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Ultra-fast image categorization

A well-known task in the in the study of vision is the cat-
egorization of an animal in a scene. Applied to arbitrary
natural scenes, it constitutes a challenging problem due
to the large variations in shape, pose, size, texture, and
position of animals that could be present in the scene.
Yet, biological visual systems are able to perform such
detection [1] in a very short amount of time as the scene
is flashed to the subject [2] and robustly to geometrical
tranforms [3]. It was shown that a feedforward architec-
ture may be enough to perform such task Serre et al.
[4].

Figure 1: Hierarchy and latency of visual areas involved
in ultra-rapid image categorization (from [5]).

The dataset maker

The label’s set of the ImageNet dataset is based
on a large semantical database of English words: Word-
Net. The nouns, verbs, adjectives, and adverbs in this
database are grouped into a graphical set of cognitive
synonyms (synsets), each expressing a distinct concept.

ImagenetWordNet

Figure 2: Definitions of the connection between synsets
in Wordnet [6]

I used the hyperonym link (a synset is a kind of another
synset) to select a specific subset of labels in the Im-
ageNet dataset. I coded a Dataset Maker library
based on this relationship with the “animal” synset. As
a control we also defined independently an “artifact”
synset.
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Figure 3: Outputs of the network with two independent
labels. The network is trained for each supervision pair

using the binary cross entropy loss.

Transfer learning

Transfer Learning is a method which uses an existing
DCNN network pre-trained on a specific task (such as
VGG16 trained on ImageNet) and that modifies
this network by re-training a subset of its weights on a
different task. Here, I retrained the “head” of the network
for the two independent categorization tasks defined in
the dataset maker (“animal?” and “artifact?”).

15 first layers of the Pytorch’s Vgg 16 pre-
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Figure 4: Transfer Learning strategies

As a control, I tested the networks on the dataset of Serre
et al. [4]. This contains a total of 600 targets (images
containing an animal) and 600 distractors (images not
containing an animal). The networks obtain an accuracy
on the “animal” synset similar to those found in the
model and neurophysiological data of Serre et al. [4]
(about 83%).

VGG General VGG Linear VGG Scale VGG gray

Imagenet 0.974 0.969 0.946 0.968

Serre 0.842 0.836 0.852 0.849

‘Targets’ : 256 x 256 ’Distractors’ : 256 x 256

Figure 5: Accuracy of Transfer Learning accuracy for
two datasets : Imagenet Datasetmaker and that

of Serre et al. [4].

“If it is animal, it is not artifact”
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Figure 6: Application of the re-trained networks to the
dataset of Serre et al. [4]. Here, by exposing the
predictions for the “animal” and “artifact” labels, we
highlight a bias in the composition of the dataset.
Although the outputs are independent, “animal”
images confidently correspond to “non-artifact” images
(and vice versa), thus facilitating the overall detection.
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Figure 7: Robustness of the categorization to different
image transformations in the models are similar to that
reported in psychophysics [3]. We modeled different
levels of complexity by pruning the network
(’vgg16_lin’) in the feature layer, from one block of
layers (’vgg16_1’) to 6 (’vgg16_6’). (Top) Use of
grayscale images; (Middle) Changing the resolution;
(Bottom) Rotating the images. Such experiment
demonstrate that low-level features may be sufficient to
categorize animals [7].
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Figure 8: A dual-pathway model implementing
saccades which could be extended from digits images
(MNIST) [8] to natural images.

In an endeavour to push the limits of biologically in-
spired computer vision algorithms [9], one of my next
challenges will be to infer target location simultane-
ously with target detection. To solve this problem, the
mammalian brain seems to exploit two different visual
pathways. Based on this principle, a dual-pathway artifi-
cial neuron architecture has recently been proposed and
applied to simple digit images. Building on this work
and using the deep learning tools developed here, we
aim to extend this application to generic cognitive tasks
with arbitrary natural scenes.
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