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I. Ultra-fast vision

Visual search, that is, the simultaneous localization and de-
tection of a visual target of interest, is a vital task. Biological
visual systems are able to perform such detection efficiently [1].
A distinctive aspect of the vision of species like primates is
that it is foveal. To solve the visual task, it seems to rely
on two parallel streams known to provide information about
“What” they are looking at or “Where” to look. We infer that
this may be one essential ingredient in that efficiency.

Figure 1: A dual-pathway model implementing saccades in
natural images.

Taking inspiration from natural vision systems, we develop
here a model 1 that builds over the anatomical visual process-
ing pathways observed in mammals, namely the “What” and
the “Where” pathways [2] to solve a ecological visual task.

II. Transfer Learning

Transfer Learning is a method that takes advantage of the
knowledge accumulated on a problem to transfer it to a
different but related problem.
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Figure 2: Network’s architecture with VGG16 [3] backbone

We have shown that when we could re-train VGG networks
using transfer learning, so that it can be applied to an eco-
logical task [4]. The network achieves accuracies similar to
those found in psycho-physics and we found the categorization
of the networks to be robust to transformation like rotation,
reflection or grayscale filtering [5].

III. Retinotopic mapping

Here, we define a retinotopic log-polar mapping transforming
the regular pixel grid into a grid resembling that found in some
animal species and such that visual information is concentrated
in the center of gaze.

Figure 3: (Linear) An example input image with the center of
fixation denoted by a red cross. (Log-polar) projection of the
coordinates of each pixel of the input image according to its
angle of azimuth θ from the horizontal axis on the x-axis and
the logarithm of its eccentricity (or radius) ρ with respect to
the fixation point on the y-axis. (Retinotopic) reconstruction
from the log-polar mapping.

IV. Saliency maps

We define a saliency map as the positions of different fixation
point in the image for which the prediction of the categoriza-
tion of the presence of an animal is above p = 0.5.

Figure 4: Saliency maps with or without applying the
retinotopic mapping transformation (see Figure 3) to inputs.

In both case, these maps allow us to extract the regions of
interest including the key features necessary for the catego-
rization of an animal by our network. Note the finer contour
around the area of interest for the heat map generated with
a reconstructed input and a network trained to recognize an
animal in a linear space (see Figure 3).

V. Collicular saliency maps

To define the collicular saliency maps, we followed the same
protocols as in Figure 4 with a retinotopic-like spacing of
the fixation points. For each image, we can compute a vector
(16 × 16) of the predictions of our model 5

Figure 5: Examples of 16 × 16 collicular saliency maps
obtained with the label “animal”.

Each image is then associated to a 16 × 16 matrix where each
element represents the prediction of an animal by the network
to compose a dataset dedicated to the training of the “Where”
network.

VI. Training the “Where” network

Based on the maps produced by our categorization network,
we train a 4-layer convolutional network producing a 16 × 16
output from a retinotopic input with a central fixation point.

Figure 6: Example of data pair used to supervised the
training of the “Where” network on a simplified task.
(Ground truth) Collicular saliency map of the “What”
network exposing its predictions for different fixation points
in the image, projected into retinotopic space.
(Predicted) Output from a fully connected “Where” network
after 10 training epochs.

Preliminary results on the task with natural images seem
promising even if some adjustments of the network architecture
and the protocol used for its training seem necessary.

VII. Task dependence

For each image, the saliency maps depend on the categoriza-
tion for which the “What” network is trained.

Figure 7: The saliency maps depend on the network used.
(A) networks train to recognize the label "animal" .
(B) networks train to recognize the label "dog". (C) networks
train to recognize the label "cat" in an image.

This allows us to model visual search paths based on the
symbol of interest. The human gaze maybe influenced by
attention mechanisms [6]. These networks could be a efficient
tools in the characterization of the different strategies used
by humans to efficiently solve this task.
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Figure 8: (A) The painting “An Unexpected Visitor”. Scan
paths in different conditions: (B) while the subjects freely
explore the scene, (C) while asking the observer to asses ages
of characters (from [6]).
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