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Résumé et mots clés

Notre cerveau est extrêmement efficace pour résoudre des tâches visuelles très
complexes. En quelques centaines de millisecondes, nous sommes capables de recon-
naître différents objets de manière invariante à diverses caractéristiques, telles que
leur taille ou leur orientation. Récemment, les réseaux neuronaux artificiels ont fait de
grands progrès dans la résolution des tâches auxquelles sont confrontés les systèmes
biologiques. Ils s’appuient sur les connaissances des neurosciences pour former des
architectures d’apprentissage biologiquement réalistes qui pourraient nous fournir
des informations intéressantes sur le fonctionnement du cerveau humain. Mais ces
architectures sont encore confrontées à un certain nombre de défis : les modèles
ne sont pas toujours interprétables, ils ne semblent pas nécessairement utiliser les
mêmes stratégies que leurs équivalents biologiques et ils sont très gourmands en
énergie. Nous pensons qu’une des raisons de la grande efficacité du système visuel
est qu’il utilise des impulsions courtes pour représenter l’information : les potentiels
d’action émis par les neurones.

En utilisant une approche neuromorphique, l’objectif de ce projet de thèse est de
développer des modèles de traitement de l’information visuelle utilisant des représen-
tations basées sur ces impulsions, événements binaires décrits uniquement par leur
temps et leur origine. Nous avons choisi d’utiliser un signal dynamique, capturé par
une caméra événementielle, qui transcrit une scène visuelle en utilisant uniquement
des événements, ou impulsions. Nous résolvons des tâches cognitives visuelles en
utilisant le code temporel formé par des séquences précises d’événements que nous
appelons motifs d’impulsions. De nombreuses preuves expérimentales suggèrent que
le code temporel porté par ces motifs serait une stratégie d’encodage de l’information
visuelle utilisée par le cerveau. Nous verrons que l’utilisation de ces motifs permet de
développer des méthodes d’apprentissage locales et biologiquement réalistes tout en
traitant de manière dynamique et asynchrone les événements caractérisant une scène
visuelle. Nous montrons que ces algorithmes permettent de résoudre une tâche de
reconnaissance d’objet et une tâche d’estimation de mouvement de manière ultra-
rapide et efficace. Nous observons également l’émergence d’une organisation des
champs récepteurs similaire à celle des systèmes biologiques, ce qui suggère qu’une
stratégie similaire peut être employée par le cerveau. Dans la dernière partie de ce
travail, nous détaillerons le développement d’un nouvel algorithme pour détecter ce
type d’activité dans des enregistrements de neurones réels.

Mots clés : vision, réseaux de neurones à impulsions, apprentissage par ordinateur,
motifs d’impulsions, code temporel, neurosciences calculatoires

5



Abstract and keywords

Our brains are extremely efficient at solving highly complex visual tasks. In a few
hundred milliseconds, we are able to recognise different objects invariant to various
characteristics, such as their size or orientation. Recently, artificial neural networks
have made great strides in solving the tasks faced by biological systems. They draw on
knowledge from neuroscience to form biologically realistic learning architectures that
could provide us with interesting insights into how the human brain works. But these
architectures still face a number of challenges: the models are not always interpretable,
they do not necessarily seem to use the same strategies as their biological equivalents
and they are very energy-intensive. We believe that one of the reasons why the visual
system is so efficient is that it uses short pulses to represent information: the action
potentials, or spikes, emitted by neurons.

Using a neuromorphic approach, the aim of this thesis project is to develop visual
information processing models using representations based on spikes, binary events
described only by their time and origin. We have chosen to use a dynamic signal, cap-
tured by an event-based camera, which transcribes a visual scene using only events,
or spikes. We solve visual cognitive tasks using the temporal code formed by precise
sequences of events that we call spiking motifs. A large body of experimental evidence
suggests that the temporal code carried by these patterns is a strategy used by the
brain to encode visual information. We will see that the use of these patterns makes it
possible to develop local and biologically realistic learning methods while dynamically
and asynchronously processing the events characterising a visual scene. We show that
these algorithms can solve an object recognition task and a motion estimation task
ultra-fast and efficiently. We also observe the emergence of an organisation of recep-
tive fields similar to that of biological systems, suggesting that a similar strategy may
be employed by the brain. In the final part of this work, we will detail the development
of a new algorithm for detecting this type of activity in recordings of real neurons.

Keywords: vision, spiking neural networks, machine learning, spiking motifs, com-
putational neuroscience, temporal coding
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Overview

This manuscript addresses the question of how spike-based representations can aid
information processing in biological and artificial systems. First, we review experimen-
tal evidence suggesting that biological systems can exchange information through
electrical impulses called spikes. We then show that the emission of such spikes can
have fine temporal precision, suggesting that information can be encoded by the
timing of individual spikes, which is the postulate of the temporal coding hypothesis.
We conclude Section 1.1 by inferring that biological systems may use of precise spi-
king motifs, i.e. repeating spatiotemporal patterns of spikes, to exchange information
about the external world or an internal state. Section 1.2 reviews advances in machine
learning and artificial neural networks and asks how these models can be informative
for neuroscience. We end the Context section with a description of spiking neural
networks, a new generation of artificial models that are more faithful to biological
observations. We also introduce neuromorphic engineering and how this field can
add an extra layer of constraints to the modelling of the brain, leading to efficient and
realistic architectures. The list of studies in Section 1 is not exhaustive and we syste-
matically refer the reader to specific reviews that provide a more complete overview of
these different fields. Sections 2 and 3 provide summaries of two distinct studies for
solving visual tasks, object recognition and motion estimation respectively. We show
that spike-based representations and temporal codes can provide an efficient solution
for neuromorphic systems. The complete articles are presented in Annexe 6 and 7. The
Section 4 then reports on the implementation of an algorithm to detect spiking motifs
in neurobiological data. The Conclusion section lists the various contributions of this
PhD project to the neuromorphic field and the questions to neuroscience regarding
the validation of the spiking motif communication hypothesis.
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1 Context

1.1 Spikes in the brain

1.1.1 Communicating with electricity and stereotypical action
potentials

A common aspect of cells in animals, plants and fungi is the existence of a membrane
potential, i.e. a voltage difference between the outside and the inside of the cell’s
membrane. In some specific types of active cells, this membrane potential fluctuates
and gives rise to transient increases called action potentials (APs). SCHUETZE (1983)
gives an early history of the characterisation of APs, from Galvani’s experiments on
the activation of frog muscles by electric currents to the description of the ionic
mechanisms of APs observed in the giant squid axon by Hodgkin and Huxley. These
electrical transients are involved in the activation of the muscle cells to animate the
body or to regulate the heartbeat through the rhythmic activity of cardiac cells (RUDY

2008). APs in plants play a role in organ movements, wound responses, respiration, or
photosynthesis (BALUŠKA et al. 2009). In neurons, they are believed to be essential for
communication and coordination between the different cells. Despite the diversity of
APs, also known as spikes, and the different theories regarding their role in biological
systems (BRETTE 2016; CHINTALURI et al. 2023), let’s focus the study of spikes in the
scope of communication between different parts of the brain.

Interestingly, almost all living multicellular animals have a bilaterally symmetrical
body plan and, with a few exceptions, they all have a recognisable brain. This organ
represents the greatest density of neurons and energy consumption in the body. It
plays a central role in processing the information gathered by the sensory organs,
in regulating the organism and in controlling the decisions and actions that an in-
dividual has to make. The meticulous work of Santiago Ramon y Cajal established
the discrete nature of the cells that make up our brain, making the reticular theory 1

obsolete. Through hundreds of drawings, he showed that neurons have a prototy-
pical structure consisting of a cell body, or soma, a dendritic tree and an axon (see
Figure 1.1). Communication between these individual cells is essential to give rise
to the mental life observed in animals. Connections between neurons are made by
special structures called synapses. These junctions can be excitatory or inhibitory and
allow the transmission of spikes with a specific modulation. Such organisation results
in an efficient form of communication : spikes typically travel in a fast and directed

1. The reticular theory is an obsolete scientific theory in neurobiology which states that everything
in the nervous system, such as the brain, is a single continuous network.
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1 Context – 1.1 Spikes in the brain

FIGURE 1.1 – Figure and caption are extracted from DAYAN et al. (2001) – «(A) A cortical
pyramidal cell. These are the primary excitatory neurons of the cerebral
cortex. Pyramidal cell axons branch locally, sending axon collaterals to
synapse with nearby neurons, and also project more distally to conduct
signals to other parts of the brain and nervous system. (B) A Purkinje
cell of the cerebellum. Purkinje cell axons transmit the output of the
cerebellar cortex. (C) A stellate cell of the cerebral cortex. Stellate cells
are one of a large class of interneurons that provide inhibitory input to
the neurons of the cerebral cortex. These figures are magnified about
150-fold. (Drawings from Cajal, 1911 ; figure from Dowling, 1992.)»
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1 Context – 1.1 Spikes in the brain

manner along axons to target both nearby or distant neurons, they can be integrated
and combined across different synapses. As input spikes are integrated at the soma of
the neuron, its membrane potential evolves and, when it reaches a defined threshold,
an output spike is emitted that will influence other cells after travelling through the
axon.

It is widely believed that this simple mechanism can lead to complex operations
through the interconnected mesh of neurons. In the visual system, some cells re-
spond to specific orientations (HUBEL et al. 1962), directions of motion (BURACAS

et al. 1998) and objects such as faces (BRUCE et al. 1981). Other neurons called place
cells (O’KEEFE et al. 1971), grid cells (HAFTING et al. 2005) or border cells (SOLSTAD

et al. 2008), emit spikes at specific spatial locations in the environment of an indi-
vidual. It is remarkable that such a simple unit like the neuron in a well-structured
organisation can be linked to these complex cognitive processes. This combinatorial
effect of simple neural interactions is the basic principle of the computational theory
of mind 2. This philosophy holds that the mind is a computational system that is
physically implemented via neural activity in the brain. The neuron is viewed as a
computing unit, meaning that it processes incoming information according to a set
of well-defined rules. A good example of a cognitive function explained by simple
computations is the sound localisation system of the barn owl (CARR et KONISHI 1990).
Thanks to a specific circuit, some auditory neurons respond maximally to spikes
with a specific interaural time difference corresponding to a physical location of the
source. Computational models have been able to explain this phenomenon in terms
of simple neural interactions with specific axonal delay lines and the detection of
coincident spikes. With a population of neurons acting as synchrony detectors and
a variety of delays for the axons projecting from the auditory nerves, it is possible to
link the complex cognitive ability of sound localisation to a simple combination of
computational units. A similar discrimination of small temporal disparities has been
found for electrolocation and social communication in the electric fish and has also
been explained by specific axonal delay lines (CARR 1993).

In this view, spikes convey information that travels between different parts of the
brain, and neurons are processing units that use and transform this information. Of
course, this deterministic view applies to theoretical models, and it is important to
account for variability in biological processes. Whether it comes from transmissions
at the level of the synapse or at the level of the activation function of neurons, this
variability has to be taken into account. It is also important to acknowledge that
spikes are not the only means of interaction between neurons, some graded poten-
tials useful for communication have been observed in the retina (GOURAS 1960). A
recent study showed that the C. elegans connectome 3 cannot fully predict the acti-
vity of the different neurons when specifically stimulated (RANDI et al. 2023). This

2. The computational theory of mind, also known as computationalism, is a family of views that
state that the human mind is an information processing system and that cognition and consciousness
together are a form of computation.

3. A connectome is a comprehensive map of neural connections in the brain, and may be thought
of as its “wiring diagram”.

16



1 Context – 1.1 Spikes in the brain

suggests that a wireless signalling occurs and that communication in the brain is
more complex than spike-based messages. Indeed, neural activity has been shown
to be modulated by many factors other than synaptic transmission, like extracellular
electric fields (ANASTASSIOU et al. 2010), the activity of glial cells (PEREA et al. 2010) or
different types of chemical messages propagated in the extracellular space (VIZI et al.
2010).

In this manuscript, we aim to investigate some aspects of visual cognition using
spike-based neural computations ignoring other types of interactions. Spiking activity
is characterised by its speed and is of interest for the rapid response to an incoming
stimulus, which will be examined in the following sections.

1.1.2 Precise spike timing can be used for neural
computations

To understand how the brain works, neuroanatomy 4 is essential but for now we fo-
cus on another aspect of neuroscience : neural activity. In particular, we are interested
in how information can be dynamically represented by patterns of spikes. The term
“decoding the neural code” is sometimes used, although this implies the existence of a
code, i.e. an explicit representation of cognitive processes within the neural activity.
Nevertheless, we will use this terminology in all generality to denote the existence
of a structure in neural spike trains. Although some experimental evidence suggests
that there is diversity in spikes (DEBANNE et al. 2013), they are typically considered to
be stereotyped events. If we ignore the short duration of an AP (about 1 millisecond
(ms)), a spike train can be characterised by a list of spike timings which we will use in
our models.

Originally, ADRIAN et al. (1926) showed that the extension of a frog’s leg correlated
with the frequency of APs it receives. Because of the accessibility and reliability of
this information in the experimental designs used by neurophysiologists, averages
of spike counts have been typically used to relate neural activity to the presentation
of a specific stimulus or to specific behavioural tasks. Such rates can be obtained
by averaging over time (firing frequency), over different trials (peristimulus time
histogram) or over a population of neurons (population activity). These firing rates
(FRs) have undoubtedly enabled progress to be made in understanding many neuronal
systems in the brain. To characterise the selectivity of a single neuron for a specific
feature, tuning curves are obtained by measuring the firing frequency of the neuron in
response to a set of stimuli (BUTTS et al. 2006). This has been used to show that neurons
can be selective for certain orientations (HUBEL et al. 1962), different speeds (PRIEBE

et al. 2006), numbers (NIEDER 2016), colours (ZEKI 1983) and various other features.
Such findings have led to the segregation of visual areas according to their functional
role (LIVINGSTONE et al. 1988) or to the description of the organisation of orientation
maps that can be found in the primary visual cortex (V1) (NAUHAUS et al. 2008).
FRs can also be linked to much more complex representations such as the multiple

4. Neuroanatomy is the study of the structure and organisation of the nervous system.
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FIGURE 1.2 – Figure and caption are extracted from MAINEN et al. (1995) – «Reliability
of firing patterns of cortical neurons evoked by constant and fluctuating
current. (A) In this example, a superthreshold DC current pulse evoked
trains of action potentials in a regular-firing-layer-5 neuron. Responses
are shown superimposed (first 10 trials, top) and as a raster plot 5 of spike
times over spike times (25 consecutive trials, bottom). (B) The same cell
as in (A) was again stimulated repeatedly, but this time with a fluctuating
stimulus»

decision-making strategies encoded by the frontal cortex (CAZETTES et al. 2023).
A major drawback of these analyses is that they are agnostic to the precise timing

of the spikes which can be a good descriptor of neural spike trains. Theoretically,
spike trains can be described much more efficiently using spike timings instead of
FRs (BORST et al. 1999 ; REINAGEL et al. 2000). An argument in favour of the traditional
rate coding hypothesis 6 is that spikes are imprecise and unreliable. Indeed, in vivo
recordings show some variability in the temporal distribution of spikes (SOFTKY et al.
1993; SHADLEN et al. 1998) making scientists rely more on FRs than precise spike
timings or interspike intervals (ISIs) 7 to describe spike trains. When doing in vitro
recordings, MAINEN et al. (1995) showed that isolated neurons could fire spikes with
a sub-millisecond precision. In this example, precise timing in neuronal firing is
observed in response to stimulus transients but not when the input current is flat
(see Figure 1.2). This finding suggests that spike generation is not as stochastic as
reported from in vivo studies and that spike timing can be reliable in information

6. The rate coding hypothesis states only the fluctuations of the frequency or rate of spikes contains
information.

7. The interspike interval corresponds to the temporal interval between two subsequent spikes. The
study of interspike interval distributions is a common method to study neuronal variability given a
certain stationary input.
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processing. The variability observed in the firing of cortical neurons may be due to
the complexity of the interactions between neurons and the uncontrolled internal
variables (MASQUELIER 2013; RENART et al. 2014), not only to their intrinsic noisy
activation.

If neurons can fire at very specific times, they must also be able to decode this tem-
porally precise representation. In the cortex, synaptic transmission is unreliable due
to a probabilistic release mechanism (ALLEN et al. 1994). With such noisy junctions, in-
formation theory suggests adding some redundancy to the signal to ensure its correct
decoding (SHANNON 1948). This argument supports the rate coding hypothesis and
maybe the presence of bursts, i.e. sudden high frequency patterns of spikes, in neural
activity (E. WILLIAMS et al. 2021). But not all neurons produce bursts, redundancy can
be added by the multiplication of synapses in between the same neurons, and stochas-
ticity can also be useful for computation. Eye tremor induces stochastic resonance in
cortical neurons and is used as an explanation to the hyperacuity properties of the
visual system (HENNIG et al. 2002). Interestingly, a theoretical study suggested that the
fine temporal structure of spike trains can be used to maintain reliable transmission
with unreliable synapses (ZADOR 1998). This model of spiking neuron with multiple
presynaptic inputs can compensate for synaptic unreliability with connection redun-
dancy only under the assumption that the fine temporal structure of individual spikes
carries information. In this case, the precise timing of spike trains can be a strategy
found by nature to cope with the stochastic activation of biological synapses.

We mention another argument that strongly supports the temporal coding hypothe-
sis 8 : S. THORPE et IMBERT (1989) show the inconsistency between the accumulation
of delays for FR integration at the different levels of the visual system and the decision
time for complex cognitive tasks. Some neurons in the primate brain respond to com-
plex stimuli such as faces, food or 3D objects only 100−150 ms after the stimulus onset.
Such a recognition task requires about 10 processing steps with an average processing
time of 10 ms. Given that biological neurons rarely spike at a frequency higher than
100 Hz, neurons involved in this fast cognitive task can either fire no spike or a single
one. The same psychophysical experiments 9 have been conducted on humans to find
that complex natural scenes can be accurately categorised within 150 ms (S. THORPE,
FIZE et al. 1996). We acknowledge that perception and decision making in natural
environments activate more complex and intricate pathways than the bottom-up
activation observed in these controlled experiments. Plus, the discrimination task to
be performed can be achieved without a full processing of the natural image. However,
in this case, only the information carried by individual spikes can be used to decode
the visual stimulus to achieve the discrimination task. Even if neurons only need to
encode information with single spikes in specific situations such as this one, they show
the ability to do so, and there is no obvious reason why they would use a different,

8. The temporal coding hypothesis suggests that spike timing or high-frequency FR fluctuations
carry information.

9. Psychophysics quantitatively investigates the relationship between physical stimuli and the sen-
sations and perceptions they produce. Psychophysical experiments aim at inferring mental processes
through non invasive measurements.
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maybe less efficient, strategy for other tasks.
We hope that these examples have provided convincing evidence that the brain has

the ability to make spike-based computations and to use the precise spike timing to
encode and decode neural information. For more arguments and examples, we refer
the reader to BOHTE (2004) et R. BRETTE (2015).

1.1.3 with different temporal coding schemes...
Assuming that neurons are able to use spike trains with a fine temporal resolution

to communicate, we describe the different possible coding schemes that make use
of spike timing. Since there is no central clock in the brain, spike timing used for
computation can only be relative to a specific temporal event. When studying the
activity of a single neuron, the previous spike time, as the reference, gives the measure
of the ISI. For a Poisson neuron with a constant rate, the distribution of ISIs actually
follows an exponential distribution, which is supposed to have the maximum entropy
for a given average rate (RIEKE 1999). According to information theory, the distribution
of ISIs observed in biological neurons maximizes the information content in the
timing of spikes of a single train. An experiment in the fly visual system have shown
that information transmitted by pairs of spikes can vary with the ISIs. They show
that the distribution of pairs of spikes separated by 3 ms have a lower entropy than
the distribution of single spikes or pairs with a higher ISI and can then be better
descriptors of the motion stimulus (BRENNER et al. 2000).

However, neurons are usually connected to many other neurons and temporal codes
usually refer to a population of neurons. When studying perception, the reference
signal is usually the onset of the stimulus. This provides a fixed time reference for
quantifying neural activity through spike timing. GOLLISCH et al. (2008) report that
some retinal ganglion cells use the relative timing of the first spikes emitted after the
presentation of a stimulus. This code, called time to first spike coding can represent
the spatial structure of an image and has the advantage of being contrast invariant (it
is the absolute latency of the spikes that is believed to represent the contrast changes)
and robust to noisy fluctuations in response latencies. The same idea of using the first
spike after stimulus onset can also lead to rank order coding (S. THORPE, DELORME

et al. 2001). This coding scheme does not use the relative latencies but only the or-
der in which the spikes are fired. It has been shown to carry enough information to
encode complex scenes and it is more resilient to temporal jitter. Another coding
strategy that has been theorised is the use of synchronous events between the dif-
ferent neurons to represent information (MILNER 1974). This spike synchrony can
bind information coming from different features and build a temporal code on the
precise timing of relative spikes. For instance, a synchronous activity of some reti-
nal ganglion cells can indicate motion reversal (SCHWARTZ et al. 2007). Whether this
synchrony is a coding strategy or an epiphenomenon remains an open question, but
a temporally precise and rhythmic activity with different temporal frequencies has
been observed experimentally in the brain (BERGER 1929 ; SINGER 1999 ; HARRIS et al.
2003; BUZSÁKI 2006). These oscillations appear to be related to memory processes,
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FIGURE 1.3 – Figure extracted from AUGE et al. (2021). – Illustration of the different
temporal coding schemes. In (b) there is an illustration of the time to first
spike coding scheme where∆t1 and∆t3 are respectively the timing of the
first spike in neuron 2 and neuron 3 from stimulus onset (represented
in (a)). These relative times can be computed for each neurons and
used to represent sensory information. The same principle but with the
phase of an oscillation as a reference is shown in (c) for phase coding.
(d) represents the rank order coding with only the orders of the spikes
with the numbers on the right. (e) shows a form of ISI coding where
ISIs (∆ti ) are computed not for a single neuron but in between neurons.
Then, (f) is a representation of the synchrony coding where spikes that
fire relatively synchronously can be used as a code. (g) corresponds to
the binary coding where only the presence or absence of a spike in a
temporal window gives a 0 or 1 value in the temporal code. In (h), there is
a representation of both the Ben’s Spiker Algorithm (BSA) and Temporal
Contrast (TC). TC transforms the changes in the signal intensity into
spikes and BSA convolves the stimulus with a know filter and emits
spikes when this convolution exceeds a threshold.
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attention, conscious awareness and other types of mental life (WARD 2003). Due to
their periodicity, these neural oscillations, can also be used as reference signals for
the different coding strategies described above. The phase of the oscillation is the
reference point to compute relative spike timings, we talk about phase-locked tem-
poral coding to differentiate with stimulus-locked coding. Such a phase of firing of
neurons in V1 can carry more information about a colour movie than the information
contained in spike counts (MONTEMURRO et al. 2008). It’s worth pointing out that a
phase-locked code can be used for any periodic signal, such as a sound wave, and that
this termination can also be used with the phase of the stimulus as a reference.

These different coding schemes bring some theoretical advantages and experimen-
tal evidences for the temporal coding hypothesis. Populations of neurons appear to
use spike-based strategies that rely on precise timing to exchange information. This
postulate implies that precise spatiotemporal patterns, which we call spiking motifs,
can be observed in neural activity. We will agree with this postulate for the remainder
of the manuscript. This statement does not deny the importance of FRs for neuronal
computations, and we agree that the diversity of neuronal timescales (CHAUDHURI

et al. 2014) does not allow every neuron to make use of the millisecond precision obser-
ved in some spiking motifs. However, we maintain the idea that FRs are not sufficient
to explain neural communication (JACOBS et al. 2009) and that spike-based theories
based on the idea of a well structured spiking activity can incorporate FRs-related
findings to provide a more general understanding of the neural code.

1.1.4 and precise spiking motifs.
In a theoretical model, ABELES (1991) proposes that in a feed-forward network

of excitatory neurons, information is transmitted in a volley of spikes propagating
synchronously from layer to layer. Such precise firing sequences are called synfire
chains and have been shown to be a stable mode of transmission in contrast to the
asynchronous mode (GOEDEKE et al. 2008). This model predicts the appearance of
precisely repeating firing patterns which are observed in neuronal recordings (ABELES

et GAT 2001). However, a synfire chain is a very simplified structure and more diverse
networks are observed in biology. BIENENSTOCK (1995) extended the model to include
heterogeneous transmission delays, making it more flexible while retaining the same
properties. In this model called synfire braids, repeating spiking activity, which do not
have to be a synchronous volley of spikes, can synchronise at the level of a layer by
cumulating all the delays along the different trajectories. IZHIKEVICH (2006) termed
the time-locked but non-synchronous spiking activity within each braid polychrony.
Computational modelling showed that at the scale of neurons, an efficient neural
code can emerge in which spike times are organised into prototypical, precise tempo-
ral motifs. Assemblies of neurons that generate this activity are called polychronous
groups, and their number far exceeds the number of neurons in the network. This en-
hanced memory capacity can be linked to the multiple representations and cognitive
neural computations that are implemented in the brain. It has also been demonstra-
ted that a single neuron can learn repeating spiking motifs embedded in noise and
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with some variability in the timing of the spikes of the motif using STDP (GILSON

et al. 2011). Theoretical models thus show that population of neurons can produce
precise spiking motifs that can be robustly decoded by single neurons suggesting that
a communication through spiking motifs can be implemented in the brain.

More recently, novel multi-unit recording techniques have allowed the identification
of travelling waves of neural activity in different areas of the cortex (MULLER et al.
2018). These waves resemble the neural oscillations mentioned above, but with a
range of possible phase shifts. Such spatiotemporal patterns of activity may serve
a variety of functions, from long-term memory consolidation to the processing of
dynamic visual stimuli, and are observed at different scales (GJORGJIEVA et al. 2011;
CHEMLA et al. 2019 ; ALAMIA et VANRULLEN 2019).

The previous subsection 1.1.3 listed some temporal coding schemes and gave some
examples of spiking motifs generated by sensory areas. They suggest an efficient
encoding of stimuli through precise temporal sequences of spikes. These particular
representations are also found in the hippocampus and are associated with different
behaviours. HARRIS et al. (2003) report synchronous activity on a scale of about 25 ms
for pyramidal neurons in the hippocampal region. This timescale matches the mem-
brane time constant of these neurons, the period of the hippocampal gamma oscilla-
tion and the effective window for synaptic plasticity. This type of spiking motif may
then be optimal for information storage at the hippocampal level. PASTALKOVA et al.
(2008) showed that the activity of cell assemblies in the hippocampus can predict a
navigation and memory task. Interestingly, the same assembly sequence was observed
during navigation in a maze and during a memory task with stationary external cues.
Such sequences may be replayed internally to remember a particular route through
the maze. A similar phenomenon can be observed in bird songs, which are associated
with a specific temporal sequence that can be replayed during sleep, i.e. in the absence
of vocalisation (DAVE et al. 2000). Repeating spiking motifs on the millisecond times-
cale are also observed in spontaneous activity in the visual cortex. IKEGAYA et al. (2004)
demonstrated the presence of precise repetition of multiple spiking motifs in cortical
activity. In addition, these spike patterns may be modules of larger temporal structures
called cortical songs, related to cortical functions. By recording simultaneously in V1
and V4 10, SHAHIDI et al. (2019) observe high-order coordination between spikes with
a time delay between the two areas. Such feedforward motifs are detected with 5 ms
time bins and are associated with perceptual accuracy in discriminating between two
successively flashed natural scenes. Also in the motor cortex, rapid changes in the
patterns of coincident action potentials have been recorded (RIEHLE et al. 1997). The
synchronisation of spiking sequences was observed in response to external stimuli or
movements. However, this phenomenon was not time-locked to the external event
and could also occur internally in relation to stimulus anticipation. A bit later, this

10. Visual area V4 is at an intermediate stage along the hierarchical pathway for object recognition.
Like V2, V4 is tuned for orientation, spatial frequency, and colour. Unlike V2, V4 is tuned for object
features of intermediate complexity, like simple geometric shapes, although no one has developed a
full parametric description of the tuning space for V4. It is the first area in the ventral stream to show
strong attentional modulation.
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precise spiking synchronisation was linked to the preparation and execution of motor
movements (GRAMMONT et al. 1999).

This list of examples of the presence and the role of precise spiking motifs in the
brain shows that this type of activity exists in different areas of the cortex and that it
can be efficiently used for communication. Some studies suggest that such distributed
spiking activity plays an important role in corticocortical communication (KOHN et al.
2020 ; VINCK et al. 2023). Synchronicity is also an interesting proposal to explain how
the relatively weak thalamocortical synapses are able to drive cortical neurons (BRUNO

et al. 2006). Other studies see these spiking patterns as a putative mechanism for
modulating the interaction between neurons (WOMELSDORF et al. 2007), for flexible
signal routing in neural circuits (AKAM et al. 2010) and for various cortical processes
such as attention (SALINAS et al. 2001). We do not aim to provide an exhaustive list of
observations and inferred functions of spiking motifs in neuroscience but we hope
that the previous section has convinced the reader that neurons can make use of
precise spike timing to develop sophisticated communication in the nervous system.
For more details on spiking patterns we refer to other readings : TIESINGA et al. (2008)
et GRIMALDI, GRUEL et al. (2023). These findings encourage to investigate temporal
coding schemes and to propose experiments that could test for the role of spiking
motifs and their capacity to encode different features than the FRs.

1.2 Modelling the brain with machines

In this section, we will see how to study neural activity and organisation through arti-
ficial devices including physical machines and algorithms. Some can have a connectio-
nist 11 approach and solve a cognitive task with more or less realistic methods. Because
the model is supposed to find an optimal solution for the given task, this can provide
new concepts regarding the functions and mechanisms of biological systems. On the
other hand, computational neuroscience 12 focuses on the description of biologically
plausible neural systems. We will particularly focus on models of the visual system,
including artificial vision, and question if they can bring new insights to neuroscience.

1.2.1 Artificial intelligence and machine learning
It is difficult to introduce the term Artificial Intelligence (AI) without a clear definition

of intelligence, and at the same time it is even more difficult to find a clear definition

11. Connectionism aims at studying human mental processes and cognition using mathematical
models known as connectionist networks or artificial neural networks. Its central principle is that
mental phenomena can be described by interconnected networks of simple and often uniform units.
The form of the connections and the units can vary from model to model.

12. Computational neuroscience, also known as theoretical neuroscience, is a branch of neuroscience
which employs mathematics, computer science, theoretical analysis and abstractions of the brain to
understand the principles that govern the development, structure, physiology and cognitive abilities of
the nervous system.
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of intelligence. Some philosophers or scientists believe that it lies in the capacity of
abstract representation and reasoning, while others define it as the ability to react in a
specific environment. To define AI, let’s start with the proposal that intelligence is the
ability to use a wide range of cognitive processes to deal with different situations. Then,
AI is the ability of machines or softwares to develop strategies to solve some cognitive
tasks. The development of modern AI came with the design of digital computers, as
artificial machines capable to perform abstract logic through the manipulation of
numbers or symbols. Today, computers are achieving human-like or super-human
performance in terms of object recognition (HE et al. 2016), strategy games (SILVER

et al. 2017), natural language processing and communication skills (BRIN et al. 2023).
Calling these forms of computation observed in machines intelligence has been

criticised, and we can use the Chinese Room Argument to feed this debate. John Searle
devised a thought experiment to challenge the reasoning capacity that was attributed
to machines (SEARLE 1980). Imagine yourself in a closed room with an input box where
messages are sent to you and an output box where you have to place messages yourself.
For each message in the input box there is a corresponding response to send, which
you can find in a well-structured set of instructions. In the original experiment, the
messages are all in Chinese and the agent, i.e. the person that have to send a specific
message in response to another, speaks English and is naive to the Chinese alphabet.
Even if this executor can decipher the instructions to send the correct sentences,
which will result in perfect communication skills, he or she will not understand a word
of the conversation. This example shows how difficult it is to define AI and that for
now computers are good at solving a specific cognitive task but seem to be quite far
from reaching the diverse and amazing cognitive capacities observed in biological
systems. Nevertheless, the best performances observed for current algorithms are
impressive and show the ability to solve complex tasks.

Note that we have not yet mentioned learning and the ability to adapt dynamically,
which is the main reason for adaptive behaviour in animals and for recent advances
in AI systems. Machine learning (ML) is a branch of AI that uses statistical algorithms
to improve the ability of machines to solve problems by learning even without an
explicit implementation of the solution. Typically, these algorithms are based on
mathematical optimisation to learn from data and show the ability to generalise to
unseen data. The initial enthusiasm for ML was tightly linked to symbolic AI and
cognitive science, with the idea of modelling the human structured functions of
knowledge acquisition. Later, it diverged from this goal to include other approaches
to learning and created expert systems in a specific task, without the need to relate to
the brain. More generally, the field has decided to study any method that improves its
performance on a defined task with experience (LANGLEY 2011). Despite the variety of
methods and goals to be achieved, we can say that ML minimises a loss function on a
training set of data in order to maximise its performance to solve a task, usually linked
to the loss function, on a testing set of novel data. This minimisation traditionally
operates through an iterative process following a learning paradigm. We distinguish
three types of learning paradigms, depending on the type of feedback available to the

25



1 Context – 1.2 Modelling the brain with machines

learning system : supervised learning 13, unsupervised learning 14 and reinforcement
learning 15. From these paradigms, we can also derive semi-supervised learning where
the training labels are noisy, limited or imprecise. Yet, ML algorithms can efficiently
train on these incompletely labelled but larger datasets. It becomes obvious that ML is
highly dependant on the data used for learning. It also depends on the choice of the
task to solve, the learning rule and on the model used to accomplish a final objective.
We choose to focus on artificial neural networks (ANNs) which are computing models
inspired by biological neural networks.

1.2.2 Artificial neural networks for computer vision
The first implementation of an ANN was done by ROSENBLATT (1958) for a pat-

tern recognition task. It is called perceptron and comes from the theoretical work
of MCCULLOCH et al. (1943). The single-layer perceptron is a binary classifier that
makes a prediction by linearly combining a set of weights (W ) with the feature vec-
tor (X ). It’s non-linearity comes from its activation function, which is a Heaviside
step function (θ). The output ( f (X )) is a decision to assign the input to a given class
according to the following formula :

f (X ) = θ(X ·W ) (1.1)

This model was able to learn, under supervision, to discriminate between different
classes of patterns. Despite the remarkable advances in AI achieved with this im-
plementation, it was shown that a single-layer perceptron was limited to linearly
separable patterns and was incapable of simulating a XOR operator 16. However, this
operator can be implemented by stacking two single layer perceptrons. The addition
of layers on top of each other led to the multi-layer perceptron, which is the building
block of modern feedforward ANNs.

The main problem with these multi-layer architectures was their training and lear-
ning representations within the intermediate layers that would lead to a correct de-
cision. One attempt to solve this issue was to use unsupervised learning. The cogni-
tron (FUKUSHIMA 1975) used a learning rule developed by the psychologist Donald
Hebb in order to describe biological synaptic plasticity. It claims that an increase in
synaptic efficacy occurs when a presynaptic neuron participates in the activation of a
postsynaptic cell through stimulation (HEBB 1949). It is called the cell assembly theory

13. In supervised learning, the agent is presented with example inputs and their desired outputs,
labelled by a “teacher”, and the goal is to learn a general rule that maps inputs to outputs.

14. To achieve unsupervised learning, no labels are given to the agent, leaving it on its own to find
structure in its input.

15. In reinforcement learning, an agent learns to make decisions and take actions in a dynamic
environment with the goal of maximising a cumulative reward, whose feedback may be incomplete or
delayed.

16. Exclusive or, XOR, or logical inequality is a logical operator. With two inputs, XOR is true if and
only if the inputs differ (one is true, one is false). With multiple inputs, XOR is true if and only if the
number of true inputs is odd.
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and is often summarised by “who fire together, wire together”. Shortly afterwards, the
neocognitron was implemented to solve a letter and digit recognition task (FUKUSHIMA

1980). This old model introduced many principles used in todays ANNs. It is compo-
sed of 7 layers which is considered to be a deep neural network 17 (DNN). It also uses
some features of convolutional neural networks (CNNs), which are the best known
approximations of the visual system. Indeed, the architecture of the neocognitron
consists of an alternation of layers of simple cells 18 and complex cells 19, inspired
by the findings of HUBEL et al. (1962). By connecting several simple cells at different
spatial locations, the complex cells show some resilience to translation and geome-
tric deformation. The weights of the simple cells are shared during learning and the
activation function was the rectified linear unit 20 which are techniques widely used
in current CNNs. Even the pooling layer was performed by the complex cells of the
network. It is afterwards that max-pooling was introduced in a similar architecture
called H-MAX (RIESENHUBER et al. 1999). Such mechanism allowed to isolate the
feature of interest from the background and have even more resilience to translation
and scale changes.

The missing tool for supervised training of multi-layer neural networks was introdu-
ced a little bit later as backpropagation (WERBOS 1982). Based on previous theoretical
work on automatic differentiation, it was possible to update the weights of DNNs using
a gradient estimation method and a supervision signal. This method was efficiently
applied to the recognition of handwritten digits extracted from postal codes (LECUN

et al. 1989) or to the detection of breast cancer from medical images (W. ZHANG et
al. 1994). Then, with the increase in the computational power due to technological
advances and the collection of a significant amount of labelled data these models
showed human-like performance in the classification of natural images (CIREGAN

et al. 2012 ; KRIZHEVSKY et al. 2012 ; SIMONYAN et al. 2015). After this, some innovations
continue to be brought to the field but the fundamentals of CNNs stay the same and
their performances start saturating on specific tasks. One can wonder if these strictly
feedforward models capture the computational mechanisms of the visual system.
They do not account for lateral or feedback connections observed in biology (BRIGGS

2020 ; CHAVANE, L. U. PERRINET et al. 2022) and can account for static functions sho-
wing some limitations to model the brain as a dynamical system. Recurrent neural
networks (RNNs) account for the variability of connections in the visual cortex and
are particularly well suited for temporal data processing (CARDOT 2011). This type of
models show some flexibility in the tradeoff between speed and accuracy in visual
recognition tasks (SPOERER et al. 2020) and capture specific organisation of cells in the

17. An ANN is called “deep” when its number of layers exceeds 3
18. A simple cell in the V1 is a cell that responds primarily to oriented edges and gratings.
19. Like a simple cell, a complex cell will respond primarily to oriented edges and gratings, however

it has a degree of spatial invariance. It will respond to patterns of light in a certain orientation within a
large receptive field, regardless of the exact location. Some complex cells respond optimally only to
movement in a certain direction.

20. The rectifier or ReLU (rectified linear unit) activation function is an activation function defined as
the positive part of its argument.
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FIGURE 1.4 – Timeline of ANNs made by Flavio Vazquez

early visual system (BOUTIN et al. 2021). Also, even if some theories are developed to
propose biologically plausible mechanisms for error backpropagation (WHITTINGTON

et al. 2019 ; LILLICRAP et al. 2020), performing gradient descent as batch processing 21,
which is the current norm, poses some problems in terms of biological realism, and
practical issues, i.e. for the delocalised storing of a huge amount of memory. Also,
the number of parameters to be tuned explodes in particular for RNNs, which can
be described as feedforward models by unrolling the time dimension. Solutions are
found to avoid the vanishing gradient problem 22 like long short-term memory (LSTM)
networks (HOCHREITER et al. 1997), in which special gated units can store short-term
memories for extended periods.

Unsupervised learning can also be a good alternative to solve issues raised by back-
propagation and also the question of the taxonomy and availability of supervision
signals during development. The sparse coding framework intends to represent natu-
ral images with sparse activation and an overcomplete code, i.e. a code with a number
of basis vectors greater than the dimensionality of the input space, but without any
supervision, a receptive field-like organisation emerged similar to that observed in
the visual system (OLSHAUSEN et al. 1997). Unsupervised methods for training ANNs
are used in autoencoders, deep belief networks, generative adversarial networks or
self-organising maps (DIKE et al. 2018). Research balanced between unsupervised
and supervised techniques, using the advantages of both to improve the performance
of artificial systems with respect to a specific task. Unsupervised methods show in-
teresting results for clustering tasks or learning feature representations, but the best
performance in terms of complex object recognition is obtained by supervised ANNs.

A final architecture that is worth mentioning has recently been presented and

21. Dividing the dataset into batches, i.e. aggregations of data samples, was used to speed up and
improve offline learning. The size of the batches can be adapted to the available memory and the
gradient aggregates over each sample unlike in online training where the parameters are updated at
each sample.

22. The vanishing gradient problem arises when training deep neural networks, particularly RNNs,
with gradient-based learning methods and backpropagation. During the update steps for learning the
weights, as the sequence length increases, the gradient magnitude is typically expected to decrease (or
grow uncontrollably), slowing down the training process.
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applied to natural language processing : the transformer networks (VASWANI et al.
2017). These models use multi-head attention mechanisms that will weight patches of
an image with respect to a specific context. They show competitive results for solving
visual tasks and have advantages such as easier modelling of long dependencies
between input sequences than with RNNs or good scalability properties (KHAN et al.
2022).

This chapter provides some examples of ANNs successfully applied to visual tasks,
but does not provide an exhaustive list of models, see COX et al. (2014) et KRIEGESKORTE

(2015) for a more detailed review. A wide range of solutions can be found in computer
vision and we see in this chapter that AI, initially narrowly focused on modelling the
brain, can diverge to find optimal solutions obtained only with the constraints of
the machines. Inspiration from the efficient processes observed in biology helped to
develop computer vision methods (CRISTOBAL et al. 2015), but we will now address
the question of whether artificial systems can help neuroscience research to unders-
tand the brain. While computer vision focuses on the task to be solved with specific
efficiency and performance goals, computational neuroscience aims at modelling
cognitive processes and/or neural mechanisms. We will see in the next chapter what
the main differences are between bottom-up and top-down modelling approaches,
and whether ANNs that take the top-down route can be informative for neuroscience.

1.2.3 What can we learn about the brain from machine
learning?

“All models are wrong, but some are useful” is an aphorism by George Box that
should be kept in mind when trying to explain some cognitive functions. There is
a wide variety of approaches to modelling the brain. One can take a bottom-up ap-
proach and model canonical microcircuits in the cortex. This is the approach of the
Human Brain Project, or the Blue Brain Project, which respectively aim at building a
biologically detailed digital reconstruction of a human or mouse brain. But will obtai-
ning and reproducing a complete description of the units and computations that take
place in the brain lead to a better understanding of concepts such as “consciousness”
or “intelligence”? In most of the cases, these models lack a higher level function to
approximate and do not scale well to big networks as animal brains. In contrast to
these descriptive models, another approach is to assume that biological systems have
evolved in an optimal way to perceive and behave efficiently in their natural environ-
ment. This leads to normative models that take into account the constraints faced by
the visual system and provide an algorithm to solve a visual task while respecting these
constraints. The efficient coding hypothesis claims that neural responses are tuned to
the statistics of natural images (ATTNEAVE 1954 ; BARLOW 1961), and a notable example
of a normative model based on this hypothesis and the constraints of the visual system
is the sparse coding model described in section 1.2.2. We can also mention Bayesian
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inference 23 (YUILLE et al. 2006), ideal observer models 24 (GEISLER 2011), circular
inference 25 (DENÈVE et JARDRI 2016) and active inference 26 (FRISTON et al. 2016), to
name a few. These models do not need to mimic the detailed mechanisms involved
in solving a cognitive task but will describe the main functions implemented by the
system. To characterise the gap between these very different approaches, MARR et al.
(1976) propose three distinct and independent levels of analysis : the computational le-
vel (what does the system do and why ?), the algorithmic or representational level (how
does the system solve the problem, what are the mechanisms for doing so?) and the
implementation or physical level (what is the substrate : the units and computations
required to solve the problem ?). “Models of circuits and operations implement generic
operations, such as gain control or normalisation, and focus on the hardware and
algorithmic levels of analysis. Such models are the building blocks for many models of
the visual functions, such as motion estimation or object recognition, which tend to
focus on the computational and algorithmic levels of analysis.” (POGGIO et al. 2013).
ANNs and deep architectures promise to develop models that address these different
levels of analysis : the computational level is given by the loss function with which
the model is trained, the algorithmic level is captured by learning specific wiring to
achieve visual functions, and the implementation is given by the initial architecture of
the ANN and its constraints.

However, despite their excellent performance in solving problems and finding opti-
mal solutions in a constrained environment, these types of models are still far from pro-
viding a good explanation of the visual system. They can also be disappointing because
they are not robust when solving the exact same task on a different dataset (TORRALBA

et al. 2011), when the context changes or with partial occlusion (ROSENFELD et al.
2018). They can be fooled by small changes that are barely visible to humans (Z. ZHOU

et al. 2019) and are not good for generalisation. AZULAY et al. (2019) showed that the
deeper the network, the less translation invariance it exhibits. It becomes clear that the
performance of DNNs on particular benchmarks are not sufficient to make them good
approximations of the visual system. Scientist are challenging these architectures :
some try to quantify the similarity of the model to the visual system (SCHRIMPF et al.
2020), others develop reasoning tests based on abstract rules that can be easily solved
by humans (FLEURET et al. 2011), and some multiply the number of cognitive tasks
to be performed to reach better generalisation (YANG et al. 2019). In light of these
criticisms, one may wonder whether ANNs can provide new insights to neuroscience

23. Bayesian inference is a method of statistical inference in which prior knowledge is used, in the
form of a prior distribution, in order to estimate posterior probabilities. Bayes’ theorem, that describes
a relationship between probability distributions, is used to update the probability for a hypothesis as
more evidence becomes available.

24. The ideal observer is a theoretical system that performs a specific task in an optimal way.
25. “Circular inference refers to a corruption of sensory data by prior information and vice versa,

leading us to ‘see what we expect’ (through descending loops), to ‘expect what we see’ (through
ascending loops) or both.”

26. Active inference applies the techniques of approximate Bayesian inference to infer the causes
of sensory data from a generative model of how that data is caused and then uses these inferences to
guide action.
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at all. If the main objective is not to build efficient machines to solve a well-defined
task but to bring new knowledge to our understanding of the brain, can we make use
of ANNs at all, or will they lead us in the wrong direction?

We can find interesting predictions and application for neuroscience research from
these models. CNNs were the first models to be good predictors of spiking activity
in higher cortical areas, such as V4 , or the inferior temporal (IT) cortex 27 (YAMINS

et al. 2016). At the cognitive level, it has been observed that they use similar strategies
as humans to process colour in natural images (FLACHOT 2022). The main advan-
tage of this approach is that training is done on a cognitive task and not directly on
neural data, thus avoiding pure neural fitting. This type of model has also been used
to explain ventral stream fMRI and could be used to reproduce classical functional
brain mapping experiments (EICKENBERG et al. 2017). It is also possible to use these
models to find stimuli that will efficiently activate some cells (PONCE et al. 2019) or
populations of neurons (BASHIVAN et al. 2019). Some propose a research programme
using ANNs as a framework to understand the brain (DOERIG et al. 2023). They claim
that current research can be limited by human interpretable concepts, and that these
highly complex and goal-driven models could overcome this limitation while having
the multiple levels of abstraction necessary to bring knowledge to the field of neuros-
cience. In robotics, the same goal-driven method with the ability to target a specific
behaviour in a naturalistic environment with sensors that mimic biological systems
seems to be a good approach for modelling (WEBB 2001). All this suggests that the
correct use of these tools can open new doors for scientific research. By finding some
appropriate cognitive tasks together with constraints on the mechanisms of ANNs,
this new framework can be useful for neuroscience.

1.3 The neuromorphic approach
In this section, we propose to add an additional layer of realism to artificial models

described in section 1.2.2. These architectures are already organised in a mesh of
processing units connected by adjustable weights mimicking an organisation observed
in biological brains. Here, we propose to use spikes as a basic unit of communication
to develop models that aim at being more efficient and more faithful to neuronal spike-
based activity described in section 1.1. We talk about the neuromorphic approach that
constraints artificial systems with physical devices for asynchronous computations or
specific sensors that mimic biological ones.

27. Inferior temporal visual area (IT) is crucial for visual object recognition and is considered to be
the final stage in the ventral cortical visual system. IT neurons are usually selective for the shape or
colour of the stimulus or both parameters and almost all respond more to complex than simple shapes.
A small percentage of IT units are selective for facial images. Some are sensitive to emotional expression
and some to direction of eye gaze.
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1.3.1 Spikes as an additional constraint to model artificial
neurons

When it comes to modelling biology, a major limitation of the ANNs described in
the previous section is that they do not consider the spike as a unit of information.
In fact, classical ANNs process analogue information that can be relied on neural
FRs. Another type of model, called spiking neural networks (SNNs), aims to be more
faithful to biological observations by working with spikes. Computations are based
only on the membrane potential of individual neurons and consist in the emission of
a spike when its value reaches a threshold. This way, each unit is independent of the
others and computations can be asynchronous, unlike for other ANNs that require
a propagation cycle between memory and the central processing unit (CPU). Then,
spiking neurons are made to process dynamical signals and each individual unit can
have a specific timescale independent of the others with interesting properties (PEREZ-
NIEVES et al. 2021). SNN models have been demonstrated to be more computationally
powerful than other ANN models (MAASS 1997). One can find very descriptive models,
in terms of the mechanisms involved in the initiation and propagation of a spike,
such as the Hodgkin–Huxley model (HODGKIN et al. 1952). Other simpler models,
such as the leaky integrate-and-fire (LIF) neuron (see Figure 1.5) are more commonly
used in network models due to their simplicity and efficiency in reproducing the
spiking behaviour of a wide range of neurons (TEETER et al. 2018). The design of these
models, and the need to work with spikes, make them the most suitable for describing
biological neural activity. They are also promising in terms of accuracy, speed and
energy consumption. Combined in a population of neurons, spikes of such models
can represent the prediction error of the stimulus as input (DENÈVE et MACHENS

2016). In an excitatory and inhibitory balanced network, the objective of inhibitory
neurons is to predict the input received by excitatory neurons, a spike is emitted when
the error between the prediction and the input is too large. These networks show
interesting properties like robustness, degeneracy 28 and efficient coding to learn
complex dynamical functions.

The main challenge to train these models lies in the non-differentiability of the
spiking non-linearity. If one focuses on the computational level of analysis by develo-
ping goal-directed models, backpropagation, which has been successfully applied to
classical ANNs, is usually not directly transferable here. There are a few exceptions,
such as models that explicitly include a smooth spike generation process (HODGKIN

et al. 1952; MORRIS et al. 1981; IZHIKEVICH et FITZHUGH 2006) or probabilistic mo-
dels where the derivative can be applied to the internal state of the neuron (PFISTER

et al. 2006; JIMENEZ REZENDE et al. 2014). Alternatively, gradients can be compu-
ted in a time-to-first-spike coding scheme and allow learning in a SNN with hidden
layers (BOHTE et al. 2000). A recent and popular approach consists in using a surrogate
gradient to perform error backpropagation (NEFTCI et al. 2019). Because of their effi-
cient use of backpropagation and the parallel computing in graphical processing units

28. The degeneracy is the ability of elements that are structurally different, here differently wired
neural networks, to perform the same function or yield the same output.
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FIGURE 1.5 – Illustration of the LIF neuron. Figure extracted from KAMATA et al. (2022)
– On the right, one can see the input spikes coming from different pre-
synaptic neurons, i.e. the different lines. These spikes are integrated by
the neurons with the respective synaptic weights (w1, w2, w3). On the
right (top) is an illustration of the temporal evolution of the membrane
potential of the spiking neuron, here a LIF neuron with a sudden in-
crease of the membrane potential when an input spike is received and a
(here linear) decrease otherwise. When the membrane reaches a specific
threshold (Vth), the neuron emits an output spike (see figure below).

(GPUs), non-spiking ANNs still outperform SNNs in terms of training efficiency and
accuracy given a specific task. Then, another approach is to convert already trained
CNN architectures into SNN models and report a better trade-off between accuracy
and number of computations in image classification (RUECKAUER et al. 2017). Despite
this advantage, the comparison may be unfair because standard benchmarks are
made for non-spiking ANNs, which can approximate any static function.

Rather than copying the methods for training non-realistic models, some intend to
develop spike-based biological learning rules. In order to reproduce natural learning
conditions in spiking neurons, learning rules need to be local and also online. It is
possible to use unsupervised learning rules such as Hebbian plasticity and the various
forms of STDP (TAHERKHANI et al. 2020). Others choose to find biologically plausible
implementations of backpropagation (BELLEC et al. 2020 ; T. ZHANG et al. 2021 ; SHEN

et al. 2022 ; XIAO et al. 2022). It is also possible to minimise a local energy function with
respect to a target activity through equilibrium propagation (MARTIN et al. 2021). A
challenge which is recently tackled is to perform online learning to cope with systems
with limited memory such as neuromorphic chips (see 1.3.3). E-prop uses eligibility
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traces 29 and top-down learning signals to compute a gradient locally in time and
perform online learning (BELLEC et al. 2020). (ZENKE et NEFTCI 2021) propose to
sparsify the computations of real-time recurrent learning, a method already used to
train RNNs, to achieve online learning in SNNs. It is also possible to train spiking
networks with forward propagation through time (YIN et al. 2023) or with local error
functions that approximate gradient backpropagation (KAISER et al. 2020). For a better
review of learning in SNNs, we can refer the reader to ABBOTT et al. (2016), NEFTCI

et al. (2019), TAVANAEI et al. (2019), TAHERKHANI et al. (2020) et YI et al. (2023). We
will now make an overview of the literature of spiking neuron models that are able to
detect spiking motifs, as described in 1.1.4.

1.3.2 Allowing to detect precise spiking motifs
We observe a spatiotemporally structured neural activity in biology and infer that

some neurons are able to decode these precise spiking motifs. To detect synchronous
activity of presynaptic neurons, a short timescale for the membrane potential of the
postsynaptic neuron and a threshold defining a minimum number of active cells can
be sufficient. Coherent sequences can be learned by simple learning rules like STDP (L.
PERRINET et al. 2002).

To detect asynchronous sequences of spikes, conductance delays can be used to
shift in time the afferent spikes in order to obtain a coincident arrival at the soma of
the neuron (see Figure 1.6). This allows decoding of sequences in which information
is represented in the relative timing of spikes (HOPFIELD 1995). Such delays can be
implemented by combining multiple neurons with different processing timescales,
in axons through myelination, in synaptic latencies, or within the dendritic tree it-
self (SENN et al. 2002 ; FUHRMANN et al. 2002). There are also different ways of tuning
these delays to recognise specific spiking motifs. EURICH et al. (2000) distinguish bet-
ween delay shift, where the time delays themselves are changed, and delay selection,
where the weights are adjusted to select a subset of delays. Examples of models that
use delay selection to learn spiking motifs are the tempotron (GÜTIG et al. 2006) which
applies a supervised learning rule to the synaptic weights associated with specific
delays to make the membrane potential reach the threshold when a motif appears. We
also report on the polychronization model of Izhikevich (IZHIKEVICH 2006) where an
unsupervised STDP rule applied to a randomly initialised network of spiking neurons
allows representations of spiking motifs to be stored within the connections of poly-
chronous groups of neurons. Similarly, a feedforward network of artificial neurons can
detect a specific motion and compensate neural delays (SEXTON et al. 2023). Another
recent method uses supervised learning with a cross-entropy loss on spike trains to de-
tect spiking motifs with a high representational capacity (L. U. PERRINET 2023). Other
models use adjustable delays as extra parameters to train their SNNs (GEOFFROIS et al.

29. “Neurons in the brain maintain traces of preceding activity on the molecular level, for example, in
the form of calcium ions or activated CaMKII enzymes.[...] Such traces are often referred to as eligibility
traces.”
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1994; M. ZHANG et al. 2020; NADAFIAN et al. 2020; SUSI et al. 2021; HAMMOUAMRI

et al. 2023 ; P. SUN et al. 2023).
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FIGURE 1.6 – Illustration of a spiking neuron with heterogeneous delays and its me-
chanisms – (Left-Top) Four presynaptic neurons show some spiking acti-
vity in which a spiking motif is embedded (starting at time t = 50 ms).
(Right) An illustration of a spiking neuron with different synaptic weights
(represented by the thickness of the synapses) and different synaptic
delays (represented by the length of the synapses). (Left-Middle) Each
spike is weighted by the synaptic weights (height of the blue bars) and
shifted in time according to the synaptic delays on each respective sy-
napse (input spikes are shown in light grey for comparison). As a result,
the spikes from the spiking motif are synchronised as they reach the
soma of the postsynaptic neuron. (Left-Bottom) These spikes are then
integrated, and contribute to a modification of the membrane potential
of the output neuron according to the neural activation function. In this
example, we use the activation function of a LIF neuron. The first spiking
motif is synchronised by the synaptic delays and causes a sudden rise
in the membrane potential of the postsynaptic neuron. An output spike
is emitted at time t = 75 ms when the membrane potential reaches the
threshold, and it is then reset.

Such temporal delays are important for synchronising precise spiking motifs, but if
information is encoded only by the rank of arrival of the spikes, even simpler architec-
ture like SpikeNet (S. J. THORPE et al. 1996) can be used. SpikeNet performs rank order
sensitivity through a cortical circuit using feedforward shunting inhibition. More re-
cently, it has been shown that it is possible to train a multi-layer SNN to detect spiking
motifs in a time to first spike coding scheme by applying a supervised learning rules
to the network’s synaptic weights (GÖLTZ et al. 2021). It has also been demonstrated
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that single LIF neurons acting as coincident detectors can optimally detect repeating
spiking motifs with a simple STDP and no delays to synchronise the different spikes
characterising the motif (MASQUELIER 2018). For spatiotemporal motifs with longer
timescales than the membrane potential time constant, most of the pattern is ignored
but the model still efficiently solves the same problem solved by the tempotron (GÜTIG

et al. 2006). Adjusting the synaptic weights with a predictive learning rule can also lead
to the anticipation of a sequence of spikes (SAPONATI et al. 2023). In addition, the time
encoding and time decoding machines show good performance in reconstructing
natural visual scenes from spike sequences with a compartmental neuron model
with active dendrites (LAZAR et al. 2014). It is not straightforward to validate these
models with neurophysiological data as one would need to target both the presynaptic
neurons forming the spiking motif and the postsynaptic neuron that detects it but
these are interesting methods for coding spatiotemporal spike trains.

SNNs seem to be particularly suited to make an efficient use of spiking motifs. Single
spiking neurons or layers of neurons with or without conduction delays can detect
precise motifs of spikes which can be used as messages between different neurons or
brain areas. We have also shown in the previous section that they can be interesting
for goal-oriented architectures that solves complex task with a good balance between
accuracy and energy consumption. We will now discuss an approach that adds a
further level of constraint towards biological realism and which allows the efficiency
of SNNs to be exploited on a different substrate.

1.3.3 For efficient implementations in neuromorphic chips
In the late 1980s, Carver Mead introduced the term “neuromorphic” to describe

systems containing analogue and asynchronous electronic circuits that mimic neural
architectures present in biological nervous systems. Neuromorphic engineering aims
at mimicking the neural basis of communication using a variety of techniques, from
purely analogue circuits to software-based neuromorphic systems, and to develop
tools that enhance the capabilities of current AI (ROY et al. 2019 ; JAVANSHIR et al. 2022).
Since the reduced energy consumption of biological networks can be partly explained
by the use of spikes and asynchronous responses to exchange information (MAASS

1997), neuromorphic chips use this parallel and event-based representation to per-
form energy efficient computations. Another important difference with classical von
Neumann architectures 30 is the localised memory of this new type of chips. It can
be materialised by the capacity of the physical connections between the processing
units to store information (MARKOVIĆ et al. 2020). An example of such a connec-
tion directly inspired by synaptic plasticity is the memristor (RASETTO et al. 2022),
in which the resistance value can be dynamically adjusted. Using these event-based
computations as building blocks, neuromorphic engineering proposes new hardware

30. The von Neumann architecture is a design architecture for an electronic digital computer with
these components : a processing unit with both an arithmetic logic unit and processor registers ; a
control unit that includes an instruction register and a program counter ; memory that stores data and
instructions; external mass storage; input and output mechanisms.

36



1 Context – 1.3 The neuromorphic approach

designs perfectly suited to simulate SNNs and exploit the full power of asynchronous
computations observed in biological systems. Even if some useful SNNs simulators
run on GPUs (DIESMANN et al. 2003; HAZAN et al. 2018; STIMBERG et al. 2019), such
event-based computing techniques only show their advantages in terms of frugality
and speed on neuromorphic chips.

The first neuromorphic circuit is the pulsed current source synapse (MEAD et al.
1989). It was implemented with transistors operating in the sub-threshold domain
and responded to asynchronous events, but was unable to discriminate between
two different spiking sequences with the same firing rate. In fact, the postsynaptic
membrane potential was increased by a step proportional to the input current, but
did not decrease over time as observed in biological neurons, or LIF models. Then
electronic circuits became more and more biologically realistic, and two decades
later was released the Diff-Pair Integrator (DPI) synapse, which could reproduce the
global dynamics of the biological neurons (BARTOLOZZI et al. 2007). The DPI circuit
could multiplex in time spikes from different sources and became a potential “silicon
coincidence detector”. Today, many devices are good candidates for implementing
event-based algorithms and use the address-event representation 31 (AER). For a more
complete review on neuromorphic computing, the reader can refer to (SCHUMAN et al.
2017).

This field of research is inspired by neuroscientific advances and a computational
formalism for designing innovative architectures. And, by artificially reproducing such
mechanisms, it is interesting to study neural circuits. Many connections can be drawn
between neuromorphic engineering and computational neuroscience to address both
research and technology challenges (ZENKE, BOHTÉ et al. 2021).

1.3.4 To process information from dynamic vision sensors
Neuromorphic sensors are also being developed with the idea of sensing external

stimuli more efficiently and closer to biological systems. We report other event-based
sensing devices for sound (CHAN et al. 2007), and touch (HAESSIG et al. 2020), but will
focus on visual sensors for the next subsection on exploiting dynamics embedded in
event-based signals.

As presented in 1.1, natural vision is dynamic and spike-based. The retina processes
visual information to transform it into an spike-based representation and sends it
to the brain. For all vertebrates, one can distinguish different neuronal layers with
different functions in the human retina. The outer nuclear layer contains cell bodies of
the rods and cones, the inner nuclear layer contains cell bodies of the bipolar, horizon-
tal and amacrine cells and the ganglion cell layer contains cell bodies of ganglion cells
and displaced amacrine cells (KOLB 2003). Rods and cones are the photoreceptors
and will absorb photons and transfer light into graded potentials that will cascade
through the different cells of the retina. Because each cone type responds best to a

31. Address-event representation is a communication protocol originally proposed as a means to
communicate spikes between neuromorphic chips. An event, or spike, is characterised by the address
of the unit that emitted it and its timing.
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specific wavelength, they are responsible for colour vision. Rod cells have a single
absorbance peak but can be activated by a single photon (OKAWA et al. 2007), they
are responsible for night vision. In most mammalians, the retina can be segregated
into its fovea, located at its centre where most of the cones are concentrated, and its
periphery, where the density of photoreceptors is reduced. Then, they are two major
classes of bipolar cells : ON and OFF bipolar cells, respectively coding for positive
or negative spatiotemporal light changes. They do this by comparing the photore-
ceptor signals to averages computed by the laterally connected layer of horizontal
cells. Retinal ganglion cells receive signals from bipolar cells and amacrine cells with
different connectivity patterns that will lead to different functions. Amacrine cells are
inhibitory interneurons and therefore regulate other cells by repression. The retina
contains more than 20 types of ganglion cells with different functions, these neurons
will be initiating communication through APs by transferring the visual information
to the brain with spikes through the optic nerve. To compare this architecture with
neuromorphic cameras, we restrict the analysis of the retina to these facts but its
organisation is way more complex (KOLB s. d.).

The first silicon retina has been implemented by Misha Mahowald and was a mo-
del of photoreceptors, horizontal and bipolar cells to approximate the behaviour of
the human retina (MAHOWALD 1991). It has been improved into a modelling of both
outer and inner layers including sustained (parvo) and transient (magno) types of
cells (ZAGHLOUL et al. 2004). Then, development of sensors moved toward a more
practical use than a good model of the multiple and complex retinal circuitries. There
are multiple types of silicon retinas ( POSCH et al. (2014) et GALLEGO, DELBRUCK et al.
(2022) for a review), but let’s focus on the dynamic vision sensor (DVS) which will
be used in the following studies. Such sensors capture light information asynchro-
nously : when a change in luminance is detected on a single pixel, independently
of the others, an event is emitted. This event is ON or OFF depending on whether
the luminance contrast detected is positive or negative, resulting in a representation
of relative luminance changes or a representation of reflectance changes. By design,
DVSs capture the dynamics of visual scenes and inherit interesting properties shared
with biological vision such as high temporal resolution, energy efficiency, redundancy
reduction and a high dynamic range. Figure 1.7 is an illustration of the comparison of a
DVS and components of biological retinas. A DVS implements a simplified abstraction
of the photoreceptor-bipolar-ganglion cell information flow and mimics the output
of ON and OFF retinal ganglion cells. However, cells in the retina are organised in
receptive fields (RFs) of different structures and have different conduction velocity
and such configurations allow them to implement various functions. The classical
centre-surround RFs allow to transmit information about light contrast with a specific
spatial frequency that can be linked to the detection of edges. Some retinal ganglion
cells will encode eye movements, colour contrasts or local motion directions. The DVS
is limited to temporal contrasts of light at the level of the pixel but provides an efficient
representation of the visual scene with key properties shared with biological vision :
the sparse, event-based output, the representation of relative luminance changes and
the rectification of positive and negative signals into separate output channels (POSCH
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FIGURE 1.7 – Figure and caption extracted from POSCH et al. (2014) – «Three-layer
model of a human retina and corresponding DVS pixel circuitry (left).
Typical signal waveforms of the pixel circuit are shown top right. The
upper trace represents a voltage waveform at the node Vlog tracking
the photocurrent through the photoreceptor. The bipolar cell circuit
responds with spike events Vdi f f of different polarity to positive and
negative changes of the photocurrent, while being monitored by the
ganglion cell circuit that also transports the spikes to the next processing
stage; the amount of log-intensity change is encoded in the number of
events, the rate of change in interevent intervals. The bottom right image
shows the response of an array of DVS pixels to a natural scene (person
moving in the field of view of the sensor). Events have been collected
for some tens of milliseconds and are displayed as an event map image
with ON (going brighter) and OFF (going darker) events drawn as white
and black dots.»

et al. 2014).
Interestingly, this signal mimics, to some extent, messages sent from the retina to

the brain through the optic nerve. It corresponds, better than static images, to the
encoding of natural scenes the brain has to process to solve different visual tasks.
Because of its design, the DVS will represent a dynamic visual scene in a temporal
coding scheme that can be interesting to use in models of the visual system.
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1 Context – 1.3 The neuromorphic approach

Interim conclusion
The DVS, together with the corresponding AER specification, brings a paradigm shift

in the way visual information can be processed. It can be used to solve computer vision
tasks with new tools that lead to efficient solutions (BENOSMAN et al. 2014 ; OSSWALD

et al. 2017; GALLEGO, LUND et al. 2018). It can also be useful for the neuroscience
community to develop models of the visual system fed with a more realistic signal.
We have shown that the brain exhibits a spiking activity that can be organised into
precise spiking motifs, which are thought to play a role in neural communication. We
want to investigate whether goal-oriented models can efficiently use spiking motifs to
accomplish visual tasks. We will use the signal from a DVS to work with fully dynamic
stimuli and build models of spiking neurons to process this information.

The next two sections summarise two different algorithms that solve object recog-
nition 2 and motion estimation 3 respectively in an event-based fashion. We show
that the use of precise spike timing in these models emerges from training and brings
several advantages, such as an ultra-fast decision process or the ability to reduce the
number of computations while maintaining similar performance on the task to be
solved.

After developing visual models that make an efficient use of spiking motifs, we
aim at revealing such precise patterns in neural activity. We then present a clustering
algorithm to detect spatiotemporal motifs in recordings from biological neurons.
Although some experimental studies highlight the existence of such activity, detection
remains restricted to a limited number of spikes in temporally precise patterns. The
problem of detecting precise spatiotemporal patterns for ongoing spiking activity is
still very challenging and may provide additional evidence for the hypothesis that
precise spiking motifs effectively convey information in the brain.
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2 A robust event-driven approach
to always-on object recognition

2.1 Summary
In this first study (see Annexe 6 for more details), we focus on event-driven pattern

recognition from the signal of a DVS, a difficult computational problem (AKOLKAR

et al. 2015). LAGORCE et al. 2017 solves this task thanks to a feedforward hierarchical
architecture using time surfaces (see Figure 2.1), an analogue representation of the
dynamics of a scene. In Figure 2.1, the time surface represented is computed glo-
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FIGURE 2.1 – Illustration of how to build a time surface from a stream of events. The
two rows correspond to the OFF and ON polarities of the events as output
from the DVS. (Left) Screenshot of a single event (in white) at ti (timing
of the event). (Middle) Storage of the timings of the last events recorded
on each pixel at time ti , forming the matrix T (ti ) (white represents −∞).

(Right) The time surface at ti as the matrix S(ti ) = e− ti −T (ti )
τ , where τ is the

time constant associated to the time surface (note that the maximum of
1 is reached for the current event).

bally, i.e. on the entire pixel grid of the DVS. It is possible to obtain spatially local
time surfaces by selecting only the pixels surrounding the last event address (see
Figure 2.2 (A) for an illustration of a local time surface in red). It is also possible to
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2 A robust event-driven approach to always-on object recognition – 2.1 Summary

change the time constant of the representation to capture more or less long range
temporal dependencies. These are then combined into a Hierarchy Of Time Surfaces
(HOTS) with increasing spatial windows (or RFs) and time constants, as observed in
the visual system. The network compares incoming time surfaces with its internal
representations, which are prototypical time surfaces learned in an unsupervised
manner. This comparison is implemented by a correlation between the time surfaces
and the processing unit, associated with a specific prototypical time surface, with
the closest match emits an event. Through its different layers, this model transforms
the event stream with increasingly complex spatiotemporal features while preserving
its dynamics. Classification is then performed on the transformed event stream, the
output of the network. We have identified two main limitations of the HOTS algorithm.
First, the unsupervised clustering of the time surfaces is highly dependent on the
initialisation, which can affect the performance of the network. Second, the classifier
is based on computing a histogram of the activity of the last layer of the network to
perform the classification. Such a method ignores the fine-grained temporal dynamics
of the stream of events produced by the last layer of the network. More importantly, a
major drawback is that the classification can only be performed post hoc, once all the
events of the tested sample have been received. This approach is not transferable to
on-chip learning and differs from what is observed in biology.

For the stability of the unsupervised learning of the time surfaces, we have pro-
posed the inclusion of a biologically plausible homeostatic gain control mecha-
nism (GRIMALDI, BOUTIN et al. 2021). We have shown that unsupervised feature
learning is qualitatively improved by balancing the activity of the different units within
the same layer.

To achieve a full end-to-end event-driven and online pattern categorisation, we
incorporate and test an online classification method in the final layer of the network
(see Figure 2.2 for an illustration of the full model). The mechanism of the classification
layer is similar to that of the core layers of the model. For this layer, a global time
surface is computed and its probability of belonging to the different classes is given
by a multinomial logistic regression (MLR). We define the classification process as
always-on, meaning that a decision can be made at any time during the processing of
the events. In fact, the classification layer can output a decision per event, for example
with a WTA mechanism (in which case the spiking mechanism is the same as for a
core layer of the network), or only when the probability of having a class reaches a
defined threshold.

We formally demonstrate that the overall structure of the proposed model corres-
ponds to a biologically plausible SNN. Indeed, the definition of the time surface modu-
lated by an exponential decay bears an analogy to the LIF model with exponentially de-
caying postsynaptic potentials. We train our model with a local Hebbian-like learning
rule for the core layers of the network and we apply supervised learning with a binary
cross entropy (BCE) loss on the activity of the last layer. Thus, we obtain a correlation-
based and local learning rule for the last layer as well, and by training our model with
stochastic gradient descent, i.e. sample by sample, we propose an online learning
technique. We validate this fully online and event-driven model on different datasets
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FIGURE 2.2 – Illustration of the event-driven object recognition algorithm presented
in this study. The background of the figure represents the neural network
with spikes to illustrate the dynamic aspect of our method. For simplicity,
we have omitted the spatial grid of the DVS. In the foreground boxes,
we focus on the event-based computations performed in the different
layers of the network. We use an event stream from the Poker-DVS data-
set (SERRANO-GOTARREDONA et al. 2015) to illustrate the mechanisms
of our method. We can observe the contours of the spade symbol in the
global time surface in (A). From an event at time ti , a local time surface
(in red) is generated from the last recorded events on the neighbouring
pixels (A). It is compared with the prototypical time surfaces learned in
an unsupervised manner by the first layer of the network (B). The neu-
ron, associated with the time surface the most similar to the input emits
an event with the same address and timing as the input event, changing
only its polarity (illustrated by the different colours of the neurons of the
first layer). This new stream of events is used to compute a global time
surface at ti (C) with as many polarities as the number of neurons in
the previous layer. This time surface is fed to the classification layer (D),
which also compares the input with supervisely learned kernels to detect
the different classes (here club (CL), spade (SP), heart (HE) and diamond
(DI)). The classification layer corresponds to a MLR of the input time
surfaces and outputs a probability value for each event. In this example,
we apply a winner-take-all (WTA) spiking mechanism to obtain another
stream of events as output. Note that in this case, for each event as input
to the network, an output event is emitted. A thresholding mechanism
can also be applied to the output probability values to only make a deci-
sion with a defined confidence level. In this particular example, only one
unsupervised layer of the HOTS algorithm is shown, but it is possible to
stack as many layers as desired.
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designed for symbol (SERRANO-GOTARREDONA et al. 2015), digit (ORCHARD, MEYER

et al. 2015) or gesture (AMIR et al. 2017) categorisation. A complete implementation
of this algorithm is available at https://github.com/AntoineGrimaldi/hotsline.
These scripts can be used to reproduce all the results presented in this study.

2.2 Contributions
For the neuromorphic community, we first show that the performance of a pattern

categorisation model can be improved by using a simple, biologically plausible ho-
meostatic gain control mechanism. Similar regulation methods on an event-based
dataset are used in DIEHL et al. 2015 ; WU, DENG et al. 2019 to balance the firing rate
across neurons of each layer of the SNN. The model of DIEHL et al. 2015 uses an
adaptive membrane threshold, while WU, DENG et al. 2019 adds one auxiliary neuron
per layer to regulate firing rates. In this last paper, they make a comparison of this
technique with zero-mean batch normalisation, which is used to train DNNs. Here,
we have an online regulation rule that is computed locally with the past activation
of the neurons within each layer. These methods are similar in their goals and are
well justified in terms of efficient coding (L. U. PERRINET 2010). Second, the architec-
ture that we propose is able to perform always-on categorisation which is a novelty
in the field (see Figure 2.3). We demonstrate the advantage of using a probabilistic
approach to classification by showing the decisions made when a defined confidence
threshold is reached (orange dots). Although using a high confidence threshold to
make a decision improves the overall classification performance, the classifier needs
to accumulate more evidence to be able to categorise a stream of events. The flexibility
offered by this approach makes the algorithm a viable model for solving different tasks
that require fast or accurate decisions. Its extension to continuous object recognition
in a real-world scenario is also straightforward. We report some works that can po-
tentially perform event-driven classification, but do not provide any result regarding
this (THIELE et al. 2018; GIANNONE et al. 2020; S. ZHOU et al. 2021). And only two
works in the literature perform online learning with SNN for this type of tasks : KAISER

et al. 2020 does it through local losses on the firing rates of individual neurons that will
minimise a global loss while YIN et al. 2023 performs forward propagation through
time on a recurrent SNN with adaptive time constants. In this last contribution, the
algorithm gets the best classification results for DVS Gesture but needs to reconstruct
frames to do so. We claim that event-driven classification and the trade-off between
the number of computations, the energy consumption, and the accuracy can be an
interesting benchmark for SNNs to compete with huge DNN architectures that sa-
turate the percentage of correct classification on static images. Even with a small
architecture and computations constrained by biological observations, we achieve
competitive results for the overall classification accuracy. We report that our model is
robust to both spatial and temporal jitter, this resilience is in line with what is observed
in biological systems and is interesting to compare neuroscience and neuromorphic
vision. One last interesting point of this study is that we have developed a method with
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online and local learning rules, which is then transferable to neuromorphic hardware
for on-chip learning.
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FIGURE 2.3 – Accuracy for online classification on 3 different datasets.

Regarding the study of biological systems, we have developed a model that goes
toward a biologically realistic one. We use a fully spike-based signal that mimics the
output of some retinal ganglion cells to solve a demanding cognitive visual task with
spike-based computations in a robust fashion. We constrain it to the capacity of bio-
logical systems with local learning rules and the avoidance of batches, which makes
the training of the model closer to what biological systems experience. We infer that
capturing the statistics of the environment through unsupervised learning of the first
layers makes the system robust and flexible when it comes to adapt to a different
cognitive task. Following some physiological principles, the model is hierarchically
organised with increasing RFs (LENNIE 1998) and neuronal timescales (MURRAY et al.
2014) along its hierarchy. Resilience to translation is also obtained by using local time
surfaces in the first layers of the network, which will reproduce the working principle
of a convolutional SNN. All these conditions make this method interesting for neuros-
cience and suggest that the representations stored in the network can provide insights
to the organisation found in neural systems. Although time surfaces are explicitly built
in this model, they form an efficient temporal coding scheme in which visual informa-
tion can be encoded as a function of the delays between the current spike and the last
spikes emitted by different presynaptic neurons. This dynamic classification, which
evolves over time for each new event, is closer to the object recognition performed by
biological systems. This efficient and realistic coding of visual information with time
surfaces is consistent with the hypothesis that the visual system uses spiking motifs
for computations. We show that we can achieve competitive results for a demanding
cognitive task with a biologically realistic architecture. Overall, these results provide
a good illustration of the potential synergy between neuromorphic engineering and
computational neuroscience.
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2 A robust event-driven approach to always-on object recognition – 2.3 Limitations

2.3 Limitations
One potential concern in adapting this algorithm to real-world categorisation is the

use of time surfaces to detect an object. Indeed, a deeper analysis of the representation
inherent in time surfaces, combined with the temporal code of the DVS, reveals
that they represent the dynamic signature of a moving object. A time surface thus
represents a combination of an object and its motion, but the two elements are not
explicitly dissociated. This entangled information may need to be separated to achieve
optimal object classification. For simple datasets with uniform movement, such as
Poker-DVS, classification is excellent. For more complex trajectories, like “saccades” in
N-MNIST, we can still achieve good classification accuracy, but we cannot match the
performance of state-of-the-art algorithms. Even if sophisticated results are obtained
with a reduced number of events, the classification accuracy reaches a plateau, and
we believe that we can overcome this performance limitation by dissociating shape
from motion in the time surface. This can be achieved by having a motion estimation
system that communicates with the object recognition architecture built here. It
would model the communication between the dorsal and ventral streams. Another
interesting future step for this work is to exploit the computational efficiency offered
by SNN simulators or neuromorphic hardware. For now, this work serves as a proof
of concept for event-based online classification, but the scripts developed here do
not take full advantage of asynchronous computation, as they are programmed for a
standard GPU.

With respect to the visual cortex analogy, we can question whether the signal we are
using is the right one for object recognition. With its relatively low spatial resolution, its
encoding of luminance contrasts with fast transients and the absence of a colour signal,
the output of the DVS is supposed to represent the visual information transmitted by
parasol cells. This type of retinal ganglion cell projects to the dorsal stream, which
is thought to encode motion and depth perception, rather than object recognition,
presumably performed by the ventral stream. Interestingly, we can perform object
recognition with this signal, suggesting that the two distinct visual streams have
redundant information and intricate connections. It may also suggest that a simpler
biological system with a less sophisticated visual cortex can also perform well at
this cognitive task. Regardless of the connectivity of the visual cortex, it shows that
visual information can be efficiently encoded and decoded by a temporal code that
uses spatiotemporal patterns of spikes : the time surfaces. However, we do not draw
strong conclusions from this study because the interpretation of time surfaces in
terms of neural representations is not straightforward. Indeed, since a new event
erases the entire past history of events recorded at a given pixel address, the artificial
construction of time surfaces can be criticised. This can be useful for representing
recent spatiotemporal patterns in a compact way, but provides a not fully realistic
view of spike integration on spiking neurons. In addition, the non-linearity introduced
by the exponential decay makes the temporal resolution of the time surface higher
for the most recent events than for the older ones. It is a limitation when it comes
to studying spiking motifs, as they are distorted by this representation. Even if this
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2 A robust event-driven approach to always-on object recognition – 2.3 Limitations

model may have interesting properties for the neuromorphic community and if this
architecture is biologically plausible for a lot of aspects, this lack of interpretability of
the time surfaces makes it inaccurate as a computational neuroscience model.
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3 Learning heterogeneous delays
in a layer of spiking neurons for
fast motion detection

3.1 Summary
In this work, we study the emergence of spiking motif detection when training a

single layer of spiking neurons on a motion detection task.
We propose a model of spiking neuron capable of integrating over different synaptic

delays as shown in Figure 1.6. Its implementation is performed on GPU and the
neurons’ RFs are represented by convolution kernels, with a time dimension, applied
to the spike train as input (see Figure 3.1). The temporal event-based representation
of the input is transformed into a dense discretised representation corresponding to a
Boolean matrix, and the convolution can be applied with kernels defined locally in
space and time. Each weight of the kernel is associated with a specific presynaptic
address and a specific synaptic delay, and corresponds to a synaptic weight that can
be tuned to detect precise spiking motifs. A sigmoid function is applied to the output
of the convolution to give a probability of detecting a specific sequence of spikes.
Interestingly, multiple spikes can be integrated along the same presynaptic address
and associated with a unique motif. In this representation, and because the input
corresponds to binary spikes, the sum of the activated weights, corresponding to the
output of the convolution for a given spatiotemporal address, is the log-odd ratio of
the probability of observing a spiking motif. Each weight in the convolution kernel
corresponds to an evidence from an independent observation and the output of the
convolution represents the accumulation of evidence at that specific location. We
name this model the Heterogeneous Delays Spiking Neural Network (HD-SNN).

To train this model, and to see if such neurons can use synaptic delays to learn
precise spiking motifs, we develop a motion detection task. A first model, proposed
in a conference publication (GRIMALDI et L. U. PERRINET 2022), with a single layer of
such spiking neurons was trained to detect motion on an event-based dataset built
by reproducing the generative model of a DVS on moving parameterised textures :
motion clouds 1 (LEON et al. 2012). We have demonstrated that through supervised
learning on the motion classes, the model was able to detect spiking motifs associated

1. Motion clouds are random dynamic stimuli optimised for the study of motion perception. Their
statistics mimic those of naturalistic textures while allowing control over various stimulus parameters
such as direction, scale and orientation.
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FIGURE 3.1 – Implementation of a SNN with heterogeneous delays through spatio-
temporal convolution kernels – (Left) We plot a 2D representation of the
input event stream as a raster plot (showing ON spikes in red and OFF
spikes in blue for each presynaptic address and time). A spatiotemporal
convolution is applied to the dense representation of the input with 2
different convolution kernels (the green and orange kernels) defining
the output channels. The convolution is summed over the two polarities.
Since we have two axes X and Y to represent the presynaptic addresses,
like the pixel grid of a DVS, this results in a 3D convolution. Here we
simplify the illustration to a 2D representation and to 2 possible classes
(green and orange) here associated with two different motion directions.
(Middle) For each position (address, time), the activation resulting from
the convolution can be calculated. The output of the convolution is pro-
cessed by the non-linearity of the MLR model (i.e., the sigmoid function).
The output of the MLR gives a probability for each class associated with
a particular kernel (coloured bars in the highlighted pixel). (Right) By
adding a spiking mechanism, here a winner-take-all associated with
thresholding, we obtain as output of the HD-SNN model a new spike
train with the different spikes associated with a particular class. Note
that the position of the output spikes does not systematically correspond
to the position of the input spikes, but only when enough evidence is
obtained.

with the motion direction to estimate. In fact, we find an organisation comparable
to the Reichardt detectors observed in the fly motion processing system (HAAG et al.
2004). The kernels developed a selectivity for the spike sequence characteristic of the
associated motion direction and an antiselectivity, with negative weights, for other
spike sequences describing other motion directions. We also show that, once trained,
the distribution of the kernels’ weights is sparse and that it is possible to prune some
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weights to reduce the number of computations. Compared to the full kernels, the
accuracy of our method is maintained when dividing the number of computations by
200 showing some advantages regarding the accuracy/efficiency trade-off compared
to a method with 2D representations using time surfaces.

delay

FIGURE 3.2 – Representation of the weights for 8 directions for a single velocity
(among the 12 × 3 different kernels of the model) as learned on the
dataset of naturalistic scenes. The directions are shown as red arrows
in the left insets, where the discs correspond to the set of different pos-
sible motions. The spatiotemporal kernels are shown as slices of spatial
weights at different delays. The delays vary along the horizontal axis
from the far right (delay of one step) to the left (up to a delay of 12 steps,
the remaining synapses are not shown). Each image corresponds to the
weights at a given delay, with excitatory and inhibitory weights in warm
and cold colours, respectively. Different kernels are selective for the dif-
ferent motion directions, and we observe a slight orientation preference
perpendicular to the respective direction for all kernels.

In the present work (see Annexe 7 for the full article), we extend these results to
a much more complex and natural setting. First, we define the ecological cognitive
task that the model must solve with the different datasets on which it will be tested.
Instead of the synthetic textures used previously, we use natural scenes synthesised
from whitened natural images translated by biologically inspired saccadic movements.
The same generative model of the DVS is applied to the moving images to obtain
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binary event stream. The movements are more complex and the number of classes is
increased with a greater number of possible directions, but also with different possible
speeds. During a single trial, motion can vary in speed or direction following a random
walk. We also add neuroscience-inspired heuristics to the model to constrain its
strategy for solving the task. First, to avoid introducing biases in the directions that
can be learned, we apply a circular mask to the spatial dimensions of the kernels.
Since we want to capture the possible convergence of the trajectories of the events at
each location, we apply a mask to the spatiotemporal kernels such that the smaller the
delay, the smaller the radius of the circular mask that is applied. In our simulations,
we observed that including this prior accelerated the learning, but was not necessary
to achieve convergence. We also included a prior in the selectable motions, as there is
a prior for slow speeds in natural scenes (VACHER et al. 2018). Second, we observed
that moving images produced trajectories of ON and OFF spikes, and that these were
present in both polarities. Since this arrangement of polarities is independent of
motion, we added a mechanism that collects the linear values with non-inverted
and inverted polarities and keeps only the maximum. This method makes the model
polarity invariant and is similar to the computation done for complex cells in primary
visual cortex. We highlight the fact that the model is trained in a semi-supervised way
because a label for a specific motion category is provided at each time point or “frame”
but the spatial location of the neuron that has to emit a spike is not known.

The results show that this layer of spiking neurons can efficiently solve the task by
learning specific kernels observed in Figure 3.2. We observe that the cells exhibit some
selectivity along linear trajectories in the space-delay domain. Indeed, the weights
are higher in a spatiotemporal “tube” corresponding to the direction of motion with
which the kernel is associated. We demonstrate the tuning of the kernels to a sparse
temporal sequence of spikes through an additional analysis (see Figure 3.3). Once the
model is trained, we prune the weights by removing those below a defined threshold
(blue dots) and compare the accuracy results when removing slices of weights, i.e.
shortening, starting from the highest delays (orange dots). There is a rapid decrease
in accuracy for shortening compared to weight pruning, indicating the use of the
full temporal window to detect the sequence. We also observe a centre-surround
organisation of the RFs, as observed in biological systems. This organisation suggests
that the model infers the motion direction by detecting local spiking sequences along
motion trajectories. Note that, even though Figure 3.3 suggests that the detection of
the spiking motifs accumulates evidence over the full temporal window, the weights
decrease as the delays increase. This is consistent with the fact that the trajectories are
defined piecewise, then this decrease provides with an optimal integration given the
gradual decrease in evidence over the past history. We also observe some tuning to
the orientation orthogonal to the motion direction, similar to neurons in the middle
temporal visual area 2 (MT) (DEANGELIS et al. 1999).

2. Visual area MT in primates is thought to play an important role in the perception of motion, the
integration of local motion signals into global percepts, and the control eye movements. It is located in
higher level areas of the dorsal stream. A large proportion of cells in MT are tuned to the speed and
direction of moving visual stimuli.
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FIGURE 3.3 – Accuracy as a function of computational load for the HD-SNN model
(blue dots) with error bars indicating the 5% - 95% quantiles and a sig-
moid fit (blue line). The relative computational load (on a logarithmic
axis) is controlled by changing the percentage of non-zero weights rela-
tive to the dense convolution kernel. If we reduce the length of the kernel
by using only the weights with the shortest delays, the accuracy drops
rapidly. However, if we prune the lowest coefficients from the entire
kernel, we observe a stable accuracy value, with a drop to half-saturation
observed at about 670 times fewer computations.

We also characterise the accuracy of the model when tuning the motion cloud pa-
rameters. First, we observe a broad tuning response in accuracy as we change the
mean spatial frequency of the texture. This follows a similar trend as in the primary
visual areas (PRIEBE et al. 2006 ; L. U. PERRINET et MASSON 2007) and reveals the most
informative scales learned by our model. Then, by modifying the bandwidth in spatial
frequency, we show that the accuracy is worse for a grating-like stimulus than for a
large one (which qualitatively resembles a more textured stimulus), reminiscent of the
human behavioural response to such stimuli (SIMONCINI et al. 2012; RAVELLO et al.
2019). Interestingly, we also see a modulation of accuracy as a function of orientation
bandwidth. When the stimulus is grating-like and the orientation is arbitrary with res-
pect to the direction of motion, the system faces the aperture problem and experiences
a sharp decrease in accuracy (L. U. PERRINET et MASSON 2012). This is not the case for
isotropic stimuli or when the orientation is perpendicular to the direction of motion.
Finally, we manipulated the amount of change between two successive frames, similar
to a temperature parameter. This shows a progressive decrease in accuracy, similar
to that observed for the amplitude of human eye movements (MANSOUR POUR et al.
2018).
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3.2 Contributions
We train a model to solve a motion detection task and show that it uses the detection

of spiking motifs to do so. Kernels that are selective for precise spiking motifs emerge
from the training in a goal-oriented model. This highlights the potential to exploit
this precise timing to improve the efficiency and effectiveness of neural computation
specifically in the context of visual motion detection. We propose that a spiking neuron
with heterogeneous delays is able to synchronise the spiking motifs at the level of its
soma in order to efficiently decode the information embedded in this representation.
This models shows good performance for this motion estimation task and maintain
this high accuracy value when pruning some weights of the kernel. Through learning
and pruning of the weights, we show that we can develop an efficient architecture that
will solve a visual task with a reduced number of computations.

We also developed a model that is biologically realistic in the task it solves or in the
mechanisms it employs. First, the spike train generated to model the visual informa-
tion captured by a DVS is derived from the motion of natural images with realistic
eye movements. We then constrain the SNN model with some heuristics such as po-
larity invariance or the cone shaped kernels that take into account the duration of
the delay transmission. Apart from these, we see the emergence of well-structured
RFs that resemble biological ones through a local supervised learning rule. We also
observe that the performance of the model follows the results found in psychophysical
experiments. It shows successful results of the top-down approach to modelling.

The simplicity and locality of the learning rule makes it implementable on neuro-
morphic hardware, and our analysis shows that using spiking motifs for computation
can be an efficient tool.

3.3 Limitations
We have identified a number of limitations of our model, which we will now discuss

in detail. First, this implementation of the HD-SNN model is based on a discrete
binning of time, which is incompatible with the continuous nature of biological time.
It is possible to circumvent the need for time discretisation by using a purely event-
based scheme, but this is not done in this study. We also note that the kernels of spiking
neurons have no smoothing properties to account for the integration of the discrete
spike into a postsynaptic potential, which has a different temporal course than a spike.
This simplification is not realistic and implies that the time scale of this postsynaptic
potential is linked to the time step used for the discretisation. The integration and
firing mechanism of the neuron is instantaneous with respect to the unit of time used
to discretise the input.

Another limitation is that the model is purely feed-forward. This means that the
spikes generated by the postsynaptic neurons are based solely on the information
contained in the classical RF.

Finally, if we train the model on the same task but with two different sets of data,
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we obtain two different sets of kernels. One can ask whether a model trained on one
dataset solves the task on the other dataset, but we did not perform this analysis.
The fact that in one case we obtain a RF similar to that observed in the fly retina
and in the other case similar to the RF associated with neurons in MT shows that
learning is dataset dependent. This is reminiscent of tuning the model to specific
stimulus properties, and one may wonder whether these properties are informative
or just reflect the statistics of the synthetic dataset. We argue that this strategy may
be that used by biological systems and that, in the case of the first dataset, simple
motion of natural textures can be characterised by Reichardt detectors, while more
complex scenes require more sophisticated strategies such as the combination of
motion trace detection and orientation to be accurate. Motion detection cells can be
found throughout the hierarchy of the dorsal stream, and our model suggests that
LGN neurons should be able to predict motion direction because the task can be
solved efficiently with a single layer of neurons. The fact that we have static images in
translation to represent motion makes the task too simple to make strong predictions
about motion detection in biological visual systems that face more complex visual
scenes with different types of movements.

3.4 Additional premilinary study : Fully event-based
unsupervised learning of precise spiking motifs
using spike-time dependent weight and delay
plasticity

In this additional study, we propose a biologically plausible unsupervised learning
rule for both synaptic weights and delays. This is achieved by deriving a loss function
that depends on the membrane potential of the spiking neuron. This gradient-based
approach, similar to expectation maximisation, maximises the membrane potential
of the neuron at the postsynaptic spike time. We add a regularisation term to the loss
function, which formalises a homeostatic mechanism that acts on the spiking activity
of the neuron. The gain of the neuron can be increased or decreased according to a
target firing rate, without any supervision on the timing of the output spike. We show
on synthetic data that such a spiking neuron is able to learn a precise spatiotemporal
motif of spikes embedded in a synthetic spike train. This original and simple learning
rule can be applied to a layer of neurons with WTA mechanism to learn multiple
spiking motifs.
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FIGURE 3.4 – Given a generic raster plot defined by a set of spikes occurring at specific
addresses and times, we can consider that this information consists in
the repeated occurrence of groups of precise spiking motifs. The upper
plot of the figure represents a raster plot with the occurrence of two
different spiking motifs (highlighted in purple and red colours). The
orange arrows represent the synaptic delays (the longer the arrow, the
longer the delay) of our spiking neuron model, which multiplexes inco-
ming spikes in time. The multiplexed patterns are shown in orange and
represent the time at which the incoming spikes will arrive at the soma
of the neuron. Note that spikes from the red pattern reach the soma
synchronously. The lower part of the figure shows the evolution of the
membrane potential of the spiking neuron. At 600 ms, all spikes from
the red pattern reach the soma simultaneously, resulting in a sudden
increase in the membrane potential. Note that the neuron is not sensi-
tive to the background activity or to the other spiking motif, but only
the synchronous activation of the red pattern leads to an output spike,
shown in red in the lower figure.

3.4.1 Mathematical formalism
Membrane potential of our spiking neuron model :

V (t ) =Vr est +γ · (Vθ−Vr est ) ·∑
s

ws
∑

r∈ξs

Ks(t , tr )− ∑
f ∈ξp

(Vθ−Vr est ) ·e− t−t f
τ

where Vr est is the resting membrane potential, Vθ is the membrane potential thre-
shold, ws and δs are respectively the synaptic weight and delay of synapse s, γ is
the gain of the neuron, ξs and ξp are both spike trains associated respectively to the
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synaptic address s and the neuronal address p and Ks is the kernel applied to the input
spikes. Note that this formulation corresponds to the solution of a LIF neuron if we

use the following kernel : Ks(t , tr ) = e− t−tr −δs
τ .

Loss function :
L (t f ) =−V (t f )+λ · ∣∣N f − rp ·T

∣∣
λ is a regularisation factor, t f the timing at which a postsynaptic spike is emitted,
N f the number of spikes that occurred during time window T and rp is the objective
average firing rate for neuron p.

Learning rule for the delays : obtained by deriving the loss function according to a
specific delay

δs ← δs +µδ ·ws ·
∑

r∈ξs

∂Ks(t f , tr )

∂δs

Learning rule for the weights :

ws ← ws +µw · ∑
r∈ξs

Ks(t f , tr )

Homeostatic adaptation of the gain :

γ← γ+µγ ·λ ·N f · sg n(1−γ)/T

3.4.2 Results on synthetic data
To test this model we train it on synthetic data with background activity generated as

Poisson noise and structured sequences of spikes that are repeating at a fixed averaged
frequency but without any prior on the arrival time of the sequence. We generate 3
different spiking motifs and, to assess the training of the weights, we show results on a
pattern that does not cover all the synapses (see Figure 3.5). For the results presented
here we applied a non-causal LIF kernel given by the following equation :

Ks(t f , tr ) = e−
∣∣∣t f −tr −δs

∣∣∣
τ

Then, the derivative of the membrane potential becomes :

∂V (t f )

∂δs
= ws

τ

∑
r∈ξs

sg n(t f − tr −δs) ·Ks(t f , tr )

We have introduced an unsupervised learning rule (STDP) to adjust the synaptic
delays in order to synchronise spikes from a repeating input pattern. This synchro-
nisation maximises the membrane potential of the spiking neuron and allows the
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FIGURE 3.5 – Results of the unsupervised training of the spiking neuron to learn pre-
cise spiking motifs. Synaptic weights and delays of the neuron after
learning are represented with the orange circles (the larger the circles,
the higher the synaptic weight ; timing of the dots correspond to the out-
put spike time minus the synaptic delay to match the temporal location
of the motifs) and detect the true motifs. Note that when the spiking mo-
tif is not defined on some addresses (see the last plot), synaptic weights
are decreased to signal the irregularity of precise spike timing on these
addresses.

detection of a specific spatiotemporal motif embedded in the raster plot. We high-
light that this method is fully event-based and does not need and time discretisation
as in the HD-SNN model. We only tested it on a toy model of synthetic data and
this spiking neuron needs to be extended to a SNN with multiple neurons per layer
to detect different sequences. This work was presented as a poster at the Bernstein
conference (GRIMALDI, BESNAINOU et al. 2022).
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4 Spiking motifs in biology

4.1 Already existing techniques for spiking motifs
detection

Having developed computational models that extract and process precise spatio-
temporal activity in spike trains, we wonder if such motifs of spikes can be found in
neurobiology as well. When a reference signal like stimulus or behaviour exists it can
be easier to extract a precise spiking motif, using the stimulus onset as a time reference.
However, for ongoing spiking activity, the detection of such patterns requires reliable
unsupervised clustering, which is notoriously hard. The problem of detecting precise
spatiotemporal patterns in neural recordings started to be addressed a few decades
ago for simple cases, but has yet to be tackled for conditions that match empirical data
typically studied in biology nowadays (many neuronal spike trains with high variability,
e.g. in FRs, coefficient of variation, etc.). Concretely, for the simultaneous recordings
of only two neurons, TOYAMA et al. (1981) may be the first report of a synchronous
activity of the cells. In this case, a simple cross-correlation can highlight the frequency
of occurrence of this motif. For multi-unit recordings, this type of event spanning
two or more neurons was termed unitary events, and a method was developed to
detect synchronous spike patterns without time discretisation (GRÜN, DIESMANN

et al. 1999). A good explanation of the method and its extension to non-stationary
data or with the addition of a sliding window for a time-resolved measure can be
found in GRÜN et ROTTER (2010). In brief, they detect unitary events through frequent
itemset mining and assess the strength of the evidence of their repetitions against the
null hypothesis that such coincidences occur randomly. Thus, to formulate the null
hypothesis, information on the statistical distribution of the data is needed, which
can be problematic when recordings are limited in time or in number of trials, and
the computational burden for the search of all possible patterns can be expensive
especially when dealing with a large number of neurons.

This type of analysis can also be generalised to spiking motifs, i.e. a tight synchro-
nisation with heterogeneous delays or latencies, called precise firing sequence (PFS)
in ABELES et GERSTEIN (1988) or spatiotemporal patterns (STPs) in (QUAGLIO, ROSTAMI

et al. 2018) (see Figure 4.1 for an illustration). Because it is usually hard to detect re-
petitions when the complexity of the pattern increases, a solution is to search for
triplets (ABELES et GAT 2001). With these approaches, the above-chance patterns
can be considered a signature of a cell assembly. With increasing computational
resources and the development of multi-unit recording technology, detection of lar-
ger motifs as sequential activities of group of neurons arranged in synfire chains is
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FIGURE 4.1 – Figure and caption are extracted from QUAGLIO, ROSTAMI et al. (2018) –
«Raster plots of different correlation types. Each panel shows the spiking
activity of parallel spike trains (one neuron per row) over time (horizontal
axis). Each dot represents a spike; the red dots in particular represent
spike belonging to a spike pattern. Different panels refer to different
forms of temporal spike correlation. (A) Pairwise correlation model. The
population contains 6 pairs of synchronised neurons (the latter indexed
from bottom to top) : (1, 2), (1, 3), (2, 4), (8, 9), (8, 14), (13, 14). (B)
Synchronous spike patterns. neurons 4, 5, 6, 7 are repeatedly involved
in the pattern. (C) Differently from the spike patterns in panel a, the
neurons involved in each synchronous event are randomly selected and
change from one event to the next. (D) Spatiotemporal patterns. The red
spikes correspond to occurrences of an STP. The neurons involved in the
patterns are 4, 5, 6, 7, as in panel a, but their spikes occur now in a fixed
temporal succession with fixed delays. (E) Sequences of synchronous
spike events. Two occurrences of the same SSE are shown. Here, all
observed neurons are involved, and groups of 4-4-4-3 synchronously
firing neurons fire in short succession.»

possible. In (SCHRADER et al. 2008), sequences of synchronous events are detected
and bound together in a larger event detected as a synfire chain. Spike pattern de-
tection and evaluation (SPADE) is another tool to detect STPs in massively parallel
spike trains (QUAGLIO, YEGENOGLU et al. 2017). This method was extended for STPs
of different temporal durations (STELLA, QUAGLIO et al. 2019). (RUSSO et al. 2017)
propose to solve the problem of cell assembly detection with less constraints on the
patterns allowing to target not only precise motifs but also correlations of spike counts.
They first extract pairwise correlations and then combine them into larger sequences,
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iteratively testing the significance of the larger pattern. Another method makes the
detection of precise spiking motifs through a spectral analysis (VAN DER MEIJ et al.
2018). These bottom-up unsupervised approaches are applied in neural recordings
and their performances and limitations are compared in QUAGLIO, ROSTAMI et al.
(2018).

Because of the strictly positive definition of a spike train, non-negative matrix facto-
risation (NMF) can be applied to this type of data. This method will decompose the
spike train into sequences which represent the spiking motifs and temporal loadings
that indicate the occurrence of these motifs. NMF is interesting because, unlike other
dimensionality reduction techniques like principal component analysis (PCA) (LOPES-
DOS-SANTOS et al. 2013), it will capture sequences into an intuitive “parts-based”
representation. Applied with a temporal convolution, this technique can reveal re-
peating motifs, through the sequences, and their apparition timing, through their
temporal loadings. Different implementations of this method have been applied to
neural data (PETER et al. 2017 ; MACKEVICIUS et al. 2019) and it was recently extended
to continuous time with a fully probabilistic Bayesian framework (A. WILLIAMS et al.
2020). For each spike, its probability to belong to a defined sequence or to the back-
ground activity is obtain through a Gibbs sampling routine 1 from a Neyman-Scott
process 2. This method overcomes pitfalls coming from spike binning or the generative
model used to create surrogate data for statistical testing (STELLA, BOUSS et al. 2022).
They also add time warping factors to model sequences of varying duration. Since
Monte Carlo routine has to be run for each spike, the computational complexity of
this algorithm is very high, and this method may not scale well to large numbers
of neurons. (LI et al. 2022) takes it one step further with an online method based
on a hierarchical Dirichlet point process and without the need for iterative updates.
Even if they demonstrate a better time cost to run their method on a dataset with
120 neurons, it lies in the same order of magnitude as A. WILLIAMS et al. (2020). For
these last methods, in addition to the high computational complexity, the choice of
the model and the initialisation of the latent space has an impact on the attribution of
spikes to the different latent variables.

In most of these approaches, there is a lack of reliable validation of the method on
real data while in the bottom-up approaches, only small or synchronous motifs can be
detected. There is still space for improvement regarding the unsupervised clustering
of spiking motifs with an efficient and reliable method.

1. A Gibbs sampler is a Markov chain Monte Carlo algorithm for sampling from a specified multiva-
riate probability distribution when direct sampling from the joint distribution is difficult, but sampling
from the conditional distribution is more practical.

2. A Neyman-Scott process is a particular case of a Poisson cluster process.
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4.2 Unsupervised clustering by solving the optimal
transport problem

A key aspect of unsupervised clustering methods is the metric used to compare,
especially separate, spike trains or spiking motifs embedded in raster plots (SATUVUORI

et KREUZ 2018). In point process frameworks, the degree of mathematical structure
is not the same as in vector-based procedures. Having a non-linear space can be
interesting regarding the nature of neural dynamics. The definition of a measure
of dissimilarity (or distance) characterises a “space” where spike trains lie and can
be compared, pooled together, etc. In essence, unsupervised techniques amount to
clustering the spike trains using these metrics, which provides a unified framework to
compare and validate results. A famous metric is the Victor-Purpura distance, which

FIGURE 4.2 – Figure and caption are extracted from SOTOMAYOR-GÓMEZ et al.
(2023) – « A) Example of two [spike trains] with spike times tk =
(10,10,10,10,10,10) and tm = (25,40,45,55,60,70) (note only one spike
per neuron in this example). B) Distances between spike times tk and
tm . C) The vector c⃗ contains the differences of spike times tk and tm .
D) Computation of the median of c⃗ : gmi n = 40. E) gmi n is the op-
timal global shift such that fi = ci − gmi n .The neuron-specific shifts
f⃗ = (−25,10,5,5,10,20) contain all the information about the structure
of distances between tk and tm . SpikeShip equals Fkm = 1

6

∑N
i | fi | = 75

6 .»
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quantifies the difference between two spike trains in terms of both the number of
spikes and the differences in spike timing. It estimates the cost of transforming one
spike train into another, first by adjusting the number of spikes through addition or
deletion, and then by shifting spike timings. A hyper-parameter is used to increase
the penalty for adjusting the number of spikes or shifting the timing, bringing this
metric closer to a rate distance or a temporal distance. We can also mention the van
Rossum distance, which computes the difference between spike trains convolved by
an exponential kernel (ROSSUM 2001). A similar strategy is used in SCHREIBER et al.
(2003), but with a symmetric Gaussian kernel. Even though they normalise the spike
trains, making it sensitive only to temporal modulations of rates, both the kernels
of this metric and the van Rossum one can be tuned to make the method sensitive
to finer or coarser variations in spike timing. These spike train distances are called
spike-resolved because spikes are the main elements of the measures. Another type of
spike train distance, called time-resolved, are based on time and do not depend on an
additional parameter making the metric more sensitive to rate or timing differences.
For each sampling time point, the ISI-distance (KREUZ, HAAS et al. 2007) computes the
ratio between instantaneous ISIs of both spike trains and averages these values over
the whole time profile. The SPIKE-distance additionally takes into account differences
in spike timing (KREUZ, CHICHARRO et al. 2011) and will then also evaluate the global
phase shift. Only two identical spike trains will obtain a null SPIKE-distance when
a null ISI-distance can be obtained, e.g. with two spike trains with constant ISIs
and a global phase shift. Another extension of this method removes the weighting
sensitive to differences in rates to make the distance only sensitive to spike timing
information (SATUVUORI, MULANSKY et al. 2017).

While the spike-resolved methods we have introduced here are dependent on a
hyperparameter characterising the timescale of the comparison that will evaluate a
specific coding hypothesis, time-resolved methods are more general but rely only on
the local dissimilarity of the spike trains.

In this section, we will focus on the earth mover’s distance (EMD), a metric that
solves the optimal transport problem, applied to spike trains. It is generally defined
between probability distributions, over a specific metric space. Intuitively, if each
distribution is viewed as a unit amount of earth, the metric is the minimum “cost of
work needed” for turning one pile into the other, which is assumed to be proportional
to the amount of earth that needs to be moved times the distance it has to be moved.
EMD applied to spike trains provides an elegant framework to compare them by
quantifying the amount of energy needed to transform a sequence of spikes into
the other one. It has been applied to cluster temporal patterns in high-dimensional
neural ensembles (GROSSBERGER et al. 2018). It was further extended as SpikeShip, a
simplified implementation of the EMD with a linear computational complexity and a
sensitivity to higher-order structures (SOTOMAYOR-GÓMEZ et al. 2023). Its definition
makes the metric invariant to a global shift of the spike train which is an interesting
property when comparing reoccurring motifs (see Figure 4.2). This metric shows
advantages in assessing the dissimilarity of temporal sequences on a synthetic dataset
of inhomogeneous Poisson processes. SpikeShip is agnostic to rate differences and
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will only capture the global transport cost evaluating all the relative spike-timing
relationships among neurons. It can also be used on neural data to assess if spike
trains can be linked to a behavioural state or a specific visual stimulus. Clusters of high
dimensional spike trains, obtained on the metric-space of SpikeShip, can be visualised
in a low dimensional space and are correctly segregated.

Because it is defined globally on time and it relies on relative spike-timing relation-
ships across all neurons this metric can be particularly suited to detect spiking motifs
in neural spike trains. As such, the metric is summed over all neuron dimensions,
spiking motifs are not directly extracted but they may be obtained by analysing the
neural flows, i.e. the neuron-specific shifts once the global shift is discarded. Ano-
ther disadvantage of SpikeShip to extract spiking motifs is that the metric is defined
on all the spikes in a time window, thus being dependent on the time window and
accounting for background noise as well.

4.3 Optimal transport theory for spiking motifs
detection

We aim to use the framework given by SpikeShip and the optimal transport theory
to develop a method capable of extracting repeating spiking motifs. We explored
different axes of research and we will describe first the ability of SpikeShip to identify
overlapping motifs to conclude with the development of a generative model that
robustly captures different repeating spike sequences embedded in a raster plot.

4.3.1 Representation of mixtures of different motifs on low
dimensional manifolds

We begin with a simple problem that can be solved using classical linear decom-
position techniques to check whether SpikeShip, a non-Euclidean metric, is able to
differentiate linearly separable sources. We start with a generative model that draws
random probability maps for the emission of three distinct spiking motif (see Figure 4.3
K1, K2 and K3). The spatiotemporal locations of the spikes are drawn randomly and
independently with a fixed average number per motif. For each neuron address and
time step, the probability of having a spike is given by a value between 0 and 1. To
generate a mixture of motifs, we can combine them with a linear coefficient and create
another probability map to generate raster plots from this distribution (see Figure 4.3
(right)). Then a Bernoulli trial draws a sample from the probability distribution. Jitter
can be added by convolving the probability distribution associated with a given motif
with a Gaussian kernel, defined by certain standard deviation representing the amount
of jitter. This model is oversimplified, but can be used to assess the ability of SpikeShip
to distinguish between the different sources used to generate the mixture of motifs.
We draw a dataset of 500 random sets of coefficients for the combination of 3 original
motifs and 10 Bernoulli trials for a set of coefficients. We show that a dissimilarity
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FIGURE 4.3 – Illustration of the generative model to create a mixture of spiking motifs
– Each kernel represents a spike pattern that is repeated with more or
less temporal precision. To simulate the temporal jitter associated with
the different spikes of the motif, a Gaussian kernel specific to each spike
is used to convolve the all-or-none events (the precision is given by the
standard deviation of the Gaussian kernel). The mixture of the 3 first
kernels K1, K2 and K3 is given by a linear combination of the kernels
with coefficients between 0 and 1 (here kernel on the right).

matrix obtained with SpikeShip applied on the different raster plots, together with a
dimensionality reduction technique, was able to qualitatively distinguish the different
sources and represent the Bernoulli trial in a 2D space as a combination of the original
spiking motifs. Note that we tried different dimensionality reduction methods and
that not all of them were able to solve the problem. Successful methods are PCA, mul-
tidimensional scaling 3, isomap 4 and t-distributed stochastic neighbour embedding 5

(see Figure 4.4 for a representation using isomap). We summarised these results in
online notebooks.

With this analysis, we show that SpikeShip is able to distinguish between the dif-
ferent sources of a linearly combined signal. It is interesting for applications such as
the detection of overlapping spiking motifs. This problem can also be solved by simple
linear decomposition methods like PCA or NMF and we report that only NMF is able
to extract the original motifs used for the generation of raster plots. Its “parts-based”

3. Multidimensional scaling is a means of visualising the level of similarity of individual cases of a
dataset. MDS is used to translate "information about the pairwise ’distances’ among a set of n objects
or individuals" into a configuration of n points mapped into an abstract Cartesian space.

4. Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-
dimensional data points. The algorithm provides a simple method for estimating the intrinsic geometry
of a data manifold based on a rough estimate of each data point’s neighbors on the manifold.

5. t-distributed stochastic neighbour is a nonlinear dimensionality reduction technique for embed-
ding high-dimensional data for visualisation in a low-dimensional space of two or three dimensions.
Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a
way that similar objects are modelled by nearby points and dissimilar objects are modelled by distant
points with high probability.
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FIGURE 4.4 – Representation of high-dimensional mixture of spiking motifs in a low
dimensional manifold with isomap as a dimensionality reduction me-
thod applied on the dissimilarity matrix obtained with SpikeShip. Each
dot colour is a function of the mixture coefficients that provide the RGB
values and give the “true” label. Then, each sample is represented as a
mixture of the 3 main motifs (in red, green, blue) and and its location on
the 2D manifold corresponds to its relative distance from the original
motifs obtained from the SpikeShip metric space. The left plot repre-
sents the results of dimensionality reduction when there is not temporal
jitter while the right plot shows the same results when temporal jitter is
applied to the initial kernels as visualised in Figure 4.3

representation makes it suitable for this type of problem.

4.3.2 EMD for spiking pattern clustering
In this subsection, we describe an algorithm that aims at extracting spiking motifs

in neural recordings. Because NMF is a good candidate to perform this task we will
design a model that, as seqNMF (MACKEVICIUS et al. 2019), decomposes the spike
train as a product of motifs or temporal sequences and temporal loadings associated
to these motifs. We defined a simple single-layer autoencoder (AE) that processes
a raster plot to represent it as a linear combination of its kernels as illustrated in
Figure 4.5. The AE applies a 1D convolution on the time axis, resulting in the timeline
of the activation of its different kernels. The input is then reconstructed with the sum
of the transposed convolutions of the activations with the same kernels. We force
the weights of the network to be positive such that we obtain a solution performing
NMF. Our method infers a probability map to represent the raster plot as input. Once
reconstructed, the inferred input is compared to the true input with a similarity metric.
A classic approach is to use the MSE or the Frobenius norm, as done in seqNMF. In
this work, we compare the two sequences with the sum of the EMDs obtained for
each neuron address. This metric shows advantages for supervised learning (FROGNER

et al. 2015) or for the training of generative adversarial networks (LIU et al. 2019). Its
geometrical properties make it interesting to compare two distributions, and solves
the vanishing gradient problem.

For a raster plot (X ∈ {0,1}Nn ,Nt , where Nn , Nt are respectively the number of neu-
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FIGURE 4.5 – For a raster plot with the occurrence of two different spiking motifs
(top - highlighted in orange and green colours). The AE presented here
will apply a 1D convolution on the time axis, resulting in the temporal
loadings of the different kernels (middle). The input is then reconstruc-
ted with the sum of the transposed convolutions of the activations with
the corresponding kernels (bottom). It represents the raster plot as a
probability map of having a spike.

rons and the number of time steps in the raster plot) as input, we can formally describe
the temporal loadings (ak ∈RNt ) associated with the different kernels (φk ∈ [0,1]Nn ,Nd ,
where Nd is the number of time steps defining the kernel) as :

∀k ∈ Nk , ak = X ⊛φk (4.1)

where Nk is the number of kernels in the AE and ⊛ denotes the 1D temporal convolu-
tion. We obtain X̃ ∈RNn ,Nt , the estimated input as a function of the temporal loadings
and the kernels :

X̃ =
Nk∑

k=1
ak

⊤
⊛φk (4.2)

where
⊤
⊛ is the transposed convolution operator. The difference between the input and

its estimation is given by the EMD applied for each neuron address. For 1D probability
distributions, the EMD has an exact solution as the difference between the cumulative
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distributions of the two inputs :

L (X , X̃ ) = 1

Nn

Nn∑
n=1

E MD(Xn , X̃n) = 1

Nn

Nn∑
n=1

∫ Nt

0
| 1

SXn

FXn (t )− 1

S X̃n

FX̃n
(t )|d t (4.3)

where FX is the cumulative distribution of the function X. It actually corresponds
to the sum of Kolmogorov-Smirnov tests between X and X̃ for each of the neuron
addresses.

The AE is trained with gradient descent over different samples or can iterate over
the same sample by minimising the EMD between the input and its reconstruction.

4.3.3 The generative model used for synthetic spike trains
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FIGURE 4.6 – Spike patterns are generated by Bernoulli trials on a structured proba-
bility distribution (see the upper panel, kernels #2 to 5). The expected
timing of the different spikes belonging to the same pattern is given by
the mean of the Gaussian distributions, and the temporal precision of a
spike is related to its standard deviation. The rest of the raster plot, i.e.
the spontaneous activity, is also generated with Bernoulli trials drawn
from flat probability distribution (see kernel #1). The mean firing rate
remains constant throughout the whole simulation, while only the fixed
relative timing of the spikes can indicate the occurrence of a specific
pattern. Any synthetic raster plot can be obtained by a generative model
that randomly alternates between unstructured spontaneous activity
and repetitive spike patterns (see lower panel).

We obtain results for this method on synthetically generated raster plots. The raster
plots are generated by randomly alternating between structured sequences given by
the different kernels of the generative model and noisy sequences (as observed in the
top plot of Figure 4.5). To compare the performance of the method when training it
with EMD or MSE loss, we focus on a single temporal sequence and we assess the
similarity of the learnt sequence with the ground truth using different measures : the
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maximum correlation value with the ground truth when sliding the kernels on the
temporal axis and the cross-correlation value between the temporal loadings obtained
by convolving the raster plot with the true and the learnt sequences. 10 iterations of
the training with 2000 epochs are performed for each of the loss functions. Figure 4.7
(left) illustrates the evolution of the similarity measures with an increasing amount
of background noise (or spontaneous activity). For this type of noise, training the
AE with MSE as the loss function shows some advantage. Indeed, even with very
high percentage of background activity, the method is able to detect repeating motifs
with a very good performance while the same training with the EMD as the loss
functions decreases in performance at levels of background activity around 50%. The
gradient of the method with MSE is a function of the differences at each specific
neuron address and each time point. For the EMD, this gradient is a function of the
cumulative distributions on which the values at a specific time are influenced by the
previous activity. This difference in how the gradients are computed can explain a
better robustness of the method with the MSE to spontaneous activity. On the contrary,
the EMD loss shows advantages for the robustness to temporal jitter. The plots of
Figure 4.7 (right) represent the similarity measures for the temporal loadings and for
the kernels as a function of temporal jitter applied on the kernels used to generate the
spiking sequences. We observe that the method with MSE looses its ability to extract
the correct kernel at low jitter level (note that the temporal window of the kernels are
50 a.u.) while the EMD has a performance that slowly decreases when increasing the
jitter values. One can see that even at high jitter values (with a standard deviation
approaching half of the kernel temporal window size), the method with EMD is still
able to extract a temporal sequence with a significant degree of similarity with the
ground truth. This property can be particularly interesting to detect sequences that
are shifted by a certain amount of temporal jitter.

We present a proof of principle for a novel method for extracting temporal sequences
from raster plots. We use the EMD to perform unsupervised learning with a convolu-
tional AE. We compare the use of this loss function with the MSE loss and demonstrate
its advantages for retrieving spiking temporal sequences embedded in raster plots. We
find that the use of the EMD as a loss function is particularly suited for the detection
of noisy sequences. This method can be easily extended to multiple patterns or to
the detection of non-spiking temporal sequences. Additional experiments have to be
conducted to validate the application of such technique to neurobiological data but
the optimal transport theory is an interesting framework to study spiking data and
can bring new avenues to the analysis of spiking motifs.
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FIGURE 4.7 – Illustration of the robustness of the detection of one spiking motif by
comparing the learnt kernel with the ground truth. We assess this simila-
rity with two measures : (top row) the cross-correlation of the temporal
loadings of the true and learnt kernels, (bottom row) the maximum of
correlation between the kernels when sliding over the temporal axis to
discard any possible global shift. On the left, robustness to background
activity of the method with MSE (in green) of Wasserstein distance (in
blue) as a loss function is showed. One can observe that both method are
robust to background noise, which is important for spiking motifs em-
bedded in spontaneous neural activity. The method with MSE achieves
almost perfect learning for an amount of noise up to 80% while the me-
thod with EMD starts loosing performance around 50% of background
noise. The plots on the right show robustness to temporal jitter. For both
similarity measures, the method with MSE decreases quickly even for
small amount of jitter while the method with EMD decreases slowly with
the amount of jitter added to the motif.
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5.1 Contributions to the neuromorphic field
One of the key challenges for neuromorphic engineering is to enable on-chip lear-

ning. Some recent work can already achieve this goal, and research on this topic is
ongoing (FRENKEL et al. 2020 ; WU, ZHAO et al. 2022). In Study 6, we have developed a
proof of concept for an online training method with local learning rules for always-on
object recognition. Our approach uses event-driven unsupervised learning for the first
layers of a hierarchical network and a supervised learning rule to minimise BCE loss
on the output of the classification layer. This method solves both the temporal and
spatial credit assignment problems and shows robustness to jitter. Such robustness is
crucial for neuromorphic hardware, as the physical synapses in these chips can be
unreliable and dependent on external factors such as temperature (GÖLTZ et al. 2021),
just like biological synapses. These properties are interesting for on-chip learning, and
even if the convolutional aspect of the network is greedy in terms of neurons, recent
hardware such as Loihi 2 or SpiNNaker 2 has sufficient resources to implement this
type of architecture.

Note that this method does not approximate a global loss function on each layer
of the network, but rather captures spiking motifs in the data to efficiently represent
the visual signal. Since only the last layer of the network minimises a loss function
associated with the cognitive task to be solved, one can infer that the first layers of
the network can be reused for different tasks. We can also infer that retraining the
classification layer on a similar task, but with new labels, while maintaining the weights
of the lower layers, can achieve few shot learning, since the statistical representations
of the visual inputs are preserved. Also, describing the event stream with time surfaces
allows events to be represented locally in time, as only the last event recorded at the
spatial address is retained. This is a form of time-to-last spike coding, or ISI coding,
where the latency between the current event and the last recorded event is used
for computation. Unlike time-to-first spike coding, the representation can evolve
over time with an unlimited number of events. The time constants used for the time
surfaces also define the locality of the information by giving more weight to events in
a particular time window. Higher time constants for the time surfaces in the last layers
will allow the representation of long-range sequences, as the events become more
sparse with increasing number of channels, i.e. number of neurons in the previous
layer, and will suffer less from “forgetting” due to the erasure of a past event by a new
one.

This simple architecture shows good performance for the recognition of symbols,
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digits or gestures on DVS signals and proposes a decision process that is always
on. Indeed, the output of the classification layer is a set of probabilities given by a
MLR, and a spike-based decision for the inferred class can be made at any time by
taking the highest probability value with a WTA mechanism. It is also possible to
define a threshold on the probability value to make a decision and then have a more
sparse but accurate classification. We observe that this can improve the classification
performance while increasing the response time. This can be interesting to limit the
number of spikes for classification and then the energy used to make a decision.
Overall, this method is well suited for natural cognitive tasks such as continuous
and dynamic classification in an embedded system, which is easily performed by
biological systems.

One limitation that we mentioned, which can be overcome to improve the method,
is the fact that both object and motion are encoded in a time surface. It is possible
to imagine a model that combines an estimate of the local motion to predict the
next time surface, or more generally the next events to be generated, by the moving
object. If the prediction acts as an inhibitory network, this method can also reduce
the number of events which increases drastically when the DVS is moving. Such an
architecture would represent the dorsal and ventral streams observed in the visual
system, and the recurrent connections between them. We believe that these dynamic
processes can be well modelled by SNNs, and that improvements can be made in
terms of the complexity of the tasks that can be achieved.

The second model 7 brings a potential interest in the use of synaptic delays for com-
putation, especially for motion detection. This method is used in biological systems
and can be implemented in recent neuromorphic chips such as Loihi. It is also an
architecture that is more interpretable than the previous work using time surfaces.
In this case, values in the kernels directly represent the synaptic weights associated
to a specific conductance delay. It provides good perspectives for efficient computa-
tion by pruning the smaller weights once the network is trained. However, training
requires more resources than for a method using a 2D representation such as a time
surface, and the discretisation of time is a limitation regarding more natural condi-
tions. This work is an interesting and applied a proof of concept that spiking motifs
can be powerful for computation.

5.2 Questions to neuroscience

5.2.1 How can we improve our models?
The models presented in this study hold promises for representing computations

involving biological systems, but efforts must continue to move towards more realistic
implementations and tasks. One direction would be to implement these architectures,
especially HOTS, on SNN simulators. In this way, the constraints imposed by standard
and already implemented artificial spiking neurons will force us to explain the different
circuits modelled, for example temporal coding with time surfaces, and to make
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predictions about computations that take place in biological brains. It will also be
possible to exploit the efficiency of asynchronous computations that take place in the
network. Such interfaces will sometimes provide tools to transfer implementations
of SNNs directly to neuromorphic hardware. Models developed in this direction will
follow the neuromorphic approach and solve tasks with biological-like constraints
at the implementation level. It may be interesting to work with these limitations
to develop architectures that must be efficient because they are constrained by the
resources they have access to. On-chip learning is a challenging task not because it
needs to mimic biology, but because its wiring and memory are physically limited and
then not appropriate for offline learning with backpropagation. But these physical
limitations of neuromorphic chips do not make them suitable for new and non-
stereotyped neuron models. There is a huge diversity of neurons and circuits in the
brain that are not available in this type of hardware, and this can be seen as a barrier
to designing better models.

It is also possible to take more inspiration from the observation of biological systems.
Our architectures are mostly feedforward with lateral inhibition implemented by
the softmax activation functions or the WTA mechanisms. We know that top-down
signals modulate perception (ALAMIA, TIMMERMANN et al. 2020) and our model lacks
feedback connections. Models inspired by biological connectivity could explain the
contour integration capabilities of the early visual system (BOUTIN et al. 2021) or
its orientation maps (FRANCIOSINI et al. 2021). Feedback signals can be integrated,
with an inhibitory loop, as a predictive model that anticipates the next events to be
generated. We have already mentioned the possible interactions between motion
estimation and object recognition, and this type of connectivity can, on the one
hand, reduce the amount of spikes to be processed and, on the other hand, predict the
anticipatory behaviour observed in the human visual system (KHOEI et al. 2017). It may
also be interesting to determine how biological systems cope with natural challenges
such as the limited lifespan of a cell, the stochastic transmission of a synapse or even
the need for a neuron for have a regular firing rate in order to survive (CHINTALURI

et al. 2023). One way can be to add these features to the constraints of the model and
see how it solves the problem, another is to implement strategies employed in biology
like the synaptic turnover (FAUTH et al. 2019) or homeostatis and see if it results in
robust and more efficient models. Having more flexible spiking neuron models that
represent the diversity of neural cells can also be an interesting line of research. It has
been shown that adding heterogeneity in timescales of a SNNs improves learning and
task performance (PEREZ-NIEVES et al. 2021). In a predictive coding framework with
a recurrent network of spiking neurons, heterogeneity in the population of neurons
increases both efficiency and robustness (ZELDENRUST et al. 2021). Recently, the
random initialisation of the weights in ANNs has been questioned by highlighting
the fact that some, or most, features of the connectome may be hardwired into genes.
Ongoing research is targeting gene correlates of axonal projections (Y.-C. SUN et al.
2021), which may reveal specific organisations of cells encoded in genes that can be
used for more realistic initialisation of ANNs.

Another direction to take is to find better objective functions for these architectures.
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Starting with signals recorded by a DVS is a good basis as it represents the dynamic spi-
king activity of retinal ganglion cells. However, we benchmark our algorithms against
widely used event-based datasets or static images that are converted into spikes when
animated. This conversion of static images to DVS recordings is how the N-MNIST
or N-CALTECH101 datasets (ORCHARD, JAYAWANT et al. 2015) were built, on which
many of the current methods are tested. Perhaps one of the more realistic tasks that is
widely used to test event-based algorithms is the recognition of 10 categories of hand
gestures (AMIR et al. 2017). As more naturalistic tasks are developed, the methods
used to solve them will need to be more sophisticated and may need to mimic biolo-
gical systems. In these situations, the need for good balance between performance
and robustness is crucial and will lead to more realistic solutions. Continual lear-
ning is a nice approach that goes in this direction (FLESCH et al. 2023). Embodiment
is another that can make use of robots to navigate in a natural environment (ZHU

et al. 2023). In this sense, some scientists propose to develop an embodied Turing
test to move from human-related goal-driven models to an AI that can reproduce
behaviours shared by different species (ZADOR et al. 2023). We can also add multi-
sensory integration (TIVADAR et al. 2018) and in this case the use of spikes has a real
advantage as this representation of the information is agnostic to the type of input it
receives. One can infer that a sound or a visual input can generate particular spiking
representations that can converge on a similar or common spiking motif linked to
a semantic representation. It leads to the question of the use of spikes and spiking
motifs in neurobiology.

5.2.2 Are spiking motifs a valid hypothesis to explain
neuronal communication?

In the introduction, we saw that spiking motifs can be observed in recordings from
different neurons. They are evidence that sensory inputs are encoded by temporal
codes with a millisecond or sub-millisecond precision. In the different contributions
of this thesis, we have shown that ANNs can make use of precise spiking motifs to
perform different visual tasks with advantages like robustness, efficiency or a good
signal-to-noise ratio. We can now wonder if biological neurons are capable of learning
or simply decoding such precise spiking activity, and whether the model we have
developed, i.e. a spiking neuron with heterogeneous conductance delays, is a valid
proposal to perform this task.

There is a huge diversity of time constants for neurons in the visual cortex (MURRAY

et al. 2014) (one can refer to this web page which stores electrophysiological values of
membrane time constants across neuron types from the literature). It is a reasonable
assumption to state that the timescales of neurons in the primary visual cortex are on
the order of tens of milliseconds. The paradox that these neurons, with relatively slow
time constants, can detect sequences with precision on a timescale of tens orders of
magnitude faster has already been highlighted in the auditory cortex (GERSTNER et al.
1996). Their model suggests that presynaptic signals must arrive coherently and that
learning can select connections with specific delays from a broad distribution of axons
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with random delays. Looking at the visual system, the same process can occur with
a specific selection of axons that will lead to a synchronous arrival of spiking motifs
encoded by the retina. In BRUNO et al. 2006, synchrony is used to explain how weak
and sparse thalamocortical synapses can drive neurons of the somatosensory cortex.
When they validate this hypothesis by measuring a synchronous activity of presynaptic
cells in the thalamus, we suggest that a synchronisation process can occur through
differential axonal conduction velocity in between the retina and V1. ETXEBERRIA et al.
2016 showed that monocular deprivation could reduce optic nerve conduction velo-
city from 1.4 ms−1 to 1.1 ms−1 within a deprivation period of two weeks. This suggests
that a specific organisation of myelinaround axons can modulate the transfer speed of
APs and is activity dependent. In this case, not only can a heterogeneity of conduc-
tion velocities be used to synchronise spiking motifs at the level of thalamocortical
synapses, they can also learn these motifs through a process of myelination (FIELDS

et al. 2020). Conductance delays can be modified and then, delay adjustment does
not need to come from a selection through synaptic plasticity, as in the model in 7,
but can with a shift of the value as in 3.4. If we make a rough approximation that the
distance that spikes have to travel from the retina to V1 is 5 cm and that the range
of conduction velocities goes from 1 ms−1 to 2 ms−1, motifs that are 5 ms wide can
be synchronised. In small animals, conduction delays have been measured to range
from 1 to 5 ms (BRIGGS et USREY 2005), corresponding to our evalutation. Even if we
can extend the dynamic range of conduction velocities of thalamocortical axons, this
feedforward pathway must be fast, and then decoding signals with relative latencies
of 40 ms, as observed in the salamander retina, may not occur with a synchronisation
of spiking motifs. We also note that the idea of communicating with temporal codes
holds for intracortical communication, where conduction delays are reduced by the
proximity of presynaptic and postsynaptic neurons.

Another explanation for the detection of a spiking motif by a spiking neuron comes
from the non-linear integration of the signal on the dendritic tree. The size of dendrites
is more in the order of hundreds of µm and in this case, a synchronisation through
different conduction velocities is not possible. However, (BRANCO et al. 2010) was able
to activate synapses along pyramidal cell dendrites with different temporal sequences
and observed a sensitivity of the neuron to these sequences (similar results have been
obtained on the turtle retina (BORG-GRAHAM 2001)). Not only was the sub-threshold
response of the neuron’s membrane potential sensitive to the direction of propagation
of the sequence along a single dendrite, it was also sensitive to different velocities
of the input, computed as a function of the delay between the stimulations of the
different synapses and the total width of the synaptic repartition, ranging from 1 to
19.1 mms−1. An estimate of the spike probability was also produced to demonstrate an
effective difference in the detection of a sequence starting from the dendritic terminus
or from the neuron soma. The mechanism was explained by dendritic impedance
gradients and non-linear synaptic receptor activation and was extended to the whole
dendritic tree, suggesting that neurons were able to detect precise spatiotemporal
sequences of synaptic activation. In this case, it seems to be possible to learn spiking
motifs through synaptic plasticity along the dendritic tree. The different velocities
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correspond to ISIs from 1 to 10 ms when 8 different synapses are activated. Surprisingly,
biological neurons can be sensitive to precise temporal sequences of up to 80 ms. A
relatively recent study suggests that the intrinsic delays of travelling waves can be
compensated for by integration on the dendritic tree (SPENCER et al. 2018).

A combination of axonal delay modulation and synaptic plasticity on specific loca-
tions of the dendritic tree may be an efficient mechanism for learning spiking motifs
encoded by the retina. Such temporal codes can be used for communication between
different parts of the cortex, but also within a single area because of the sensitivity of
dendritic trees to such motifs. We can also add the possible modulation of synaptic
delays during synaptic plasticity (LIN et al. 2002). Even if this variability can account
for a small part of the conductance delays, i.e. a latency ranging from 0.2 to 0.6 ms, it
can have a significant impact on the detection of motifs through the non-linearity of
the integration on the dendritic tree.

In the previous hypothesis, we only consider excitatory synapses but a distribution
of excitatory and inhibitory synapses can also be beneficial for the detection of spi-
king motifs as suggested by Annexe 7. One can infer that only a specific sequence
of excitatory and inhibitory postsynaptic potentials can lead to the emission of an
AP (ISAACSON et al. 2011). Shunting inhibition is also an interesting phenomenon
that can modulate the activity of cortical neurons (BORG-GRAHAM et al. 1998). This
phenomenon has been used to explain the decoding of rank order codes (S. J. THORPE

et al. 1996). It has also been shown that such inhibitory processes can delay the post-
synaptic spike initiation (CHAVANE, MONIER et al. 2000) leading to a new temporal
code or a selection of the neuron to be activated when the first spike will inhibit the
other cells by lateral inhibition. Instead of modulating conductance delays that can
hardly linearly match any spiking motif due to the limitation in their range, having the
possibility to delay the postsynaptic spike could synchronise motifs of spikes at the
postsynaptic level.

5.2.3 A new method to detect spiking motifs
In order to investigate the usefulness of spiking motifs, it is crucial to develop reliable

methods to detect them in neuronal recordings. The technique we develop can be
applied to unlabelled spike trains to extract representations. The occurrence of these
representations can then be detected and associated with external features such as
stimuli or behaviour if wanted. Interestingly, this method can also provide insight
into the precision of the pattern on a neuron-by-neuron basis. It may be interesting
to see whether precise spiking motifs appear in higher visual areas, and to relate
this precision to the larger timescales of the neurons. Such methods will allow the
high-dimensional data obtained with Neuropixel probes or other multi-unit recording
devices to be decomposed into lower-dimensional representations, allowing finer
interpretation of neuronal recordings. However, if one wants to characterise causality,
it remains an experimental challenge to target the RF of a neuron in V1 and stimulate it
with a specific pattern of spikes to see if it can learn a precise spiking motif. But ongoing
technological development will surely bring tools to overcome these difficulties.
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Abstract

We propose a neuromimetic architecture that can perform always-on pattern recognition. To achieve this, we have extended an
existing event-based algorithm (Lagorce et al., 2017), which introduced novel spatio-temporal features as a Hierarchy Of Time-
Surfaces (HOTS). Built from asynchronous events captured by a neuromorphic camera, these time surfaces allow to encode the
local dynamics of a visual scene and to create an e�cient event-based pattern recognition architecture. Inspired by neuroscience,
we have extended this method to improve its performance. First, we add a homeostatic gain control on the activity of neurons
to improve the learning of spatio-temporal patterns (Grimaldi et al., 2021). We also provide a new mathematical formalism that
allows an analogy to be drawn between the HOTS algorithm and Spiking Neural Networks (SNN). Following this analogy, we
transform the o✏ine pattern categorization method into an online and event-driven layer. This classifier uses the spiking output
of the network to define new time surfaces and we then perform the online classification with a neuromimetic implementation of
a multinomial logistic regression. These improvements not only consistently increase the performance of the network, but also
bring this event-driven pattern recognition algorithm fully online. The results have been validated on di↵erent datasets: Poker-
DVS (Serrano-Gotarredona and Linares-Barranco, 2015), N-MNIST (Orchard et al., 2015a) and DVS Gesture (Amir et al., 2017).
This demonstrates the e�ciency of this bio-realistic SNN for ultra-fast object categorization through an event-by-event decision
making process.

Keywords: vision, pattern recognition, event-based computations, spiking neural networks, homeostasis, e�cient coding, online
classification

1. Introduction

Bio-inspired engineering aims to take advantage of our un-
derstanding of nature’s complex and impressively e�cient
mechanisms. Event-based cameras perfectly illustrate this pro-
cess. These sensors, also known as silicon retinas, are inspired
by biological retinas and make it possible to capture light in-
formation asynchronously. Unlike their classical frame-based
counterpart, an event-based camera reacts to the dynamics of
the scene on a pixel-by-pixel basis: when a change in lumi-
nance is detected, an event is emitted. The event is labelled with
an ON or OFF polarity depending on whether it corresponds
to an increase or decrease in brightness, respectively (see fig-
ure 1). Event-based cameras o↵er several advantages such as
a high temporal resolution, energy e�ciency, redundancy re-
duction and a high dynamic range. They are many interesting
applications and use cases for event-based cameras now flour-
ishing in the scientific community (see Gallego et al. (2019)
for a review). This new technology, together with the corre-
sponding Address Event Representation specification (Boahen,
2000), brings a paradigm shift in the way visual information is
processed. E�cient event-driven solutions have been found to
solve classical computer vision tasks such as the optical flow
estimation (Benosman et al., 2013; Tschechne et al., 2014; Bar-
dow et al., 2016), 3D reconstruction (Hidalgo-Carrió et al.,
2020; Osswald et al., 2017; Zhu et al., 2018) or the simulta-
neous localization and mapping problem (Gallego et al., 2017;
Kim et al., 2016). In this work, we focus on performing pattern

recognition and extend an already existing method: Lagorce
et al. (2017).

This particular model performs object recognition thanks to
a feedforward hierarchical architecture using time surfaces, an
event-driven analog representation of the local dynamics of a
scene. These are then combined into a Hierarchy Of Time Sur-
faces (HOTS). Using a form of Hebbian learning, the network is
able to learn, in an unsupervised way, progressively more com-
plex spatio-temporal features that appear in the event stream.
This algorithm has been shown to make accurate predictions on
a letter and digit dataset (Orchard et al., 2015b), on a flipped
card dataset (Pérez-Carrasco et al., 2013) and on a dataset of
scenes with faces.

Figure 1: A miniature event-based ATIS sensor (Left) which, compared to clas-
sical frame-based representations (Middle), outputs an event-based representa-
tion of the scene (Right).

We have identified two main limitations of the HOTS algo-
rithm. First, the unsupervised clustering of the kernels is highly
dependent on initialization, and this can a↵ect the performance
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of the network. We have recently proposed to include a biolog-
ically plausible homeostatic gain control mechanism (Grimaldi
et al., 2021). We showed there that unsupervised feature learn-
ing is qualitatively improved by balancing the activity of the
di↵erent neurons within the same layer. We also tested the clas-
sification accuracy on di↵erent datasets by injecting di↵erent
amounts of spatial and temporal noise into the stream of input
events, demonstrating that e�ciency was increased by home-
ostasis. The second limitation that we identified in HOTS is the
classifier. Indeed, it is based on computing a histogram of the
neuronal activations in the last layer of the network to perform
the classification. Such a method ignores the fine-grained tem-
poral dynamics of the stream of events produced by the final
layer of the network. More importantly, a major drawback is
that the classification can only be performed post hoc, once all
the events of the tested sample have been received.

This o✏ine layer was chosen because it provides an ac-
curate response once all events have been emitted. In this
study, to achieve a full end-to-end event-driven and online pat-
tern categorization, we incorporate and test an online classi-
fication method in the final layer of the network. We for-
mally demonstrate that the overall structure of the proposed
model corresponds to a biologically plausible spiking neural
network (SNN). To our knowledge, it is the first always-on,
event-driven object recognition method, and we validate it on
di↵erent datasets designed for categorizing symbol (Serrano-
Gotarredona and Linares-Barranco, 2015), digit (Orchard et al.,
2015a) or gesture (Amir et al., 2017) categorization. Given
the simplicity of the proposed network’s architecture, its event-
based formalism and its local learning rules, this method is eas-
ily transferable to neuromorphic hardware to exploit the e�-
ciency of event-based computing.

From this perspective, the structure of this paper will be as
follows. First, we present the HOTS algorithm using a novel
mathematical formalization and the improvements brought by
our method. Then, we extend the categorization algorithm
by adding a simple biologically plausible online classification
layer. We prove that our method corresponds to a SNN with
Leaky Integrate-and-Fire (LIF) neuron models, which can be
implemented in a neuromorphic chip. Finally, we show the
quantitative improvements of the resulting classification perfor-
mance, and how its dynamics can vary for di↵erent datasets. We
have tested the model on di↵erent event camera datasets, and
a full implementation of this algorithm is available at https:
//github.com/AntoineGrimaldi/hotsline. These scripts
allow all results presented in this paper to be reproduced, and
we provide links to reproducible notebooks within the text.

2. Materials and methods

In this section, we first describe the datasets used in this study
and present the method we designed to test the robustness of
our algorithm to spatial and temporal jitter. After giving an
overview of existing object recognition algorithms, we general-
ize the event-based HOTS model, already described in Lagorce
et al. (2017), and extend its formalism to the continuous time

domain. We then present the improvements that make the algo-
rithm fully online and biologically plausible. We introduce the
homeostasis regulation rule, which allows for a better learning
of the weights of the di↵erent layers (Grimaldi et al., 2021), and
we describe a new classifier using Multinomial Logistic Regres-
sion (MLR) to propose an end-to-end event-driven classifica-
tion algorithm. We conclude this section by providing a formal
analogy of our architecture with a SNN and local correlation-
based learning rules to propose a unified theoretical framework
between neuromorphic engineering and computational neuro-
science.

2.1. Datasets

To load the events, we use the community-built tonic python
package (Lenz et al., 2021). It currently provides the ability
to load 12 di↵erent event-based vision datasets and is based
on the PyTorch language (Paszke et al., 2019). This allows to
load event streams in a standard way and to optionally apply
data augmentation methods to the event streams. Once loaded,
an event-based camera recording is a Nev ⇥ 4 matrix where Nev

represents the number of events and the 4 columns represent re-
spectively the x and y positions on the pixel grid, the timestamp
value, and the polarity. Timestamps are given in microseconds
and polarities are 0 and 1 for OFF and ON events respectively.
Of these datasets, 6 are labelled for object classification tasks.
We choose to test the performance of our method on 3 di↵erent
datasets:

• Poker-DVS dataset (Serrano-Gotarredona and Linares-
Barranco, 2015), one of the first publicly available DVS
recordings from a real-world scene that was used to test
the performance of HOTS Lagorce et al. (2017). It con-
sists of 131 occurrences of the four di↵erent symbols of
playing poker cards (clubs, diamonds, hearts and spades).

• N-MNIST dataset (Orchard et al., 2015a), a widely used
dataset that was recorded by moving an event-based cam-
era in front of a screen onto which digitized MNIST dig-
its (LeCun et al., 1998) were projected.

• DVS128 Gesture dataset (Amir et al., 2017), which con-
sists of more complex and naturalistic recordings of real-
world scenes. In this dataset, 29 subjects perform hand
and arm gestures of di↵erent categories (“hand clap”, “arm
roll”, . . . ). These were recorded with an iniLabs DVS128
event-based camera (with a resolution of 128⇥128 pixels)
and under di↵erent lighting conditions. The samples pro-
vided by the dataset are 6 seconds long and, to reduce the
computational load of the training, we keep only the first
3 seconds of the recording.

To test for the robustness of the proposed algorithm, we also
used the tonic package to transform and augment the datasets.
In particular, this allows spatial or temporal jitter to be added
to the input stream. Since the relevant information is sup-
posed to be represented within the timing and position of the
input events, we can assume that the classification performance
should deteriorate as the jitter increases. Therefore, we will use
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this module to test the robustness of the algorithm by progres-
sively adding some noise to the input signal. To account for the
variability of the random jitter applied, we repeat the predic-
tion 10 times for each amount of jitter and derive a statistical
quantification from these repetitions. To reduce the simulation
time, we compute this study on Poker-DVS, on a subset of N-
MNIST and do not perform this analysis on DVSGesture. The
subset of N-MNIST consists of 1000 randomly selected digits
with a balanced number of samples between each class.

2.2. Related work
Poker-DVS is included as it was tested using the original

HOTS method (Lagorce et al., 2017). Due to its small size,
this experiment acts as a toy model to test the di↵erent meth-
ods. In this paper, we focus on performing pattern recogni-
tion. A widely used event-based dataset: N-MNIST (Orchard
et al., 2015a). Some related approaches have used standard
artificial neural networks that have been converted to SNN,
resulting in overall good classification results (Neil and Liu,
2016; Patino-Saucedo et al., 2020). In 2020, Patino-Saucedo
et al. (2020) is the first neuromorphic hardware implementation
of the event-based N-MNIST benchmark. Alternatively, some
other competitive event-driven algorithms are developed using
Back-Propagation (BP) adapted to SNN (Shrestha and Orchard,
2018; Lee et al., 2016; Wu et al., 2018). More recently, it has
been proposed to introduce biomimetic saccades to improve
object recognition (Yousefzadeh et al., 2018). All these con-
tributions saturate the digit recognition problem introduced by
the N-MNIST dataset with accuracies around 99% but none of
them addressed the question of ultra-fast object recognition,
i.e. the ability to recognize a digit with only the first events.
We report that online inference on event-based data has been
developed in previous studies (Thiele et al., 2018; Giannone
et al., 2020; Zhou et al., 2021). However, the model proposed
by Zhou et al. (2021) accumulates spikes as input to reconstruct
an image frame, Giannone et al. (2020) uses a sample-and-hold
approach, and freezes events during a defined time step. Thiele
et al. (2018) proposes to use Spike-Timing Dependent Plasticity
(STDP) for unsupervised learning of spatio-temporal features.
For this latter study, they also construct a supervised classifier
that can learn in an online fashion and which should be able
to make an inference for each event. However, they perform a
classification based on the strongest response of a neuron dur-
ing the time window in which the sample is presented. In this
way, they do not take advantage of the event-driven nature of
the signal for classification.

Then, the DVS128 Gesture dataset provides a more complex
recognition task as it consists of real-world scenes with nat-
ural movements performed by subjects. Zhang et al. (2021)
presents a non-local synaptic modification method with spiking
and artificial neurons inspired by natural networks called self-
BP. A spiking version of the deep ResNet architecture (STS-
ResNet) also achieves good performance for gesture recogni-
tion as well (Samadzadeh et al., 2020). A recent study devel-
ops a bio-plausible method using SNN and STDP that achieves
very good results (Safa et al., 2021). The classifier is a Support
Vector Machine (SVM) applied to the feature vectors as output

from the SNN. A promising method involving Spiking Recur-
rent Neural Networks (SRNN) is introduced in Yin et al. (2021)
and achieves high online performances on several datasets. Ac-
curacy on the DVS128 Gesture dataset reaches 97.61%, but this
method requires an additional preprocessing with a convolution
layer on frames computed from the DVS recording and it was
not mentioned whether this number reflects an average com-
puted on the online accuracy or not. SLAYER (Shrestha and
Orchard, 2018) could also provide an online classification with
a SNN using 8 layers trained with BP. However, the network is
trained with a target spike count to discriminate the true class
and needs to wait until the end of the output spike train to infer
a decision.

For both datasets, these di↵erent methods achieve very good
performances, but none of them report the accuracy as a func-
tion of the number of events used or as a function of time - thus
making it impossible to derive online accuracy results. An ex-
ception in the literature is Sironi et al. (2018), which reports the
accuracy as a function of the latency. It is calculated on the N-
CARS dataset created for this study. However, this method uses
an accumulation of time surfaces and can not perform event-
by-event classification. The method we propose is the first to
develop an always-on decision process, and we report its per-
formance as a function of the number of events integrated by
the network. We stick to the study of the three widely used
datasets mentioned above (N-MNIST, DVSGesture and Poker-
DVS), which can be loaded with the tonic package.

2.3. Event-based formalism: HOTS model

The HOTS model has three main aspects. First, it defines
the core mechanism of a layer of neurons that transforms each
incoming event from the event stream into a novel event (see
figure 3). This layer consists of perceptron-like neurons that
measure the similarity of the input to patterns stored in the neu-
rons’ synaptic weights. Crucially, this new event is selected on
the basis of previous history thanks to the definition of what
we will call time surfaces and is used as input to the current
layer of the network. Secondly, the neuron that is deduced to
be the most similar emits an output event at the same time as
the incoming event. This core mechanism is defined on arbi-
trary address spaces and forms a layer of the network. Using it
as a building block, such layers can be stacked together, with
the output address space of each layer defining a new input ad-
dress space for the next layer. This eventually constructs a hier-
archy of layers organized in a feedforward fashion. Third, the
core mechanism can be used in the particular case of the event
streams produced by an event-based camera by defining a set of
addresses relative to the pixel grid. This is done by reproducing
the core mechanism in each layer at each position of the pixel
grid. This defines weights as kernels, similar to Convolutional
Neural Networks (CNNs). Let’s formalize these three aspects
independently.

2.3.1. Time Surfaces
The output of an event-based camera is a discrete stream of

events (see figure 1), which can be formalized as an ordered
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Figure 2: Illustration of the di↵erent event-based data types used in the HOTS
network at a given event time. The two rows correspond to the OFF and ON
polarities of the events as output of the event-based camera. (Left) Screenshot
of one single event (in white) at ti. (Middle) Timings since the latest event, or
time context, at time ti, forming the matrix T (ti) (white represents �1). (Right)
Time surface at ti as the matrix TS (ti) (note that the maximum of 1 is reached
for the current event).

set of addresses: {ai}i2[0,Nev) where Nev 2 N is the total num-
ber of events in the data stream. Each address is typically
in the form ai = (xi, yi,pi), where (xi, yi) defines its position
on the pixel grid and pi its polarity. This formalism is de-
fined over the address space D. On a camera, we can define
D = [0,NX)⇥ [0,NY )⇥ [0,Np) ⇢ N3 where (NX ,NY ) is the size
of the sensor in pixels and Np is the number of polarities. Each
event is usually associated with a time ti. We can now define the
subset of events’ ranks that occurred at or before a given time
t 2 R+ at a given address a 2 D:

⇠a(t) = { j 2 [0,Nev)|a j = a, and t j  t}

Note that this definition is given for any continuous time t but
is usually computed at the time of events.

For the corresponding stream of events occurring at the ad-
dress a, it is possible to construct a so-called time context Ta(t).
It records the time of the last event that occurred at the specific
address a before or at t, with �1 if no event was recorded (see
figure 2, middle column):

8a 2 D, Ta(t) =
( �1 if ⇠a(t) = ;

max{ti|i 2 ⇠a(t)} else. (1)

The time context Ta(t) is computed for each address at each
time, forming a vector that we write T (t) over the address space.

Finally, from the time context calculated at each address, we
derive the following set of values:

8a 2 D, S a(t) = e�
t�Ta (t)
⌧ (2)

where ⌧ is a given time constant. This defines an analog vector
over the address space which we call the time surface and that
we write S (t). In particular, it follows from the definition that
0  S a(t)  1 and that 8i, S ai (ti) = 1. An illustration of a time
surface is given in figure 2, right column.

2.3.2. Architecture of the network: hierarchy
Let us now formalize the building block of the HOTS algo-

rithm as a core mechanism defined on a neural layer. Specif-
ically, let’s assume that the layer is composed of Nn neu-
rons which form a novel address space A that we can index
as n 2 [0,Nn). Each neuron is defined by a weight vector
Wn = [wa,n]a2D. This vector has the dimension of the dendritic
space associated with the input of this layer. These can be com-
bined into a weight matrix W = [wa,n]a2D,n2A. These weights
are used to compute the similarity of the weight patterns with
each time surface (Perrinet, 2004). The similarity measure �n
is defined as the scalar product over the dendritic spaceD:

�n(t) = hWn, S (t)i =
X

a2D
wa,n · S a(t) (3)

Whenever a new event enters the layer at time ti, then this
layer will emit one unique event with the same timestamp and
with an address corresponding to that of the neuron whose
weight vector is the most similar to the time surface as input:

ni = arg max
n2A

�n(ti)

As a summary, this process thus transforms the list of input
addresses {ai} into a novel stream {ni}with identical timestamps
{ti}.

As mentioned above, this building block can be stacked by
using the output address space to define the input address space
of a subsequent layer. We will index layers by L and, to de-
scribe the input of a layer L, we define a dendritic address space
DL (with DL=0 = D). We also define an axonal address space
AL for the output of the layer. If we defineDL+1 based onAL,
then we can stack the di↵erent layers: the event stream will
cascade from the first to the last layer. Each layer is defined
by a weight matrix WL, so that each time surface will be as-
sociated with a similarity measure that generates events in the
axonal address spaceAL. Since each incoming event generates
one and only one output event in each successive layer, we can
compute a time surface for each incoming event at each layer.
For this computation, we will use a di↵erent time constant ⌧L

which will vary for each layer of the network. We will desig-
nate the corresponding time surfaces at each layer L as S L(t).
This process defines the core mechanism of the HOTS model.

2.3.3. Architecture of the network: kernels
Now let us define the topology of the address spaces. We

have seen that each time surface S L(t) stores an analog value
function of the delay between t and the last event that was
recorded in the dendritic address space DL. This value is
then compared to weight vectors, similar to the linear opera-
tion which occurs in the dendritic tree of perceptron neurons.
However, from our knowledge of the early visual cortical areas,
we know that the receptive field of neurons does not cover the
whole visual space, but develops over a limited visual space and
with stereotyped shapes. This is used in CNNs to define di↵er-
ent kernels that capture the local context in the neighborhoods
around each neuron. From the spatial invariance of the physical
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Figure 3: Illustration of the core computation made within one layer of the HOTS algorithm. On the top of the plot, we show the dendritic stream of events convolved
by an exponential decay which forms the time surface. Time surfaces are computed at the timestamp of each event/spike. The time surface at present is represented
with the colored bar plot on the top. In the vertical slice, computations made within one layer at time ti are illustrated. The time surface is compared to all the
kernels of the layer with the similarity measure resulting in the membrane potential of the postsynaptic neuron represented in green. As an illustration, the layer
contains only 4 neurons associated to 4 di↵erent kernels and with 10 dendritic inputs. At last, a winner-take-all rule (or arg max non-linearity) will choose at time ti
the most activated neuron. This will emit a spike and prevent the others from being activated through lateral inhibitions (in red). Note that for each event as input of
the layer, a new event will be emitted with the same timing as the incoming event.

problem, it is assumed that the kernels should be similar across
di↵erent positions and define a convolution operator. A notable
advantage of this representation is its invariance to translations.
Thus, in analogy to what is done in CNNs, we can thus define
the connectivity of a HOTS core computation from this set of
kernels that are translated on the sensor grid.

The dendritic address space for each layer is defined as fol-
lows: DL = [0,NX) ⇥ [0,NY ) ⇥ [0,NL

p ) ⇢ N3. The number NL
p

defines the number of channels of the time surface as input to
the layer L, we call them dendritic channels. Each address can
be decomposed into its position and its dendritic channel, i.e.
aL = (xL, yL,pL). The axonal address space of the layer L is
AL = [0,NX)⇥ [0,NY )⇥ [0,NL

n ) ⇢ N3, where NL
n is the number

of axonal channels. The similarity measure can thus be written
as:

�L
(xL,yL,kL)2AL (t) = (K̃L

k ⇤ S L(t))(xL, yL) (4)

where ⇤ is the convolution operator and ⇠ is the symmetry op-
erator, which allows the correlation in equation (3) to be com-
puted using convolution. Note that K̃L

k ⇤ S L(t) represents the
activity map and can be computed e�ciently by a convolution
operation. In our formalism, time surfaces are defined glob-
ally, and each weight vector corresponds to a column of the
weight matrix, constructed with a Toeplitz operation, where in-
dices are associated with each axonal address: (xL, yL,kL). The
local context for the kernels is defined, on the topography of
the pixel grid, by a radius RL and on all channels of the time
surface. The weights outside this radius are zero, and thus the

similarity measured with the global time surface S (t) will give
the same results as with the locally defined time surfaces in the
original HOTS formalization.

Furthermore, the HOTS algorithm, specified in Lagorce et al.
(2017), enforces that the position of each event is not changed
from one layer to the next. As a consequence, each kernel
still acts as a convolution kernel, but the comparison is to be
performed only on the addresses corresponding to the position
(xi, yi) of the event. This restriction can be implemented by
defining the subset of output neurons with the exact same posi-
tion but over the di↵erent axonal channels, and modifying the
match equation to:

pL+1
i = arg max

kL2[0,NL
n )
�L

(xi,yi,kL)(ti)

As a result, the next layer will send an event aL+1
i = (xi, yi,pL+1

i )
with the same timestamp ti, with the same spatial position
(xi, yi) but with a di↵erent channel. In summary, each layer
takes input events from its previous layer and feeds events to
the next layer by repeating these steps. It follows that neurons
within a layer L compete for features: each incoming event
produces a single event on the axonal space. Following what
is observed in the biological visual pathways of mammals, we
may set the number of axonal channels NL

n , the time constant
⌧L and the radius of the kernels RL so that they increase as we
move up the hierarchy. The choice made in the original HOTS
algorithm is to double the radius of a kernel and the number of
channels from one layer to the next, while multiplying the time
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constant from one layer to the next by a factor of ten. As a re-
sult, the network learns increasingly complex spatio-temporal
features in a hierarchical fashion. We keep the same multipli-
cation factor from one layer to the next one for the number of
kernels NL

n and for the radius RL. For the time constant ⌧L, we
set it as a function of the number of channels in the time sur-
face so that it is adapted to the average interspike interval on
each layer: ⌧L = NL

p .⌧
L=0. A description of the hyperparame-

ters associated with the experiments on the di↵erent datasets is
given in 3.1.

As for learning of the weights, this is done in an unsupervised
manner. During the unsupervised clustering phase, the kernels
are updated with the same learning rule as described in Lagorce
et al. (2017):

K̃L
pL+1

i
 K̃L

pL+1
i
+ ⌘pL+1

i
· �pL+1

i
· (S L

local(ti) � K̃L
pL+1

i
)

with ⌘pL+1
i
=

0.01

1 +
#pL+1

i
20000

where we define #pL+1
i

as the number of times kernel K̃L
pL+1

i
has

been selected and S L
local(ti) is the time surface defined locally,

i.e. around the event as input of the layer with a radius RL.
That is, once a neuron is matched, a Hebbian-like mechanism
is used to bring the selected kernel K̃L

pL+1
i

closer to the observed
time surface. In fact, �pL+1

i
represents the product of the activa-

tion for the presynaptic and postsynaptic neurons. Note that the
training of the kernels is shared among all the spatial locations
for the same axonal channel, just as in CNNs. This mecha-
nism is similar in principle to that used by the k-means algo-
rithm and is implemented in many other unsupervised learning
schemes (Perrinet et al., 2003). For the layers of the HOTS
model, we filter the time surfaces with a threshold on the num-
ber of active pixels to avoid noisy or isolated events. We set
this threshold to 2 · RL. Figure 4 provides an illustration of the
di↵erent kernels learned by the network.

2.4. Homeostasis
The contribution of homeostasis to the robustness of the

HOTS model is the guideline of a previous work (Grimaldi
et al., 2021). Similar regulation methods on an event-based
dataset are used in Diehl and Cook (2015); Wu et al. (2019)
to balance the firing rate over the neurons of each layer of the
SNN. The model of Diehl and Cook (2015) uses an adaptive
membrane threshold, while Wu et al. (2019) adds an auxil-
iary neuron per layer to regulate the firing rates. In this last
paper, they make a comparison of this technique with zero-
mean batch normalization (Io↵e and Szegedy), which is used
for training deep neural networks. These methods are similar
in their aims and are well justified in terms of e�cient cod-
ing (Perrinet, 2010).

Here, we implement homeostasis regulation by adapting the
heuristics used in a sparse coding scheme (Perrinet, 2019). It
simply consists of modifying the similarity measure (see equa-
tion (3)) as follows:

�k(t) = �k(t) · hWk, S (t)i (5)

Where we use the same gain as defined in Grimaldi et al.
(2021):

�k(t) = e�·( fk(t)� 1
N ) (6)

where � is a regularization parameter, fk is the relative activa-
tion frequency of kernel k and N the total number of kernels in
this layer. Note that the gain control is applied to each map of
kernel activities, not to the activity of individual neurons, due
to the translation invariance property of the architecture. This
control rule allows the di↵erent kernels to be trained in such a
way that the response of only a few of them is avoided, reaching
an equilibrium when fk(t) = 1

N , i.e. when they are on average
equally likely to be activated.

In practice, we observed that adding homeostasis leads to a
better clustering of the weight matrices, see figure 4. Note that
during the unsupervised clustering phase, the neural activity is
balanced across all digits. The homeostasis process does not
necessarily result in an equi-probable neural activity for one
digit, but over the whole learning set, in line with the e�cient
coding hypothesis (Barlow et al., 1961). It also avoids introduc-
ing an ad hoc heuristics into the learning rule to achieve con-
vergence for all neurons. For example, in Lagorce et al. (2017),
weight matrices or synaptic weights associated with each neu-
ron were initialized with the first incoming time surfaces. The
original method makes the learning of weight matrices very
sensitive to initialization. In addition, the hierarchy is learned
sequentially, one layer at a time. In this work, the weights are
initialized randomly, and we allow spikes to feed each layer of
the network even if a given layer is not fully trained, but con-
vergence is still robust. As a result, this additional ingredient
in the unsupervised learning phase makes our algorithm behave
more like living systems.

2.5. Online event-based classification

In the original HOTS algorithm, classification is performed
by comparing the activation histograms across the channels of
the last layer of the network with the average observed for
each given class. This classification by histogram comparison
is performed post hoc, after the encoding of an element from
the dataset. Here, we introduce a novel online classification
scheme, that is, where classification is performed for each spike
that reaches the classifier, and more generally at any time when
a classification is required. Following the same strategy used
for the construction of time surfaces, each event reaching the
last layer L = C of the network can indeed be transformed into
a time surface S C(t) using a time constant ⌧C. This constant
can vary from one dataset to another according to the statistics
of the samples. The time surface thus forms an analog vector
that can be used in a Multinomial Logistic Regression (MLR)
model to achieve supervised classification. Such MLR models
are used, for example, in the last layer of classical deep learn-
ing networks (Lecun et al., 1998) and are compatible with a
neural implementation (Berens et al., 2012). More specifically,
it corresponds to the similarity measure (see equation (3)) of
the MLR weights with the input, stacked with a sigmoid non-
linearity. The weights are defined over the whole dendritic
space, i.e. there is no local context as it was defined for the
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(a) (b)

Figure 4: Activation histograms and time surfaces obtained in the unsupervised learning algorithm (a) for the original HOTS network (replicated from Lagorce et al.
(2017) with time surfaces intialized randomly) and (b) for the bio-plausible version with homeostasis. Activation histograms correspond to the frequency by which
each neuron was activated. For each layer number n, fn = 1

Nn
is the averaged activation frequency. Associated time surfaces are plotted below histogram bins. The

di↵erent lines are the di↵erent polarities of the features (ON and OFF for the first layer), that is, the output neurons of the previous layer for the next one.

kernels on the previous layers. For each event, the output neu-
rons will compute the probability of predicting the respective
class. In the MLR, this probability value is computed as a soft-
max function of the linear combination of the analog vector as
input:

8c 2 {1, . . . ,Nclass},

Pr(y = c|ti; WC) =
ehW

C
c ,S

C(ti)i
PNclass

j=1 ehW
C
j ,S

C(ti)i

where WC
j are the coe�cients associated with class j of the

MLR model. As in section 2.3.2, the formulation of the time
surface can be extended to the continuous time domain. It fol-
lows that the probability value can be computed at any time
when necessary. We simplify the notation of the probability
value by defining the following equation for the softmax func-
tion:

�c(t) =
e�

C
c (t)

PNclass
j=1 e�

C
j (t)

(7)

Where �C
c (t) is the similarity measure (from equation (3)) be-

tween the time surface as input to the classification layer and the
MLR model weights associated with the class c. The final pre-
diction can be made for each incoming event using the arg maxc
function by selecting the class associated with the highest prob-
ability. Then, thanks to the definition of the softmax function,
we obtain its maximum value through the maximum value of
the similarity measure. We obtain the same spiking process as
in any layer of the HOTS network:

c(t) = arg max
c2{1,...,Nclass}

�c(t)

The result is an always-on decision process, that can make a
prediction at any time. In the following, we will perform event-
driven prediction and compare the classification results as a
function of the number of events fed to the classifier or as a
function of time. Using this probabilistic formalism, we can
also provide predictions with higher confidence to improve the
performance of the classification. Even if the probabilities are

calculated for each event, the class prediction can only be made
for some events with a probability above a defined threshold.
This flexibility to make predictions with a specific confidence
threshold allows performance to be improved while maintain-
ing an event-driven approach to computation.

In practice, we first trained the hierarchical network using
unsupervised online learning on a training set. On this set, we
computed the transformation of the input stream into the out-
put stream and then transformed it into time surfaces to feed
the classification layer. We trained the MLR model using each
time surface along with its true class as supervision pairs. The
MLR model was implemented using the PyTorch language, and
training was performed using a gradient descent with the Adam
optimizer. Our loss function is the binary cross entropy com-
puted on the output spike train, and the learning parameters are
described in 3.1. Once the MLR model was trained, we ob-
tained analog vectors from the hierarchical network computa-
tions on the test set. We then tested classification performances
by sending these vectors to the MLR model, which outputs the
probability of each class being true. The decision process can
be the arg max function of the probability values, and this al-
lowed us to compute an accuracy on an event-by-event basis.

2.6. The Spiking Neural Network analogy
We have defined the HOTS algorithm in an event-based

formalism, and we show that, when it is extended to the
continuous-time domain, this algorithm can be implemented as
a SNN. Indeed, the definition of the time surface modulated by
an exponential decay in equation (2) bears an analogy to the LIF
model with exponentially decaying postsynaptic potentials, as
described for other SNNs (Rueckauer et al., 2017). We aim to
describe the event-based model on a time continuum thanks to
Ordinary Di↵erential Equations (ODE) and to bridge such an
algorithm with the SNN framework from computational neuro-
science.

2.6.1. HOTS as a SNN
Let’s look at the fundamental mechanism of the HOTS algo-

rithm at some layer L (we will omit this superscript for clarity in
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this section). In the previous section, time surfaces are defined
at each time using equation (2). Looking at figure 3, one can
see that the dendritic addresses refer to the presynaptic neurons
and that the temporal kernel defined by the time surface cor-
responds to the Spike Response Model (Gerstner, 1995) of a
first-order linear ODE. Each presynaptic neuron corresponding
to an address a 2 D received the events with ranks from the set
⇠a(t) and the evolution of S a(t) thus follows the ODE:

d
dt

S a(t) = �1
⌧
· S a(t) +

X

i2⇠a(t)

(1 � S a(t)) · �(t � ti) (8)

The second term on the right hand side of equation (8) is a mod-
ulated Dirac function that implements the integration of a new
presynaptic potential at t = ti. The modulation 1� S a(t) is such
that at the moment of the event, the new value of the potential
becomes S a(t) + (1 � S a(t)) = 1. This implements the fact that
the maximum value of a time surface is equal to 1, and that
only the time until the last spike has an e↵ect on activity, as
implemented in the definition of the time context. As a con-
sequence, it implements a kind of reset mechanism that allows
the time surface to be computed as a function of the time to the
last spike.

Then, for a postsynaptic neuron n of the layer, we may de-
fine a membrane potential corresponding to the integration of
synaptic inputs in the similarity measure:

�n(t) = hWn, S (t)i =
X

a2D
wn,a · S a(t)

where we use the same weights Wn of equation (3) from the
event-based formalism. Finally, by integrating over the di↵er-
ent input synapses, we obtain a di↵erential equation that de-
scribes the dynamics of the membrane potential �n as a similar-
ity measure:

d
dt
�n(t) = �1

⌧
· �n(t) +

X

a2D
wn,a ·

X

i2⇠a(t)

(1 � S a(t)) · �(t � ti)

Which can be simplified to a sum of all events:

d
dt
�n(t) = �1

⌧
· �n(t) +

NevX

i=0

wn,ai · (1 � S ai (t)) · �(t � ti)

Such an ODE is classical for describing the evolution of the
membrane potential of LIF neurons. Note that the main change
is the modulation of the integration of incoming spikes, which
allows only the time to the last spike to be represented. The
hierarchical network proposed in Lagorce et al. (2017) is then
equivalent to a SNN composed of LIF neurons with a Hebbian-
like learning mechanism, as mentioned in section 2.3.3. In this
SNN, for each incoming event from the event-based camera,
one spike is emitted for each layer of the network. This re-
sults in a winner-take-all (WTA) competition between neurons
within the same layer.

2.6.2. MLR as a SNN
The classification layer of our algorithm is defined as a MLR

model, for which a parallel to a SNN implementation has al-
ready been drawn in Berens et al. (2012). Analogous to biology

and as described in section 2.6.1, the linear combination of the
input time surface with the MLR weights corresponds to the in-
tegration of presynaptic spikes on the dendritic tree of a postsy-
naptic neuron associated with a class. Then, �c(t) = hWC

c , S (t)i
represents the membrane potential of the postsynaptic neuron
associated with class c and WC

c are the corresponding synaptic
weights. The softmax function presented in equation (7) is a
good model of a spiking WTA network. Indeed, Nessler et al.
(2013) showed that a stochastic spiking WTA can be built from
this type of activation function. The denominator expresses the
lateral inhibition by the other neurons of the layer. The arg maxc
function imposes a complete inhibition of other neurons un-
til the next decision. As a consequence, if the classification is
event-driven, only one spike will be emitted for the most prob-
able class only for each event. The spiking mechanism of the
classification layer is then the same as for the rest of the net-
work due to the fact that the logistic function is monotonic.

The main di↵erence with the other layers of the network lies
in the supervised learning rule of the MLR weights. We can ob-
tain the learning rule by finding the derivative of the loss func-
tion. For the softmax regression, the loss function for an event
of rank i is the binary cross-entropy:

J(ti) = �
NclassX

c=1

�{y(ti)=c} · log(�c(ti))

where �{y(ti)=c} is the ’indicator function’ and y(ti) is the true
class. If we compute the derivative of the loss function with
respect to WC

c , we can obtain the update rule of the weights of
the postsynaptic neuron associated with class c:

�WC
c (ti) =

(
⌘ · S C(ti) · (1 � �c(ti)), for c = y(ti)
�⌘ · S C(ti) · �c(ti) for c , y(ti)

where ⌘ is the learning rate. This correlation-based learning
rule can be described as a supervised Hebbian learning mecha-
nism, with di↵erent possible weight updates depending on the
true value of the outcome.

In summary, the event-based algorithm that we use in this
paper can be fully described by a SNN. The learning of the
weights is done in an event-driven manner and corresponds to
Hebbian-like mechanisms for the neurons, both inside the net-
work and in the classification layer. We claim that these local
learning rules are advantageous both in terms of bio-plausibility
and for energy-e�cient on-chip implementations (Roy et al.,
2019).

3. Results

The classification results obtained with our method are pre-
sented in this section. First, we present the online classification
performance of the network, which is the main novelty of our
study. We then compare the performance with the state of the
art (SOTA) on the di↵erent datasets by reporting the accuracy
obtained when making one prediction per sample. We com-
plete our analysis by studying the robustness of our algorithm
to both temporal and spatial jitter, comparing it to the original
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method proposed in Lagorce et al. (2017). Let’s start with a de-
tailed description of the parameters and the architecture of the
networks tuned for classification on the di↵erent datasets. We
report these parameters in Table 1. The parameter tuning for L1
and L2, which are layers similar to those in the original HOTS
network, was done on subsets of the di↵erent datasets by com-
puting the accuracy for each of the di↵erent architectures us-
ing histogram comparison as done in Lagorce et al. (2017). For
each dataset, the classification layer is implemented in PyTorch,
and we train it using gradient descent and the Adam optimizer.
The time surfaces as input to this last layer are defined globally,
i.e. on the whole pixel grid, and we adjust the time constant
for each dataset. Time constants are also obtained empirically,
by testing the performance of the classifier with di↵erent pa-
rameters, on a subset of the original dataset. For each dataset,
we set the number of epochs to 33 and keep the optimizer’s
default parameters. For both the N-MNIST and DVSGesture
datasets, to reduce the number of computations and to avoid
reaching a local minimum within the first samples, we perform
the learning only on a randomly chosen percentage of the com-
puted time surfaces. We keep 10% and 5% of the time surfaces
of a sample for N-MNIST and DVSGesture datasets, respec-
tively. For DVSGesture, we also apply spatial downsampling
by a factor of 2 · RL + 1 for each dimension and at each layer.
With the winner-takes-all spiking mechanism used in the un-
supervised layers and the spatial downsampling, the core lay-
ers of HOTS now implement an event-based convolution with a
max-pooling. This allows reducing the dimensions of the fea-
ture maps and the amount of computations performed in these
recordings with a greater number of events and a wider pixel
grid.

L1 L2 MLR
NK = 8 NK = 16 ⌘ = 0.005

Poker DVS R = 2 R = 4 ⌧C = 30 ms
⌧ = 1 ms ⌧ = 4 ms ✓ = 0.9
NK = 16 NK = 32 ⌘ = 0.005

N-MNIST R = 2 R = 4 ⌧C = 50 ms
⌧ = 20 ms ⌧ = 160 ms ✓ = 0.99
NK = 16 NK = 32 ⌘ = 0.0001

DVS Gesture R = 2 R = 2 ⌧C = 1 s
⌧ = 10 ms ⌧ = 160 ms ✓ = 0.4

Table 1: Network parameters. L1 and L2 are the unsupervised layers where we
report the number of kernels (NK ), the size of the receptive fields (R) and the
time constants (⌧) associated with each layer. MLR is the supervised classi-
fication layer trained with a specific learning rate ⌘, a time constant ⌧C and a
threshold to make the decision ✓.

Table 1 shows the di↵erent time constants, the learning rate
used for training and the threshold on the probability values
used to compute the performance of the classification.

3.1. Online inference
We first present the results of the end-to-end event-driven on-

line classification described in section 2.5. To illustrate the dy-
namic evolution of the event-based classification performance,

we plot the accuracy value as a function of the number of events
received by the classifier for each dataset (see Figure 5). We
present two decision-making modes for the classifier. The first
is online HOTS, where a prediction is made for each incom-
ing event without any condition on the probability values cor-
responding to the di↵erent classes. The second is online HOTS
with threshold, i.e. when the output of the classifier must reach
a probability threshold to make a decision. In this last condi-
tion, in order to filter out events in periods of poor information
content (especially at the beginning), we select only events with
a decision confidence above a threshold. This improves the av-
erage performance of the classification. However, it introduces
some time delay to accumulate enough evidence to make a pre-
diction. We also report the accuracy values for the classification
post hoc with a k-nearest neighbors algorithm on the activation
histograms. Two results are shown in figure 5, one for the origi-
nal HOTS and another with the homeostatic gain control for the
clustering phase: HOTS with homeostasis.

As expected, for all datasets and both modalities, the ac-
curacy of the online classification improves as the number of
events increases. Within a dataset, the total number of events
for the samples can vary. We set a maximum number of events
to represent the accuracy by taking the 90th percentile of the
dataset in terms of number of events. The accuracy of the event-
based classification for each dataset is shown in Figure 5. Note
that the x-axis is plotted on a logarithmic scale and that only a
small number of events will allow for significant classification
above chance.

In Figure 5-(a), we observe the online inference for the Poker
DVS dataset. The RESULTS PokerDVS.ipynb notebook re-
produces the results and figures for this dataset. The post hoc
methods perform well but do not reach 100% accuracy, with
an advantage for clustering with homeostasis (95.0% accuracy)
than without (85.0% accuracy). For online HOTS, the accuracy
quickly reaches 100% after only an average of 19.4% of the
total number of events, i.e. one fifth of the total event stream.
This online classification allows an ultra-fast categorization of
objects in terms of events: only a few events are needed for
the classification to reach a good level of accuracy. If we set
a confidence threshold on the MLR, we obtain a perfect clas-
sification once at least 35 events are received. Given the small
number of samples in this dataset, we evaluate the performance
of the network on two more complex and widely used datasets.

The online accuracy on the N-MNIST dataset is shown in
Figure 5-(b) and reproducible at RESULTS NMNIST.ipynb.
The original algorithm already performs well with the classi-
fication by histogram comparison, reaching 94.4% for HOTS
and 92.4% for HOTS with homeostasis. In this particular ex-
ample, the homeostatic gain control did not improve the per-
formance for the clustering phase, and we recall that the main
advantage of this regularization is to reduce the sensitivity of
the unsupervised learning to the initialization (Grimaldi et al.,
2021). For online HOTS, we observe an accuracy above chance
after the very first events, which increases with the number of
events received by the network. Note that the accuracy value
increases drastically after about 1000 events and reaches values

9



(a) Poker DVS (b) N-MNIST (c) DVS Gesture

Figure 5: Accuracy for online classification on 3 di↵erent datasets (see text for details).

above the original method approximately at 2000 events, the
average of events for the N-MNIST dataset being 4176 events
(see DATASET STATS.ipynb). If we compute the mean per-
formance over all the decisions, i.e. for each event, we get an
accuracy of 70.1% and 96.6% for the accuracy calculated when
the decision is made at the timestamp of the last event. Another
way of calculating the post hoc accuracy with this probabilis-
tic approach is to choose the decision that was made with the
highest confidence. This gives us an accuracy of 97.4%, which
is close to the SOTA (see next section). We also show the flex-
ibility and the advantage of using this MLR model by setting a
minimum likelihood value, necessary to make a decision (see
the online HOTS with threshold curve in Figure 5-(b)). With a
threshold set at 0.99, good results can only be obtained after a
minimum of about 100 events, in line with the idea of ultra-fast
categorization. With this last decision method, we obtain an av-
erage accuracy of 96.2% which is greatly improved compared
to the mean performance over all the decisions without confi-
dence threshold. The results of 5-(b) indicate that the second
and the third saccades of the N-MNIST recordings add only a
small amount of information, and the evolution of the accuracy
in Figure 5-(b) illustrates this point. Previous works report ac-
curacy results using only the first saccade and show only a small
improvement when the other saccades are also used (Lee et al.,
2016; Frenkel et al., 2020; Thiele et al., 2018).

For the DVSGesture dataset, we confirm the improvement of

our method over the original one on more realistic event-based
recordings (see Figure 5-(c)). For these more complex gesture
recognition tasks, the online HOTS accuracy remains close to
the chance level for about 100 events. More evidence needs to
be accumulated, and then the accuracy increases monotonically,
outperforming the previous method after about 10.000 events
(an average of 9.3% of the sample). These event-based record-
ings have a much higher event density than the other datasets,
and we remind the reader that only 3 seconds of the recording
is kept to test our algorithm. The average accuracy for all the
decisions is 85.7% and 87.2% when the decision is taken at the
last event received. The average always-on accuracy can reach
88.8% by setting the confidence threshold to 0.4. When we
make a decision post hoc, choosing the classifier output with
the highest probability, we get 89.8%.

3.2. Comparison to the state-of-the-art
To compare the performance of our method with the SOTA,

we choose to compute the accuracy when the decision is made
with the highest confidence, as other methods do not present the
event-driven online accuracy in their results. We report a table
of the best accuracy results found in the literature for the N-
MNIST and the DVSGesture datasets. All methods mentioned
in 2.2 are not reported here, preprints are discarded, and we fo-
cus on event-based methods that achieve the best performance.
We split the table 2 into two di↵erent parts for the methods that

N-MNIST DVS Gesture
HOTS (with k-NN) (Lagorce et al., 2017) 94.39% 83.0%

HATS (Sironi et al., 2018) 99.1% –
SLAYER (Shrestha and Orchard, 2018) 99.2% 93.64%

Spike-based BP (Fang et al., 2021) 99.61% 97.57%
DSNN-STDP (Thiele et al., 2018) 95.77% –
DECOLLE (Kaiser et al., 2020) 96% 95.54%

self-BP (Zhang et al., 2021) – 84.76%
hybrid CNN-SRNN (Yin et al., 2021) – 97.61%

Ours 97.4% 89.8%

Table 2: O✏ine classification accuracy for the N-MNIST and DVSGesture datasets. The upper part of the table corresponds to non-biologically plausible algorithms,
and the lower part to biologically plausible ones.
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Figure 6: Evolution of classification accuracy as a function of (a-b) spatial and (c-d) temporal jitter.

are biologically plausible (bottom) and the others (top). We
skip the comparison of the results obtained with the Poker DVS
dataset, which serves as a toy model but does not provide a
challenging classification task. We argue that, even if we don’t
outperform these SOTA results, this simpler 3-layer feedfor-
ward network structure with a bio-plausible learning achieves
very competitive accuracy values. In addition, our classifier is
the first to provide always-on decision making.

3.3. Robustness to jitter

We also wanted to assess the robustness of this event-driven
object recognition method. To do this, we perturb the original
datasets by adding temporal or spatial jitter to the events. Jit-
ter is applied only to the test set to add noise to the signal used
for classification. As described in section 2.1, we use the tonic
package to apply temporal or spatial jitter to the test samples.
For each amount of jitter applied to the test set, 10 repetitions
are performed to obtain di↵erent accuracy values. Finally, we
fit a beta distribution to each of these results to compute the per-
centiles shown in Figure 6. To compare with previous results
obtained in Grimaldi et al. (2021), we plot the o✏ine accuracy
obtained when making one decision per sample. We reduce
the number of computations for this analysis by using subsets
of the N-MNIST dataset (1000 samples). For each amount of

jitter applied to the test subset, 10 repetitions are performed
to obtain di↵erent accuracy values. Finally, we fit a beta dis-
tribution to these results to compute the percentiles shown in
Figure 6. As the proposed method is a proof of concept for
event-based computation, the simulations on GPU are not opti-
mized and results with jitter applied to the DVSGesture dataset
are not computed for reasons of simulation time. We highlight
the fact, that to our knowledge, no other studies have performed
this test on event-based recordings. Simulated on two di↵erent
DVS datasets, these results provide insight into the robustness
of our algorithm, but also highlight the features that are relevant
for classification within the event-based recordings.

As expected, the higher the jitter, the greater the negative im-
pact on classification. The decrease in accuracy as a function of
jitter fits well to a sigmoid function that decreases from a maxi-
mum accuracy value to reach the chance level. Using this fit, it
is possible to define a critical standard deviation of jitter in pix-
els or in ms where the accuracy drops to half of its maximum
compared to the chance level. This half saturation level pro-
vides a signature value for the relevant information contained
in the signal.

Figure 6-(a) shows the evolution of the accuracy for the dif-
ferent methods as a function of the amount of spatial jitter
applied to the PokerDVS dataset. Accuracy reaches half sat-
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uration for a spatial jitter with a standard deviation of 1.50,
1.66 and 3.87 pixels, for HOTS, HOTS with homeostasis and
online HOTS respectively. Figure 6-(b) shows results for the
N-MNIST dataset. Curves for HOTS, HOTS with homeosta-
sis are very close but show slightly di↵erent half saturation
levels: 2.42 pixels for HOTS, 2.32 and for HOTS with home-
ostasis. The homeostasis itself does not give significant im-
provement in this particular example, in line with the results
obtained in Figure 5-(b). However, online HOTS shows overall
significantly better performances and reaches its half saturation
level at 3.74 pixels Reaching half saturation level at approxi-
mately a standard deviation of the spatial jitter equal to 3.8 pix-
els demonstrates that this method relies heavily on the spatial
information. However, considering the small pixel grid of these
datasets (32⇥32 for PokerDVS and 28⇥28 for N-MNIST) and
the gradual decrease of the accuracy, we observe robustness to
spatial jitter for the di↵erent methods. In any case, the results
demonstrate a significant improvement of the robustness to spa-
tial jitter for the new method.

Panels (c, d) in Figure 6 illustrate a high resilience of the
network to temporal jitter, note that the x-axis is composed of
log10-spaced values. The average recording time for the Pok-
erDVS dataset is 7.1 ms and 308 ms for N-MNIST. For Pok-
erDVS (see figure 6-(d)), we obtain the following half satura-
tion levels corresponding to one standard deviation of the jitter
distribution in ms. For HOTS: 1.77 ms; HOTS with homeosta-
sis: 8.16 ms; and online HOTS: 34.5 ms. For N-MNIST (see
figure 6-(d)), the half saturation values are 49.77 ms, 41.32 ms
and 126.2 ms for HOTS, for HOTS with homeostasis and for the
algorithm presented in this study respectively. Even the origi-
nal method o↵ers a high resilience to temporal jitter compared
to the duration of the recordings. For PokerDVS, this resilience
increases significantly with the addition of the homeostatic gain
control but not for N-MNIST where the robustness curves are,
again, very similar. For the online HOTS method, we observe
an increased robustness to temporal jitter. The standard devi-
ation of the added jitter must reach a similar timescale as the
recording itself (5 times the average duration of a recording for
PokerDVS and one third of the average duration for N-MNIST
samples). This surprisingly high robustness may be due to the
use of time surfaces to encode the signal. When temporal jitter
is added, the locations of events are preserved and only the tim-
ing is a↵ected. A time surface with the same spatial structure is
computed from a jittered or non-noisy signal. By applying an
exponential decay to the delays, the e↵ect of jitter is reduced.
This time surface is then compared to smooth time surfaces
with a scalar product over the entire spatial window. This tech-
nique makes the encoding of input events more robust to local
temporal variations. The increase in robustness for the home-
ostatic gain methods may be due to the improved clustering of
the network’s time surfaces. The way we construct the analog
vector as input to the MLR layer can explain this surprisingly
high resilience. Given the relatively high time constant used for
the exponential decay (see Table 1), the combination of only a
few events at precise spatial locations can lead to a good predic-
tion of the class. With this exponential decay, higher temporal
resolution is achieved for events closer in time to when the time

surface is computed. The higher the time constant, the better
the resolution for the recent past history, but the more events
can accumulate on the same 2D time surface, interfering with
accurate classification.

4. Discussion

In this study, we extended a neuromorphic engineering
method with techniques inspired by computational neuro-
science to develop an online, event-driven classification algo-
rithm similar to a SNN. We started our study with the HOTS
network, whose original basis is inspired by the hierarchy found
in the visual cortex. As designed in this network, the size of
the receptive field increases along the visual hierarchy (Lennie,
1998). Furthermore, cortical areas were found to follow a hier-
archical order of intrinsic time scales (Murray et al., 2014). One
hypothesis is that shorter time scales may be useful for rapid de-
tection or tracking of dynamic stimuli, while longer time scales
may be used for decision-making computations performed by
higher level areas. This particular organization of the HOTS ar-
chitecture and the evolution of the temporal surface parameters
through the di↵erent layers follows physiological principles.

Furthermore, we show that our model is similar to that of an
SNN by extending the equations to the continuous time domain.
We present this unified theoretical framework to bridge the gap
between neuromorphic engineering methods and computational
neuroscience. We extend the event-based algorithm to a more
generic and bio-plausible model. First, we used a homeostatic
rule inspired by living systems to make the unsupervised on-
line learning of the network more generic and robust. Sec-
ond, we added an online classification layer that performs MLR
and is compatible with a neural implementation (Berens et al.,
2012). As shown in section 2.6, the learning rules are local and
Hebbian-like. This makes the learning of the network easily
transferable to neuromorphic hardware. Once trained, the net-
work can perform an always-on classification, i.e. it can infer a
prediction whenever necessary. We present the results obtained
with event-based categorization, i.e. a prediction is made for
each input event of the classification layer. There is no need to
wait for the end of the recording of the sample or to collect a de-
fined number of events, which allows for ultra-fast categoriza-
tion. This dynamic classification, which evolves over time for
each new event, is closer to the object recognition performed by
biological systems. We also demonstrate the advantage of us-
ing a probabilistic approach to classification by presenting the
decisions made when a defined confidence threshold is reached.
Although using a high confidence threshold to make a decision
improves the overall classification performance, the classifier
needs to accumulate more evidence to be able to categorize an
event. The flexibility o↵ered by this approach makes the al-
gorithm a viable model for solving di↵erent tasks that require
fast or accurate decisions. Overall, these results provide a good
illustration of the potential synergy between neuromorphic en-
gineering and computational neuroscience.
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Abstract
The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This
temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology,
especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural
models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently
detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model
capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise
synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic
regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic
videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the
robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate
that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive,
event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve
the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.

Keywords Time code · Event-based computations · Spiking neural networks · Motion detection · Efficient coding · Logistic
regression

1 Introduction

The human brain has the remarkable capacity to react effi-
ciently at any given time while consuming a reasonable
amount of energy, in the order of 20 watts. This system is the
result of millions of years of natural selection, and a striking
difference with artificial neural networks is the representa-
tion that both use. Indeed, our computers use digital values
and for instance, the convolutional neural networks (CNNs)
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which are used for processing images represent the flow of
information from one layer to another using tensors of floats.
These networks store visual information densely across the
visual topography, with different translation-invariant prop-
erties represented in different channels. CNNs have achieved
state-of-the-art performance for some computer vision tasks,
such as image recognition. These networks are also known
to mimic several properties of the biological visual system,
such that each can be assigned a “brain score” (Schrimpf et al.
2020). However, this score does not take into account key
aspects of the efficiency of biological systems, such as infer-
ence speed (usually several times the biological time) or the
energy consumption of this mesoscopic model of the brain,
which is about 360 watts on a standard GPU (NVIDIA RTX
3090). In the vast majority of biological neural networks, on
the other hand, information is represented as spikes, proto-
typical all-or-nothing (binary) events whose only parameters
are their timing and the address of the neuron that fired the
spike (Paugam-Moisy and Bohte 2012). Spiking neural net-
works (SNNs), known as the third generation of artificial
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neural networks, incorporate this temporal dimension into
the way they perform their computations. One example of a
SNN is the SpikeNet algorithm, which takes a purely tem-
poral approach by encoding information using at most one
spike per neuron (Delorme et al. 1999). Alternatively, the
SNN implemented in the SpikeProp algorithm (Bohte et al.
2002) that uses the exact timing of spikes and learns the struc-
ture of the network by minimizing a specifically defined cost
function. This was recently extended using the surrogate gra-
dientmethodwhich is nowwidely used in attempts to transfer
the performance of CNNs to SNNs (Zenke andVogels 2021).
However, the performance of SNNs still lags behind that of
networks using an analog, firing rate-based representation.
The question of the advantage of using spikes in machine
learning and computer vision remains open.

In a recent review, we reported previous theoretical and
experimental evidence for the use of precise spikingmotifs in
biological neural networks Grimaldi et al. (2023b). In partic-
ular, Abeles (1982) askedwhether the role of cortical neurons
is the integration of synaptic inputs or rather the detection
of coincidences in temporal spiking motifs. While the first
hypothesis favors the firing rate coding theory, the second
emphasizes on the importance of temporal precision in neural
activity. Since then, numerous studies have demonstrated the
emergence of synchronous activity within a neuronal popu-
lation (Riehle et al. 1997; Davis et al. 2021), efficient coding
using precise spike timings (Perrinet 2002; Perrinet et al.
2004; Gollisch and Meister 2008), or precise timing in the
auditory system (DeWeese andZador 2002;Carr andKonishi
1990). All these findings, and more (Bohte 2004), highlight
the importance of the temporal aspect of the neural code
and suggest the existence of spatiotemporal spiking motifs
in biological spike trains. In neural models, the definition of
heterogeneous delays (Guise et al. 2014; Zhang et al. 2020;
Nadafian and Ganjtabesh 2020) allows the efficient detec-
tion of these spatiotemporal motifs embedded in the spike
train. Such spatiotemporal motifs present in neural activity
may form useful representations to perform computations for
various cognitive tasks using the synchrony of spikes reach-
ing the soma of a neuron. In particular, Izhikevich (2006)
introduced the notion of the polychronous group as a spik-
ing motif defined by a subset of neurons with different, but
precise, relative spiking delays. This delay between a pair of
connected neurons is defined as the time between the emis-
sion of a spike at the soma of the afferent neuron and its
arrival at the soma of the efferent neuron. Importantly, due
to the variety of weights and delays within a population,
representations using polychronous groups have, in theory,
a much higher information capacity than a firing rate-based
approach.

The present paper proposes a real-world application that
extends a recently proposed model of spiking neurons with
heterogeneous synaptic delays Grimaldi and Perrinet (2022).

Thismodelwas trained to solve a simplifiedmotion detection
task on a synthetic event-based dataset generated by moving
parameterized textures, and provides a first demonstration
that formal neurons can exploit the precise timing of spikes
to detect motion thanks to heterogeneous delays. Here, we
extend these results to a much more complex and natural
setting. First, we define the ecological cognitive task that
the model must solve with the different datasets on which it
will be tested. Instead of the synthetic textures used previ-
ously, we use natural scenes synthesized from natural images
translated by biologically inspired saccadic movements. We
then develop the heterogeneous delays spiking neural net-
work (HD-SNN)model from efficiency principles and derive
a learning rule to adapt the weights of each heterogeneous
synaptic delay using gradient descent. Applied to this detec-
tion task, we study the emergence of spatiotemporal spiking
motifs when this single layer of spiking neurons is trained
in a supervised manner. We investigate the efficiency of the
motion detection mechanism and, in particular, its resilience
to synaptic weight pruning. Indeed, once trained, the amount
of event-driven computation could be drastically reduced
by removing weak synapses while maintaining peak perfor-
mance for the classification task. In this way, we will be able
to show how such a model can provide an efficient solution
to the energy/accuracy tradeoff.

2 Methods

This paper aims to investigate the capability of the HD-SNN
model to effectively learn and solve a motion detection task
using realistic event-based data streams, as typically cap-
tured by event-based cameras, also known as dynamic vision
sensors (DVS). DVS are designed to mimic the signal trans-
mitted from retinal ganglion cells to the visual cortex through
the optic nerve. The events in these data streams are binary in
nature and should provide sufficient information for perform-
ing fast and efficient motion detection. In this study, we first
outline the task definition, specifying the requirements for
motion detection. Subsequently, we describe the HD-SNN
model employed for inferring motion, highlighting its key
characteristics and architecture. Lastly, we elaborate on the
training procedure employed to train the HD-SNNmodel for
the specific motion detection task.

2.1 Task definition: motion detection in a synthetic
naturalistic event stream

To train and validate our model which uses supervised
learning, we need to define a visual dataset for which we
explicitly know the ground-truth motion, that is, direction
and speed. To achieve this, we define a procedure for ani-
mating a natural visual scene with virtual eye movements,
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similar to those used in studies from neurobiology (Vinje
and Gallant 2000; Baudot et al. 2013) or computational neu-
roscience (Kremkow et al. 2016). First, we draw a trajectory
inspired by biological eye movements. Indeed, these move-
ments allow us to dynamically actuate the center of vision
in the visual field. In animals with a fovea, this is partic-
ularly useful as it allows the area with the highest density
of photoreceptors to be moved, for example, to a point of
interest in the environment. A specific mechanism for this
function are saccades, which are rapid eye movements that
reposition the center of vision. In humans, saccades are very
frequent (on average 2 per second (Dandekar et al. 2012)),
very fast (about 80ms), and have awide range of speeds.On a
more microscopic scale, the human gaze moves with minute
micro-saccades which trajectories are similar to a Brownian
trajectory (Poletti et al. 2015). To preserve the full generality
of the task, we define eye movements using such a form of
random walk (Engbert et al. 2011): We first define a finite
set of possible motions in polar coordinates as the Cartesian
product of the 12 regularly spaced directions and 3 geomet-
rically spaced speeds. Next, we define a saccadic path as a
sequence of time segments whose durations are drawn from
a Poisson distribution with a mean block length of 24 ms,
similar to a Lévy flight (Mandelbrot 1982, p. 289). Finally,
assuming that motion is stationary during each segment and
that motions for each flight are drawn uniformly and inde-
pendently, the global trajectory is generated by integrating
this motion sequence. This generative model yields trajecto-
ries that are qualitatively very similar to those observed for
human eye movements (see Fig. 1 (left)).

Once these eye trajectories are generated, we can apply
them to a visual scene. For this purpose, we selected a
database of 100 large-scale natural images that were pre-
viously used to study the statistics of natural images (van
Hateren and van der Schaaf 1998). Note that these were pre-
processed to be in grayscale and to equalize (i.e., whiten) the
energy in each frequency band, similar to a process known
to occur in the retino-thalamic pathway (Dan et al. 1996).
The full-scale images are 1024 × 1024 in size, and we crop
images of size 128 × 128 positioned around the center of
gaze at each time step. We discretize time in 1-ms bins and
produce movies of duration NT = 200 ms. To avoid bound-
ary effects, we randomly position the full trajectory in image
space so that the sub-image is translated using the position
given by the trajectory at each time step andwithout touching
the boundaries. At each time step, the translation is computed
using a coordinate roll in the horizontal and vertical dimen-
sions, followed by a sub-pixel translation defined in Fourier
space (Perrinet 2015). Note that the magnitude of the dis-
placement is relative to the time bin, and we have defined
the unit speed to correspond to a movement of one pixel per
frame (i.e., per time bin of 1 ms).

To transform each movie into events, as recorded by a
DVS, we compute a residual gradient image which we ini-
tialize at zero. We then compute the temporal gradient of
the pixels’ intensity over two successive frames. For a given
pixel and time stamp, an event is generated when the abso-
lute value of this gradient exceeds a threshold. The event
has either an OFF or ON polarity, depending on whether the
gradient is negative or positive. The signed threshold is then
subtracted from the residual gradient image. When applied
to the whole movie, the event stream is similar to the output
of a neuromorphic camera (Gallego et al. 2022), i.e., a list
of events defined by xr and yr (their position on the pixel
grid), their polarity pr (ON or OFF), and their time tr (see
Fig. 1 (right)). Ultimately, the goal of the model is to infer
the correct motion solely by observing these events.

2.2 The HD-SNNmodel

In this task, the input consists of a stream of events or spikes,
a representation common to the signal obtained from an
event-based camera or from a neurobiological recording of
the activity of single units. Formally, this can be defined as
a list of tuples, each tuple representing the neural address
and timestamp. We denote this list as ε = {(ar , tr )}r∈[1,Nev]
where Nev ∈ N is the total number of events in the data
stream and the rank r is the index of each event in the list of
events (see Fig. 2—left-top for an illustration). Each event
has a time of occurrence tr and an associated address ar .
Events are usually ordered by their time of occurrence. We
define the address space A, which consists of the set of pos-
sible addresses. In neurobiological spiking activity, this may
be the identified set of recorded neurons. For neuromorphic
hardware like the output of a DVS or our task, this can be
defined as [1, Np]×[1, NX]×[1, NY] ⊂ N3, where Np is the
number of polarities (Np = 2 for the ON and OFF polarities
encoded in event-based cameras) and (NX, NY) is the height
and width of the image in pixels. Thus, each address ar is
typically in the form (pr , xr , yr ) for event-based cameras.

In the HD-SNN model, neurons b ∈ B are connected to
presynaptic afferent neurons fromA using realistic synapses.
In biology, a single cortical neuron typically has several thou-
sand synapses. Each synapse can be defined by its synaptic
weight and its delay, that is, the time it takes for a spike to
travel from the soma of the presynaptic neuron to the soma
of the postsynaptic neuron. Note that a neuron can contact
another afferent neuron with different delays through dif-
ferent synaptic connections. By scanning all postsynaptic
neurons b, we may thus define the full set of Ns synapses, as
S = {(as, bs, ws, δs)}s∈[1,Ns ], where each synapse is associ-
ated with a presynaptic address as , a postsynaptic address bs ,
a weightws , and a delay δs . This defines the full connectivity
of the HD-SNN model (see Fig. 2—right for an illustration
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Fig. 1 Motion Detection Task. To generate realistic event-based
dynamic scenes, we mimic the effect of minute saccadic eye move-
ments on a large natural scene (1024 × 1024) by extracting an image
(128× 128) which center is moving dynamically according to a jagged
random walk. (Left) We show an instance of this trajectory (with a
length of 200 ms, green line) superimposed on the luminance contrasts
observed at time step t = 15 ms. (Right) The dynamics of this image,
translated according to the saccadic trajectory, produces a naturalistic
movie, which is then transformed into an event-based representation.
We show snapshots of the resulting synthetic event stream at different

time steps (from t = 15ms to t = 19ms, these frames aremarked on the
trajectory by a white and black dot, respectively, in the left inset). Mim-
icking the response of ganglion cells in the retina, this representation
encodes at each pixel all-or-none increases or decreases in luminance,
i.e., ON (red) and OFF (blue) spikes. In the lower left corner of the
snapshots, we show the corresponding instantaneousmotion vector (red
arrow). Note the change in the direction of motion between the third
and fourth frames, and also that contours parallel to the motion produce
fewer luminance changes, the so-called aperture problem, and thus rel-
atively fewer spikes

Fig. 2 Core mechanism of the HD-SNN model. (Left-top) Four presy-
naptic neurons show some spiking activity in which a spiking motif is
embedded (starting at time t = 50 ms). (Right)An illustration of a spik-
ing neuronwith different synaptic weights (represented by the thickness
of the synapses) and different synaptic delays (represented by the length
of the synapses). (Left-middle) Each spike is weighted by the synaptic
weights (height of the blue bars) and shifted in time according to the
synaptic delays on each respective synapse (input spikes are shown in
light gray for comparison). As a result, the spikes from the spiking

motif are synchronized as they reach the soma of the postsynaptic neu-
ron. (Left-bottom) These spikes are then integrated and contribute to a
modification of the membrane potential of the output neuron according
to the neural activation function. In this example, we use the activa-
tion function of a Leaky Integrate-and-Fire neuron. The first spiking
motif is synchronized by the synaptic delays and causes a sudden rise
in the membrane potential of the postsynaptic neuron. An output spike
is emitted at time t = 75 ms when the membrane potential reaches the
threshold, and it is then reset

of the connectivity of one neuron with synaptic weights and
delays).

Of interest is to define the emitting field of a presynap-
tic neuron Sa = {(as, bs, ws, δs)‖as = a}s∈[1,Ns ] ⊂ S,
or also the receptive field of a postsynaptic neuron Sb =
{(as, bs, ws, δs)‖bs = b}s∈[1,Ns ] ⊂ S. In particular, when
driven by a stream of spikes ε = {(ar , tr )}r∈[1,Nev], each

incoming spike is multiplexed by the synapses of the recep-
tive field Sb of postsynaptic neuron b. This results in a
weighted event stream (see Fig. 2—left-middle) for each
postsynaptic neuron b:

εb = {(ar , wr , tr + δs)‖ar
= as}r∈[1,Nev],s∈Sb (1)
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In biology, this new stream of events is naturally ordered
in time as events reach the soma of postsynaptic neurons.
In simulations, however, it should be properly reordered.
Once transformed by the synaptic connectivity, this weighted
event streammay be integrated, for instance as themembrane
potential of a leaky-integrate-and-fire neuron (see Fig. 2—
left-bottom), yet the activation function of the HD-SNN
neurons can be selected from the full range of spiking neu-
ron response functions. Importantly, this activation function
has to be such that when postsynaptic neurons are activated at
their soma by a specific spatiotemporalmotif imprinted in the
synaptic set, and such that these spikes converge at the soma
in a synchronous manner, the discharge probability should
increase. In this subsection, we have briefly defined the HD-
SNN model in all generality (see (Perrinet 2023) for a more
specific description and treatment), and in the next subsec-
tion, we describe an implementation of our model adapted to
the motion detection task.

2.3 Application of HD-SNN tomotion detection

In fact, it is possible to adapt the HD-SNNmodel specifically
for commoncomputer vision tasks. First, neural addresses are
defined to represent the range of possible positions and polar-
ities. Second, to simulate such event-based computations on
standard CPU- or GPU-based computers and to benefit from
parallel computing acceleration, we transform the temporal
event-based representation into a dense discretized represen-
tation. Indeed, by using this discretization, we transform any
event-based input from an event-based camera into aBoolean
matrix A ∈ {0, 1}Np×NT×NX×NY defined for all polarities
p, times t , and space coordinates x and y. The values
are, by definition, equal to zero, except when events occur:
∀r ∈ [1, Nev], A(pr , tr , xr , yr ) = 1. Similarly, one may dis-
cretize the connectivity of theHD-SNNmodel defined above.
The longest synaptic delay defines the depth KT of the kernel,
so that all possible delays associated with the different presy-
naptic addresses are represented. In particular, for each class
c of the supervision task, the entire synaptic set can be repre-
sented as a kernel, which is represented by the dense matrix
K of size (Nc, Np, KT, KX, KY), where Nc is the number
of classes, KT is the number of delays, and KX and KY are
the number of pixels in each spatial dimension. To keep the
analogy with the HD-SNN model, K gives the synaptic set
that defines the weight of all synapses s defined as a function
of their class c, polarity, synaptic delay and relative position:
∀p ∈ [1, Np], δt ∈ [1, KT], δx ∈ [1, KX], δy ∈ [1, KY],
K (c, p, δt , δx , δy) = ws . In our simulations, we define as
many classes as the number ofmotions (directions and veloc-
ities): Nc = 12 × 3 and set the size of the model’s kernel to
(Nc, Np, KT, KX, KY) = (36, 2, 21, 17, 17). Such a kernel
defines a dense representation of the full synaptic set.

Then, it can be noted that by using a discretization, the
computational block used in equation (1) corresponds to a
weighted reordering of the input A with each kernels and
positions assigned to the postsynaptic neurons (Grimaldi and
Perrinet 2022). Let us define evidence as the logit of a proba-
bility, that is, the inverse sigmoid of that probability. By this
definition of evidence, logistic regression takes advantage of
the fact that if different independent observations (here, the
estimated motion at different spatial locations and timings)
share a common cause (here, the rigid local motion of the
image on the receptive field), then an optimal estimate of the
evidence of this motion is the sum of the evidences from the
independent sources. Interpreting the weights of the kernel
as evidences (also called factors in logistic regression), we
may therefore define the activity B of postsynaptic neurons
as the integration of this activity in each voxel and for each
channel c in order to infer the evidence of each motion:

∀x, y, t, B(c, t, x, y) =
∑

p,δt ,δx ,δy

K (c, p, δt , δx , δy)

·A(p, t − δt , x − δx , y − δy)

(2)

where δx and δy are the relative addresses of the synapses
within a kernel and δt is the synaptic delay. In this formu-
lation, we recognize that it takes advantage of the position
invariance observed in images and exploited in CNNs. Here,
we further assume that synaptic motifs should be similar
across different times as defined in the temporal convolution.
As a consequence, this defines a 3D, spatiotemporal convo-
lutional operator, in which the layers of neurons assigned to
specific kernels form channels. Using this dense representa-
tion, the model’s processing of the input A can be written
as layer-wise convolution: B = K ∗ A (see Fig. 3 for an
illustration).

The well-known convolution defines a differentiable mea-
sure, which is very efficiently implemented for GPUs, and
which we will use to detect the motion direction in the event
stream. A similar type of spatiotemporal filtering was used
as a preprocessing stage for an existing pattern recogni-
tion algorithm (Ghosh et al. 2019). In addition, Sekikawa
et al. (2018) developed an efficient 3D convolutional algo-
rithm that implements amotion estimation task. By assuming
locally a constant motion, the authors assume that the 3D
kernel can be decomposed into a 2D kernel representing
the shapes and a 3D kernel representing the motion. For
convenience, the connectivity of the neuron b is defined
locally around its position (xb, yb). Furthermore, it is impor-
tant to consider that in order to adhere to the limitations
of causal computation using biologically realistic neurons,
synaptic delays are assigned positive values. This ensures
that only past information contributes to the inference made

123



378 Biological Cybernetics (2023) 117:373–387

OFF polarity
ON polarity

*

AC
TI

VA
TI

O
N

 F
U

N
C

TI
O

N

timetime time

channel 1
channel 2

pr
es

yn
ap

tic
 a

dd
re

ss
es

synaptic
delay

Fig. 3 Applying HD-SNN to the task of motion detection. (Left) We
plot a 2D representation of the input event stream as a raster plot (show-
ingONspikes in red andOFF spikes in blue for each presynaptic address
and time). A spatiotemporal convolution is applied to the dense repre-
sentation of the input with 2 different convolution kernels (the green and
orange kernels), which define the output channels. The convolution is
summed over the two polarities. Since we have two axes X and Y to rep-
resent the presynaptic addresses, like the pixel grid of aDVS, this results
in a 3D convolution. Here, we simplify the illustration to a 2D represen-
tation and to two possible classes (green and orange) associated with
two different directions of motion. (Middle) For each position (address,

time) one can compute the activation resulting from the convolution.
The output of the convolution is processed by the nonlinearity of the
MLR model (i.e., the sigmoid function). The output of the MLR gives
a probability for each class associated with a particular kernel (colored
bars in the highlighted pixel). (Right) By adding a spiking mechanism,
here a winner-takes-all associated with thresholding, we obtain as out-
put of the HD-SNN model a new spike train with the different spikes
associated with a particular motion class. Note that the position of the
output spikes does not systematically correspond to the position of the
input spikes, but only when enough evidence is reached

at the present moment. In practice, the kernels are temporally
shifted so that the inference at the present time is solely influ-
enced by past information. This temporal shift occurs after
a duration equivalent to the depth of the kernel, denoted as
KT.

Such a method contrasts with classical methods for delay
learning, which explicitly manipulate the delay as a variable
and which are not directly differentiable (Nadafian and Gan-
jtabesh 2020). Keeping the analogy with spiking neurons,
the analog activity B represents the integration of synap-
tic activity, and we will now try to define the detection of
motion using the spatiotemporal kernels. Since we know that
at each instant, theremay be different motions, wewill define
the activation function of our model as a sigmoid function
that implements a form of Multinomial Logistic Regression
(MLR). In ourMLRmodel, a probability value for each class
(i.e., each direction of motion) is predicted for each position
x, y and time t as a sigmoid function σ(β) = 1

1+exp(−β)
of

the result of the convolution. Formally, using the kernels, the
input raster plot is transformed into a probability with the
following formula:

∀x, y, t,∀c ∈ [1, Nc],
Pr(k = c | x, y, t)

= σ(B(c, t, x, y) + βc) (3)

where βc is a scalar representing the bias associated with the
class c. In particular, we anticipate that certain specific pat-
terns could result in closely synchronized outputs when they
are integrated within the basal dendritic tree, consequently
leading to heightened postsynaptic activity. By utilizing this
analog representation of the evidence for each potential
motion at every moment, we can progressively increase the
likelihood of generating an output spike. To determine the
spiking output, we establish a firing threshold. Here, we
computed this threshold to ensure that neurons, on average,
generate one spike per second. Therefore, the spiking output
of the model corresponds to the motions in space and time
that represent the highest probability.

Now that this general framework has been described
formally, wemay include some heuristics based on neurosci-
entific observations to constrain our model and its strategies
for solving the ecological task described in Sect. 2.1. Note
that the general framework is an extension to that presented
in Grimaldi and Perrinet (2022), in particular by including
a more complex task, the deeper analysis of the results, and
these novel neuroscience-inspired heuristics. First, to avoid
introducing biases in the directionswhichmay be learned,we
apply a circular mask to the spatial dimensions of the kernels.
We also included a prior in the selectable motions, as there is
a prior for slow speeds in natural scenes (Vacher et al. 2018).
Since we want to capture the possible convergence of the
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Fig. 4 Representation of the weights for eight directions for a single
speed (among the 12 × 3 different kernels of the model) as learned on
the dataset of naturalistic scenes. The directions are shown as red arrows
in the left insets, where the disks correspond to the set of different pos-
sible motions. The spatiotemporal kernels are shown as slices of spatial
weights at different delays. Delays vary along the horizontal axis from
the far right (delay of one step) to the left (up to a delay of 12 steps, the
remaining synapses being not represented). Each image corresponds to

the weights at a given delay, with excitatory and inhibitory weights in
warm and cold colors, respectively. Due to the symmetry between the
ON and OFF event streams, we observed that the kernels for the OFF
polarities are very similar and are not shown here. Different kernels are
selective for the different motion directions, and we observe a slight
orientation preference perpendicular to the respective direction for all
kernels

trajectories of the events converging on each voxel, we apply
a mask to the spatiotemporal kernels such that the smaller
the delay, the smaller the radius of the circular mask that is
applied (see Fig. 4 for an illustration). In our simulations,
we observed that including this prior accelerated the learn-
ing but was not necessary to reach convergence. Second, we
observed that moving images produced trajectories of ON
and OFF spikes and that these were present in both polari-
ties. This is due to the fact that our whitened images have a
relative symmetry in the luminance profiles, that is, that an
image with inverted contrast is indistinguishable from a stan-
dard one. Since this arrangement of polarities is independent
of motion, we added a mechanism that collects the linear
values for the movie and that with the ON and OFF cells
flipped, keeping only the maximum value for each voxel.
This is similar to the computation done for complex cells in
primary visual cortex.

2.4 Supervised learning of themotion detection
task

Since the model is fully differentiable, we can now imple-
ment a supervised learning rule to learn the weights of the
model’s kernel. This rule was implemented using the binary
input events as inputs and the corresponding motion’s labels
as the desired output. The loss function of the MLR model
is the binary cross entropy of the output of the classification
layer knowing the ground truth. The labels were defined at
each time point as a one-hot encoding of the currentmotion in
the channel corresponding to the current motion, and applied
for all positions. Note that in this context, the label is known,
but the position of visual features is not, mainly due to the
sparse spatial content of natural images. However, the super-
vised optimization of this MLR model adjusts the weights
of the kernels. As a result, we observed that the error is only
propagated back to the spatial locations of these most active
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cells. This is reminiscent of previous methods that solve
this problem using a winner-takes-all mechanism (Masque-
lier and Thorpe 2007), but is implicit in our formulation.
Simulations are performed with the PyTorch library using
gradient descent with Adam (for 210 movies, each of size
200 × 128 × 128, a learning rate of 10−5 and 100 epochs).

Finally, the output of the MLR model is a representa-
tion that predicts the probability of each motion at each
position and time. Such an output provides a form of opti-
cal flow that can be exploited for non-rigid motion, but we
have defined here, for simplicity, an evaluation method that
applies to our full-field motion task. Using the properties
of logistic regression, by taking the mean evidence repre-
sented in the output given by the model at all positions for
any given time, and using the sigmoid function, we can
derive each motion’s probability at that time. Taking the
most probable class as the output, this allows one to cal-
culate the accuracy as the percentage of times the motion is
accurately predicted at any given time step. For validation,
these calculations are performed on a different input dataset
than the one used in the training or validation steps. The
complete code to reproduce the results of this paper is avail-
able at https://github.com/SpikeAI/2023_GrimaldiPerrinet_
HeterogeneousDelaySNN (see Data Availability).

3 Results

3.1 Kernels learned for motion detection

Once our model has been trained, we can begin by examin-
ing the learned weights for the various motions (see Fig. 4).
Notably, when we track each spatial motif from the short-
est delay (on the right) to the longest delay (on the left),
we observe that the cells exhibit highly localized selectivity
and their preferences are conveyed along linear trajectories
in the space-delay domain. When focusing on the positive
weights, we notice a pronounced selectivity along specific
motion axes for each kernel, and these directions correspond
closely to the associatedmotion’s physical direction in visual
space. For instance, the first kernel demonstrates a robust
preference for downward motion. The negative weights are
symmetrically arranged around these positive weights, form-
ing a center-surround profile that is known to enhance the
response. We also observed a strong dependence between
the weights reaching the ON polarities and those reaching
the OFF polarities. In particular, whenever a weight for a
given position and delay is positive for one polarity, it will
be negative for the other. This property is due to the way
events are generated and the fact that the luminance cannot
increase and decrease at the same time. Interestingly, the rel-
ative organization of the receptive fields that we observe is
in quadrature of phase and follows a push–pull organization

predicted by Kremkow et al. (2016) to explain neurophysio-
logical results obtained after showing similar natural scenes
with synthetic eye movements (Baudot et al. 2013). Finally,
we observe that these receptive fields show also a relative
selectivity to the orientation perpendicular to motion, simi-
lar to what is found for neurons in cortical area MT which
is known to be selective to visual motions (DeAngelis et al.
1999). This reflects the way events are generated and in par-
ticular the so-called aperture problem which implies that a
line moving along its axis would generate no change in lumi-
nance and therefore generate no event (Perrinet and Masson
2012).

If we now widen our focus on the interpretation of
these kernels in terms of spatiotemporal motifs embedded
in the event stream, these show a prototypical anisotropic
profile adapted to motion detection (Kaplan et al. 2013).
In (Grimaldi et al. 2023a), a link was drawn between event-
based MLR training and Hebbian learning, allowing to say
that the present model learns its weights according to a
presynaptic activity associated with the different motion
directions. Each neuron becomes selective to a specific
motion direction through the learning of an associated pro-
totypical spatiotemporal spiking motif. Each voxel in the 3D
kernels defines a specific property by associating a weight
to a position and a delay. Consequently, our model is able to
detect precise spatiotemporal motifs embedded in the spike
train and associated with the different motion directions.
Note that as the delays become larger, two effects can be
remarked. First, coefficients become lower which is consis-
tent with the fact that trajectories are defined in a piece wise
fashion, such that this decrease provideswith an optimal inte-
gration considering the gradual diminishing of evidence as
time progresses (Pasturel et al. 2020). Second, coefficients
become less localized compared to the kernel’s spatial pro-
file at short delays, consistent with the average diffusion of
information included in the generative model and with the
diffusion introduced inmotion-based predictionmodels (Per-
rinet and Masson 2012; Khoei et al. 2017).

3.2 Accuracy versus efficiency tradeoff

After training our MLR model, we obtain spatiotemporal
kernels corresponding to the weights associated with the het-
erogeneous delays of our layer of spiking neurons, which can
be used for detection. For this, we quantify its ability to cate-
gorize different motions, i.e., on event streams for which the
ground-truth motion is known at each instant. When applied
to new instances of the input movies, the model develops
a neural activity which may be used to infer the correct
motion (see Fig. 5) and from which we may deduce an accu-
racy value. This accuracywas computed on a novel dataset of
200 novel movies. The accuracy computed on the test set was
approximately 91% (with a chance level of 1/12/3 ≈ 2%).
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Fig. 5 In response to a specific event-based input instance (left), we
present the neural activity of the HD-SNN model (right). To aid visu-
alization, we display a single spatiotemporal slice for a given vertical
position (y = 32) and 10 horizontal positions. The input spiking activity
comprises ON and OFF spikes, as explained in Fig. 1, showcasing the
switching within the naturalistic event-based stream from one motion
to another due to saccades. The dots above the graph indicate the corre-
sponding motion class at each instant (the motion being represented by
the matching color). The output activity consists of two components.

Firstly, there is an analog component that corresponds to the evidence
accumulated by the model on the spatiotemporal kernels. Secondly,
there is a spiking component represented by vertical bars superimposed
on the analog activity. These spikes signify moments when the evidence
surpasses the spiking threshold. Importantly, this activity alignswith the
motion depicted in the input stream. Finally, it is possible to compute
the accuracy by comparing the ground-truth motion in the input video
with the motion predicted by the model (as represented by the colored
dots on top of the graph)

We also observed that the distribution of the kernel’s
weights is sparse, with most values close to zero (see Fig. 4).
As shown in the formalization of our event-based model, the
computational cost of our model, if implemented on a neuro-
morphic chip, would be dominated by the computations used
for the convolution operation. In a dense setting, this corre-
sponds for all voxels in the output to a sum over all voxels in
the inputs for all weights in the kernel. But if the information
support is sparse, then computations can be now performed
only on those events. Specifically, if we set some weights of
the kernels to zero, then the additive operation in the convo-
lution for those addresses can be dropped. As a consequence,
computations will be performed only on those events which
were multiplexed by the pruned connectivity matrix. Thus,
knowing the sparseness of the input, the total number of com-
putations scales with the number of spikes multiplied by the
number of nonzero synaptic weights. This hypothesis is con-
sistent with biological observations which have shown that
communication consumes 35 times more energy than com-
putation in the human cortex (Levy and Calvert 2021).

In order to evaluate the resilience of the classification per-
formance with respect to computational load, we adopt first
a pruning approach, where we remove weights in K that fall
below a specified threshold. The accuracy of classification is
then plotted as a function of the relative number of compu-
tations or active weights per decision for each neuron in the
layer (refer to Fig. 6). To provide a basis for comparison and

to account for the benefits of utilizing variable delays,we also
present the accuracy achieved by anMLRmodel employing a
shortening strategy. This strategy involves adjusting the tem-
poral width by selecting only the weights associated with
the shortest delays. In comparison with the inference per-
formed using the complete 3D kernels without any pruning
(36 × 2 × 21 × 17 × 17), both approaches demonstrate a
reduction in computational requirements as indicated by the
number of nonzero weights.

By selectively setting certain weights to zero, we observe
that the accuracy’s evolution, as a function of the logarithmic
percentageof activeweights, alignswellwith a sigmoid curve
for both pruning and shortening strategies. The shortening
strategy (depicted in orange) demonstrates a rapid decline
in accuracy, reaching half-saturation when approximately
one-third of the weights remain. On the other hand, the prun-
ing strategy (shown in blue) exhibits a different behavior. It
reaches half-saturation when the ratio of active weights is
approximately 2.6×10−3, corresponding to around 375 less
computations compared to the dense scenario. In compari-
son with using the complete kernels, our method maintains
accuracy close to its peak performance even when the num-
ber of computations is divided by a factor of up to around
31. This substantial reduction in computations showcases the
robustness of the presented method.
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Fig. 6 Accuracy as a function of computational load for the HD-SNN
model (blue dots) with error bars indicating the 5–95% quantiles and a
sigmoid fit (blue line). The relative computational load (on a logarith-
mic axis) is controlled by changing the percentage of nonzero weights
relative to the dense convolution kernel. If we shorten the length of

the kernel by using only the weights at the shortest delays, the accu-
racy quickly drops. However, if we prune the lowest coefficients from
the whole kernel, we observe a stable accuracy value, with a drop to
half-saturation observed at about 375 times fewer computations

3.3 Testing with natural-like textures

In order to assess the influence of spatiotemporal parame-
ters of the stimuli on the performance of the model, we now
test the model on simpler, parameterized stimuli. For this
purpose, we use a set of synthetic visual stimuli, Motion
Clouds (Leon et al. 2012a), which are natural-like random
textures for which we can control relevant parameters for
motion detection, including motion direction, spatial ori-
entation, and spatial frequency along with their respective
precisions (see Fig. 7) (Leon et al. 2012b; Vacher et al. 2018).
By matching the spatial and temporal characteristics of the
generated movies with those of the motion task mentioned
earlier, we created a range of textures featuring different spa-
tial properties and motions. This procedure defines a set
of textures with different spatial properties and different
motions chosen from the same set of 12 directions and 3
speeds. For each motion, we also varied the texture param-
eters, such as mean and variance of orientation or spatial
frequency content, to provide some naturalistic variability.

This method provides a rich dataset of textured movies for
which we know the ground truth for the motion.

We observe some interesting facts. First, as we change the
mean spatial frequency of the texture, we observe a broadly
tuned response in accuracy. This comes as a similar trend as
shown in the primary visual areas (Priebe et al. 2006; Perrinet
and Masson 2007) and reveals the most informative scales
learned by our model. Then, by modifying the bandwidth
in spatial frequency, we show that the accuracy is worse for
a grating-like stimulus than for a large one (which quali-
tatively resembles a more textured stimulus), reminiscent of
the behavioral response of humans to such stimuli (Simoncini
et al. 2012; Ravello et al. 2019). Interestingly, we also see
a modulation of accuracy as a function of orientation band-
width. When the stimulus is grating-like and the orientation
is arbitrarywith respect to the direction ofmotion, the system
faces the aperture problem and experiences a sharp decrease
in accuracy. This is not the case for isotropic stimuli or when
the orientation is perpendicular to the direction of motion.
Finally, we manipulated the amount of change between two
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Fig. 7 Role of stimulus parameters in motion detection accuracy.
Accuracy as a function of (from left to right) mean spatial frequency,
bandwidth in spatial frequency (from gratings (left) to isotropic tex-
tures (right)), bandwidth in orientation (from isotropic textures (left)
to gratings (right)), bandwidth in speed (from a rigid motion (left) to

independent frames (right)). Examples snapshots are shown as an illus-
tration in the top insets. Note that these accuracies are computed both
in the case where the orientation of the synthetic texture is necessarily
perpendicular to themotion (“no aperture” condition) and in the generic
case where the orientation is independent of direction (“aperture”)

successive frames, similar to a temperature parameter. This
shows a progressive decrease in accuracy, similar to that
observed in the amplitude of human eye movements (Man-
sour Pour et al. 2018).

4 Discussion

This paper presents a novel and versatile heterogeneous
delay spiking neural network (HD-SNN) that was trained
using supervised learning for visual motion detection. We
demonstrate the effectiveness of our model by comparing its
performance to other event-based classification algorithms
for this specific task. Notably, the learned model exhibits
similarities with neurobiological and behavioral observa-
tions. One key advantage of our approach is the ability to
significantly reduce the computational requirements through
synapse pruning, while still maintaining robust classifica-
tion performance. This highlights the potential to leverage
the precise timing of spikes to enhance the efficiency and
effectiveness of neural computations. Overall, our findings
underscore the potential of incorporating precise spike timing
in neural models and demonstrate the promising capabilities
of our heterogeneous delay SNN for event-based computa-
tions, specifically in the context of visual motion detection.

4.1 Synthesis andmain contributions

The HD-SNN model was trained and evaluated on a natu-
ralistic motion detection task with realistic eye movements.

It is defined such as to provide an optimal detection of spa-
tiotemporal motifs and learns kernels similar to those found
in the visual cortex DeAngelis et al. (1999); Kremkow et al.
(2016). We have evaluated the computational cost of this
model when implemented in a setting similar to event-based
hardware.We show that the use of heterogeneous delaysmay
be an efficient computational solution for future neuromor-
phic hardware, but also a key to understanding why spikes
are a universal component of neural information processing.

We would like to highlight a few innovations in the con-
tributions presented in this paper. First, while (Ghosh et al.
2019; Yu et al. 2022) use a correlation-based heuristic, the
generic heterogeneous model is formalized from first princi-
ples for optimal detection of spatiotemporal spiking motifs
using a time-invariant logistic regression. Moreover, com-
pared to classical CNN solutions, the parameters of this
one-layered model (weights and delays) are explainable, as
they directly inform about the evidence of detection for each
spatiotemporal spike motif, where we define evidence as the
logit of the probability, that is, the inverse sigmoid of the
probability. Another novelty is that the model learns simulta-
neouslyweights and delays. In contrast, the polychronization
model (Izhikevich 2006) learns only theweights using STDP,
while the delays are randomlydrawnat initialization and their
values are frozen during learning. In addition, the model
is evaluated on a realistic task, while models such as the
tempotron are tested on simplified toy problems (Gütig and
Sompolinsky 2006).Anothermajor contribution is to provide
a model that is suitable for learning any kind of spatiotem-
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poral spiking motif and that can be trained in a supervised
manner by providing a dataset of supervised pairs. Instead
of relying on a careful description of the physical rules gov-
erning a task, e.g., the luminance conservation principle for
motion detection (Benosman 2012; Dardelet et al. 2021),
this allows a more flexible definition of the model using this
properly labeled dataset.

4.2 Main limits

We have identified a number of limitations of our model,
which we will now discuss in detail. First, this implemen-
tation of the HD-SNN model is based on a discrete binning
of time, which is not compatible with the continuous nature
of biological time. We used this binning to efficiently imple-
ment the framework on conventional hardware, especially
GPUs, in particular to be able to use fast, differentiable three-
dimensional convolutions. This is consistent with the relative
robustness of other event-based frameworks (Lagorce et al.
2017; Grimaldi et al. 2023a), where accuracy was unaffected
when the input spikes were subjected to noisy perturbations
up to 4 ms on the N-MNIST dataset (Grimaldi et al. 2023a).
It suggests the potential advantage of analytically including
an additional precision term to the temporal value of input
spikes. Such a mechanism may be implemented by the fil-
tering implemented by the synaptic time constant of about
5 ms. Furthermore, it is possible to circumvent the need for
time discretization by the use of a purely event-based scheme.
In fact, it is possible to derive event-triggered computations
of the continuous activity of the SNN (Hanuschkin et al.
2010) and thus to define a purely event-based framework.
Such an architecture could provide promising computational
speedups.

Another limitation is that the model is purely feed-
forward. Thus, the spikes generated by the postsynaptic
neurons are based solely on the information contained in the
classical receptive field. However, it is known that neurons
in the same layer can interact with each other through lat-
eral interactions, for example in V1, and that this can be the
basis for more complex computational principles (Chavane
et al. 2022). For example, the combination of neighboring
orientationsmay contribute to image categorization (Perrinet
and Bednar 2015). Furthermore, neural information may be
modulated by feedback information, e.g., to distinguish a
figure from its background (Roelfsema and de Lange 2016).
Feedback has been shown to be essential for building real-
istic models of primary visual areas (Boutin et al. 2020a, b),
especially to explain nonlinear mechanisms (Boutin et al.
2022). Currently, mainly due to our use of convolutions, it is
not possible to implement these recurrent connections in our
implementation (lateral or feedback). However, by insert-
ing new spikes into the list of spikes reaching presynaptic
addresses, the generic HD-SNNmodel is able to incorporate

them. While this is theoretically possible, it must be prop-
erly tuned in practice so that these recurrent connections do
not bring neuronal activity outside a homeostatic state (by
extinction or explosion).

Such recurrent activity would be essential for the imple-
mentation of predictive or anticipatory processes (Benvenuti
et al. 2020). This is essential in a neural systembecause it con-
tains several delays that require temporal alignment (Hogen-
doorn and Burkitt 2019). This has been modeled before
to explain, for example, the flash-lag illusion (Khoei et al.
2017). As mentioned previously, this could be implemented
using generalized coordinates (i.e., variables such as posi-
tion complemented by motion, acceleration, jerk, etc.), and
knowing that “neurobiologically, using delay operators just
means changing synaptic connection strengths to take differ-
ent mixtures of generalized sensations and their prediction
errors” (Perrinet et al. 2014). Our proposed model using
heterogeneous delays provides an alternative and elegant
implementation solution to this problem.

4.3 Perspectives

In defining our task, we emphasized that the generation of
events depends on the spatial gradient in each image. This
gradient has both horizontal and vertical dimensions, and its
maxima are generally orientation dependent. Taken together,
these oriented edges form the contours of visual objects in
the scene (Koenderink and van Doorn 1987). Thus, there is
an interdependence between motion information and orien-
tation information within the event stream, which we put in
evidence by the shape of the kernels. It would be crucial to
investigate this dependency further. This could be initiated by
training the model on a dataset with labels that provide local
orientation. Exploring this dependence will allow us to dis-
sociate and integrate these two forms of visual information.
In particular, it will allow us to consider that the definition of
motion is more accurate perpendicular to an oriented contour
(i.e., the aperture problem). Thus, it will allow us to imple-
ment recurrent prediction rules, such as those identified to
dissociate this problem (Perrinet and Masson 2012).

The model is trained on a low-level local motion detec-
tion task, and one might wonder if it could be trained on
higher-level tasks. An example of such a task would be depth
estimation in the visual scene. There are several sources of
information for depth estimation, such as binocular disparity
or changes in texture or shading, but in our case motion par-
allax would be the most important cue (Rogers and Graham
1979). This is because objects that are close to an observer
move on the retina relatively faster than an object that is far
away, and also because visual occlusions depend on depth
order.Using this information, it is possible to segment objects
and estimate their depth (Yoonessi and Baker 2011). How-
ever, this would first require the computation of the optic
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flow, i.e., the extension of the framework described here for
a rigid full-field motion to a more general one where the
motion may vary in the visual field. One possible imple-
mentation is to add a new layer to our model, analogous to
the hierarchical organization which is prevalent in the visual
cortex. This is theoretically possible by using the output of
our model (which estimates motion in retinotopic space) as
input to a new layer of neurons that would estimate motion
in the visual field, including the depth dimension in the out-
put supervision labels. This could have direct and important
applications, e.g., in autonomous driving to detect obstacles
in a fast and robust way. Another extension would be to
actively generate sensormotion (physical or virtual) to obtain
better depth estimates, especially to disambiguate uncertain
estimates (Nawrot 2003).

In conclusion, the HD-SNNmodel that we have presented
provides a way to efficiently process event-based signals.We
have shown that we can train the model using a supervised
rule that infers what is the output label, but not where it
occurs. Another perspective would be to extend the model to
a fully self-supervised learning paradigm, i.e., without any
labeled data (Barlow 1989). This type of learning is thought
to be prevalent in the central nervous system and, assuming
the signal is sparse (Olshausen and Field 1996), one could
extend these Hebbian sparse learning schemes to spikes (Per-
rinet 2004;Masquelier et al. 2009).We expect that this would
beparticularly useful for exploringneurobiological data (Per-
rinet 2023). Indeed, there is a large literature showing that
brain dynamics often organize into stereotyped sequences,
such as synfire chains (Ikegaya et al. 2004), packets (Luczak
et al. 2007), or hippocampal sequences (Pastalkova et al.
2008; Villette et al. 2015). These motifs are stereotyped and
robust, as they can be activated following the samemotif from
day to day (Haimerl et al. 2019). In contrast to conventional
methods of processing neurobiological data, such an event-
basedmodel would be able to answer key questions about the
representation of information in neurobiological data, and it
would open possibilities in the field of computational neu-
roscience. Furthermore, it would open possibilities in the
field of machine learning, especially in computer vision, to
address current key concerns such as robustness to attacks,
scalability, interpretability, or energy consumption.
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