrapola-
tion. The main novelty of such scheme is that a simple generic
framework —motion-based prediction— may explain a large range
of mechanisms that are often explained by the explicit modeling of
specialized computations. In our earlier work (Perrinet and Mas-
son, 2012), we have shown that motion-based prediction is suffi-
cient in solving the aperture problem and that the specialized
mechanisms that were long supposed to be the source of this solu-
tion (texture-independent motion trackers, line-ending detectors,
etc.) instead emerged from the response to the model.

Many low-level classical problems such as motion extrapolation,
the aperture problem or anticipation poses fundamental questions
about the computational properties of large-scale networks of neu-
rons. Moreover, their signatures can be found in many different spe-
cies or neuronal architectures. They are shared by different sensory
systems and can therefore be used as a way of unifying the search for
generic computations using population codes. Complementing our
previous work on the aperture problem (Perrinet and Masson,
2012), we have shown here that the same architecture can solve an-
other instance of low-level uncertainties, extrapolating current tra-
jectories in the absence of sensory evidence. This study
demonstrates the need to elaborate generic computational solutions
that can eventually be implemented through realistic mechanisms
such as divisive normalization mediated by lateral interactions.
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