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Abstract
• Temporal sequences are an important feature of neural information processing in biology.
Unsupervised clustering of repeating spike patterns (i.e. spiking motifs) observed in neurobiological has
been addressed by several methods [1–4] but remains a challenge.

• We propose a new method to extract spike patterns embedded in raster plots using a 1D convolutional au-
toencoder.

• Weshowthatusing theEarthMover’sDistance as a loss functionhas interestingproperties to extract spiking
motifs.

An autoencoder for spikingmotifs extraction
Illustration
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Figure 1: A single-layer autoencoder (AE) learns to represent the spike train as input (X) with a given number
of kernels (W). If the decoding weights and the latent variables (z) are forced to be positive, the output of the
AE (X̂ ) performs Non-Negative Matrix Factorisation (NMF).

1DWasserstein distance or EarthMover’s Distance (EMD)

Between two 1D probability distributions µ and ν, the EMD is given by the difference between the two cumu-
lative distributionsFµ andFν :

EMD(µ, ν, t) =
∫ t
0 |Fµ(x)− Fν(x)| dx
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Figure 2: Comparison of the EMD andMSE values (lower panel) between a probability distribution (black) and
binary spikes (blue and pink) shown in the upper panel. While the MSE saturates, the EMD continues to in-
crease as the difference between the timing of the spike and the mean of the Gaussian increases.

Results
A qualitative example of spikingmotifs clustering in synthetic data
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Figure 3: The upper panel represents the ground truth, i.e. 4 structured probability distributions used to gen-
erate spike trains (the neurons are sorted to better visualise the patterns). These distributions are randomly
concatenated and a Bernoulli trial is applied on the sequence to generate a raster plot. The middle panel rep-
resents the different kernels learned by the autoencoder minimizing the EMD on a synthetic dataset of 60
samples. The bottom panel shows a synthetic raster plot with the temporal activation of the different kernels
of the AE after training.

Performance as a function of the number of epochs for the static case (no convolution)

• no temporal convolution, i.e. the size of the AE kernel is the same as the size of the samples
• linear AE with tied positive weights
• 4 noise conditionswith different jitter (2%or 10%of the temporal length of the sample) anddifferent amount
of spontaneous activity or additive noise (10% and 50%)
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Figure 4: Performance of an AE trained with the MSE (green) and the EMD (blue) as a function of the number
of samples used during training. Two metrics are used to assess the similarity of the learned kernel with the
ground truth (the kernels similarity equivalent to the cosine similarity and themean timings similaritywhich only
takes into account the relative latency of the spikes (meanof theGaussiandistributionused to generate spikes),
and ignores their precision (standard deviation of the distribution). We obtain a better similarity values for the
method with EMDwhen a small amount of samples is available.

Robustness to different types of noise

• temporal convolution (fully unsupervised learning)

• nonlinear (sigmoid) AE with positive weights for the decoder

• single spiking motif

• different types of noise are tested: temporal jitter, additive noise, dropout probability
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Figure 5: Performance of the AE to extract a single spikingmotif embedded in a raster plot with different types
of noise. The AE is trained with the EMD (blue), with theMSE (green) and iteratively with both losses (purple).
We also show the performance of seqNMF [1] applied on this synthetic dataset. Depending on the type of noise,
the loss choice can change to obtain better performance.

Learningmultiple spikingmotifs

• temporal convolution (fully unsupervised learning)

• nonlinear (sigmoid) AE with positive weights for the decoder

• multiple spiking motif

• relatively low amounts of noise
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Figure 6: Performance of the extraction of multiple motifs for AEs trained with different losses and seqNMF.
For the AE, training with the EMD gets better results when increasing the amount of motifs.

Conclusion

• Novel, simple and scalable method to extract spiking motifs in neural recordings

• Training with the EMD shows promising results at extracting spiking motifs especially when the available
number of samples is limited

• Themethod can be applied to fully unsupervised clustering of multiple spikingmotifs with a temporal con-
volution

References
[1] E. L.Mackevicius et al. “Unsupervised discovery of temporal sequences in high-dimensional datasets,with applications to neuroscience”. In: eLife 8 (Feb. 2019). Ed. by

L. Colgin et al. Publisher: eLife Sciences Publications, Ltd, e38471.

[2] A. Williams et al. “Point process models for sequence detection in high-dimensional neural spike trains”. In: Advances in Neural Information Processing Systems. Vol. 33.
Curran Associates, Inc., 2020, pp. 14350–14361.

[3] C. Stringer et al. Rastermap: a discoverymethod for neural population recordings. en. preprint. Neuroscience, July 2023.
[4] R. Koshkin et al. convSeq: Fast and ScalableMethod for Detecting Patterns in Spike Data. en. arXiv:2402.01130 [eess]. May 2024.

mailto://antoine.grimaldi@cnrs.fr

