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Retinotopic mapping
The distribution of photoreceptors on the retina defines the organization of the visual

field. This is known as the Retinotopic map. In the cortex, visual information is organized

around two polar coordinates, azimuth (angle) and eccentricity (distance from the

center), with over-representation around the center, the fovea, an area of high resolution

in comparison to the periphery.

Figure 1: Retinotopy in the human early visual cortex
transforms images into a polar reference map with an
over-representation of the center (Dougherty et al., 2003).

We transform input images defined in Cartesian coordinates toward Retinotopic coordi-

nates using a log-polar transformation (Araujo and Dias, 1997). The center of fixation is

represented as a blue dot, and the blue circle represents the region of maximal magnifica-

tion under the Retinotopic transformation.
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Figure 2: Retinotopy as implemented by a log-polar mapping.

Object Categorization using CNNs
We address the role of the Retinotopic transformation in visual processing, and compare

its properties with state-of-the-art (Cartesian) image processing. ResNet 101 (He et al.,

2015) Convolutional Neural Networks (CNNs) are trained to identify objects in an image,

either with Cartesian or log-polar input, providing around 80% accuracy on ImageNet

dataset (Russakovsky et al., 2015) in both cases. Here, we validate the change in response

accuracy when rotating the input image. NB: this transformation corresponds to a

translation in log-polar space, a transformation for which CNNs are known to be robust.
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Figure 3: Rotation-based attack and accuracy over the
validation set of the ImageNet dataset.

In contrast, the retinotopic transformation is highly sensitive to translations. This explains

the need for the fovea to be centered on the object of interest to maximize the classification

accuracy. A second generation of CNNs was trained using bounding boxes (containing

the object of interest) from the ImageNet dataset. To assess this greater sensibility to

translation, a saliency map was calculated using a regular grid (n × n points of fixation).

The likelihood of the image label is then displayed in color code for each position.

Figure 4: Likelihood as a proxy for saliency map.

Visual Object Localization
By selecting a number of key metrics, we undertake a comparative analysis of the

efficiency in the localization of objects for the odels learned in the Retinotopic and

Cartesian reference frames, respectively. The results demonstrate that the Retinotopic

reference-based network dislays a more pronounced and sustained response to the object

of interest in comparison to the state-of-the-art network.

Figure 5: Quantifying the localization performance of models.

In comparison to the accuracy map generated with images in Cartesian space (see Figure 6-
A & B), the accuracy maps in Retinotopic space provide a more focused localization of
the object of interest. While the position of the leopard is clearly discernible in both
maps, the Retinotopic version exhibits less noise than the Cartesian version. This is
illustrated Figure 6-C & 6-D, which depicts the maximum activation corresponding to
the leopard in the Retinotopic version. To quantify this effect, we employ the Pointing
Game metric.
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Figure 6: Sample saccade to maximum likelihood position.

The mean network accuracy is evaluated as a function of the fixation point, with the
fixation point (saccade) selected for categorization. This is achieved either by focusing
on the most salient item associated with the target label (priors) or by focusing on the
most salient item that is not associated with the target label (no priors). The results
demonstrate that networks utilizing the Retinotopic reference frame appear to optimize
prediction following the movement of the fixation point, as evidenced by the mean
accuracy being superior in this test.

Toward a new neuromorphic model
Taking inspiration from natural vision systems Mishkin and Ungerleider, 1983, we will
develop a model that builds over the anatomical visual processing pathways observed in
mammals, namely the “What” and the “Where” pathways Daucé and L. Perrinet, 2020.
It operates in two steps, one by providing a detailed categorization over the detailed
“foveal” selected region attained as described in this work (“What”), and the second
by selecting a region of interest (“Where”), before knowing its actual visual content,
through an ultrafast/low resolution analysis of the full visual field which allow the model
to afford a saccade (Yarbus, 1961).

Figure 7: Modelling the dual visual processing pathways
observed in primates, namely the “What” and the “Where”

pathways by allowing the model to saccade.
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