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Abstract
The precise timing of spikes emitted by neurons plays a crucial role in
shaping the response of efferent biological neurons. This temporal dimen-
sion of neural activity holds significant importance in understanding
information processing in neurobiology, especially for the performance
of neuromorphic hardware, such as event-based cameras. Nonetheless,
many artificial neural models disregard this critical temporal dimen-
sion of neural activity. In this study, we present a model designed
to efficiently detect temporal spiking motifs using a layer of spiking
neurons equipped with heterogeneous synaptic delays. Our model cap-
italizes on the diverse synaptic delays present on the dendritic tree,
enabling specific arrangements of temporally precise synaptic inputs to
synchronize upon reaching the basal dendritic tree. We formalize this
process as a time-invariant logistic regression, which can be trained
using labeled data. To demonstrate its practical efficacy, we apply the
model to naturalistic videos transformed into event streams, simulat-
ing the output of the biological retina or event-based cameras. To
evaluate the robustness of the model in detecting visual motion, we con-
duct experiments by selectively pruning weights and demonstrate that
the model remains efficient even under significantly reduced workloads.
In conclusion, by providing a comprehensive, event-driven computa-
tional building block, the incorporation of heterogeneous delays has the
potential to greatly improve the performance of future spiking neural
network algorithms, particularly in the context of neuromorphic chips.

Keywords: time code, event-based computations, spiking neural networks,
motion detection, efficient coding, logistic regression

1 Introduction
The human brain has the remarkable capacity to react efficiently at any given
time while consuming a reasonable amount of energy, in the order of 20 watts.
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This system is the result of millions of years of natural selection, and a strik-
ing difference with artificial neural networks is the representation that both
use. Indeed, our computers use digital values and for instance, the convolu-
tional neural networks (CNNs) which are used for processing images represent
the flow of information from one layer to another using tensors of floats.
These networks store visual information densely across the visual topography,
with different translation-invariant properties represented in different channels.
CNNs have achieved state-of-the-art performance for some computer vision
tasks, such as image recognition. These networks are also known to mimic sev-
eral properties of the biological visual system, such that each can be assigned
a “brain score” [67]. However, this score does not take into account key aspects
of the efficiency of biological systems, such as inference speed (usually several
times the biological time) or the energy consumption of this mesoscopic model
of the brain, which is about 360 watts on a standard GPU (NVIDIA RTX
3090). In the vast majority of biological neural networks, on the other hand,
information is represented as spikes, prototypical all-or-nothing (binary) events
whose only parameters are their timing and the address of the neuron that fired
the spike [51]. Spiking neural networks (SNNs), known as the third genera-
tion of artificial neural networks, incorporate this temporal dimension into the
way they perform their computations. One example of a SNN is the SpikeNet
algorithm, which takes a purely temporal approach by encoding information
using at most one spike per neuron [18]. Alternatively, the SNN implemented
in the SpikeProp algorithm [7] that uses the exact timing of spikes and learns
the structure of the network by minimizing a specifically defined cost function.
This was recently extended using the surrogate gradient method which is now
widely used in attempts to transfer the performance of CNNs to SNNs [76].
However, the performance of SNNs still lags behind that of networks using
an analog, firing rate-based representation. The question of the advantage of
using spikes in machine learning and computer vision remains open.

In a recent review, we reported previous theoretical and experimental evi-
dence for the use of precise spiking motifs in biological neural networks [25].
In particular, Abeles [1] asked whether the role of cortical neurons is the inte-
gration of synaptic inputs or rather the detection of coincidences in temporal
spiking motifs. While the first hypothesis favors the firing rate coding the-
ory, the second emphasizes on the importance of temporal precision in neural
activity. Since then, numerous studies have demonstrated the emergence of
synchronous activity within a neuronal population [16, 64], efficient coding
using precise spike timings [23, 53, 54], or precise timing in the auditory sys-
tem [11, 19]. All these findings, and more [6], highlight the importance of the
temporal aspect of the neural code and suggest the existence of spatiotempo-
ral spiking motifs in biological spike trains. In neural models, the definition
of heterogeneous delays [27, 46, 77] allows the efficient detection of these spa-
tiotemporal motifs embedded in the spike train. Such spatiotemporal motifs
present in neural activity may form useful representations to perform compu-
tations for various cognitive tasks using the synchrony of spikes reaching the
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soma of a neuron. In particular, Izhikevich [33] introduced the notion of the
polychronous group as a spiking motif defined by a subset of neurons with
different, but precise, relative spiking delays. This delay between a pair of
connected neurons is defined as the time between the emission of a spike at
the soma of the afferent neuron and its arrival at the soma of the efferent
neuron. Importantly, due to the variety of weights and delays within a popula-
tion, representations using polychronous groups have, in theory, a much higher
information capacity than a firing rate-based approach.

The present paper proposes a real-world application that extends a recently
proposed model of spiking neurons with heterogeneous synaptic delays [26].
This model was trained to solve a simplified motion detection task on a syn-
thetic event-based dataset generated by moving parameterized textures, and
provides a first demonstration that formal neurons can exploit the precise tim-
ing of spikes to detect motion thanks to heterogeneous delays. Here, we extend
these results to a much more complex and natural setting. First, we define the
ecological cognitive task that the model must solve with the different datasets
on which it will be tested. Instead of the synthetic textures used previously,
we use natural scenes synthesized from natural images translated by biologi-
cally inspired saccadic movements. We then develop the Heterogeneous Delays
Spiking Neural Network (HD-SNN) model from efficiency principles and derive
a learning rule to adapt the weights of each heterogeneous synaptic delay
using gradient descent. Applied to this detection task, we study the emergence
of spatiotemporal spiking motifs when this single layer of spiking neurons is
trained in a supervised manner. We investigate the efficiency of the motion
detection mechanism and, in particular, its resilience to synaptic weight prun-
ing. Indeed, once trained, the amount of event-driven computation could be
drastically reduced by removing weak synapses while maintaining peak per-
formance for the classification task. In this way, we will be able to show how
such a model can provide an efficient solution to the energy/accuracy tradeoff.

2 Methods
This paper aims to investigate the capability of the HD-SNN model to effec-
tively learn and solve a motion detection task using realistic event-based data
streams, as typically captured by event-based cameras, also known as Dynamic
Vision Sensors (DVS). DVS are designed to mimic the signal transmitted from
retinal ganglion cells to the visual cortex through the optic nerve. The events
in these data streams are binary in nature and should provide sufficient infor-
mation for performing fast and efficient motion detection. In this study, we first
outline the task definition, specifying the requirements for motion detection.
Subsequently, we describe the HD-SNN model employed for inferring motion,
highlighting its key characteristics and architecture. Lastly, we elaborate on
the training procedure employed to train the HD-SNN model for the specific
motion detection task.
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2.1 Task definition: motion detection in a synthetic
naturalistic event stream

To train and validate our model which uses supervised learning, we need to
define a visual dataset for which we explicitly know the ground truth motion,
that is, direction and speed. To achieve this, we define a procedure for animat-
ing a natural visual scene with virtual eye movements, similar to those used in
studies from neurobiology [3, 73] or computational neuroscience [37]. First, we
draw a trajectory inspired by biological eye movements. Indeed, these move-
ments allow us to dynamically actuate the center of vision in the visual field.
In animals with a fovea, this is particularly useful as it allows the area with
the highest density of photoreceptors to be moved, for example, to a point of
interest in the environment. A specific mechanism for this function are sac-
cades, which are rapid eye movements that reposition the center of vision. In
humans, saccades are very frequent (on average 2 per second [14]), very fast
(about 80 ms), and have a wide range of speeds. On a more microscopic scale,
the human gaze moves with minute micro-saccades which trajectories are sim-
ilar to a Brownian trajectory [61]. To preserve the full generality of the task,
we define eye movements using such a form of random walk [20]: We first define
a finite set of possible motions in polar coordinates as the Cartesian product
of the 12 regularly spaced directions and 3 geometrically spaced speeds. Next,
we define a saccadic path as a sequence of time segments whose durations are
drawn from a Poisson distribution with a mean block length of 24 ms, simi-
lar to a Lévy flight [42, p. 289]. Finally, assuming motion is stationary during
saccades, and that motions for each flight are drawn uniformly and indepen-
dently, the global trajectory is generated by integrating this motion sequence.
This generative model yields trajectories that are qualitatively very similar to
those observed for human eye movements (see Fig. 1-(Left)).

Once these eye trajectories are generated, we can apply them to a visual
scene. For this purpose, we selected a database of 100 large-scale natural images
that were previously used to study the statistics of natural images [71]. Note
that these were pre-processed to be in grayscale and to equalize (i.e., whiten)
the energy in each frequency band, similar to a process known to occur in the
retino-thalamic pathway [13]. The full-scale images are 1024×1024 in size, and
we crop images of size 128× 128 positioned around the center of gaze at each
time step. We discretize time in 1 ms bins and produce movies of duration
NT = 200 ms. To avoid boundary effects, we randomly position the full tra-
jectory in image space so that the sub-image is translated using the position
given by the trajectory at each time step and without touching the bound-
aries. At each time step, the translation is computed using a coordinate roll
in the horizontal and vertical dimensions, followed by a sub-pixel translation
defined in Fourier space [55]. Note that the magnitude of the displacement is
relative to the time bin, and we have defined the unit speed to correspond to
a movement of one pixel per frame (i.e., per time bin of 1 ms).

To transform each movie into events, as recorded by a DVS, we compute
a residual gradient image which we initialize at zero. We then compute the
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Fig. 1 Motion Detection Task. To generate realistic event-based dynamic scenes, we
mimic the effect of minute saccadic eye movements on a large natural scene (1024 × 1024)
by extracting an image (128 × 128) which center is moving dynamically according to a
jagged random walk. (Left) We show an instance of this trajectory (with a length of 200 ms,
green line) superimposed on the luminance contrasts observed at time step t = 15 ms.
(Right) The dynamics of this image, translated according to the saccadic trajectory, produces
a naturalistic movie, which is then transformed into an event-based representation. We show
snapshots of the resulting synthetic event stream at different time steps (from t = 15 ms to
t = 19 ms, these frames are marked on the trajectory by a white and black dot, respectively,
in the left inset). Mimicking the response of ganglion cells in the retina, this representation
encodes at each pixel all-or-none increases or decreases in luminance, i.e., ON (red) and
OFF (blue) spikes. In the lower left corner of the snapshots, we show the corresponding
instantaneous motion vector (red arrow). Note the change in the direction of motion between
the third and fourth frames, and also that contours parallel to the motion produce fewer
luminance changes, the so-called aperture problem, and thus relatively fewer spikes.

temporal gradient of the pixels’ intensity over two successive frames. For a
given pixel and time stamp, an event is generated when the absolute value of
this gradient exceeds a threshold. The event has either an OFF or ON polarity,
depending on whether the gradient is negative or positive. The signed threshold
is then subtracted from the residual gradient image. When applied to the whole
movie, the event stream is similar to the output of a neuromorphic camera [21],
i.e. a list of events defined by xr and yr (their position on the pixel grid), their
polarity pr (ON or OFF), and their time tr (see Fig. 1-(Right)). Ultimately,
the goal of the model is to infer the correct motion solely by observing these
events.

2.2 The HD-SNN model
In this task, the input consists of a stream of events or spikes, a representation
common to the signal obtained from an event-based camera or from a neurobi-
ological recording of the activity of single units. Formally, this can be defined
as a list of tuples, each tuple representing the neural address and timestamp.
We denote this list as ϵ = {(ar, tr)}r∈[1,Nev] where Nev ∈ N is the total number
of events in the data stream and the rank r is the index of each event in the
list of events (see Fig. 2-Left-Top for an illustration). Each event has a time
of occurrence tr and an associated address ar. Events are usually ordered by
their time of occurrence. We define the address space A, which consists of the
set of possible addresses. In neurobiological spiking activity, this may be the
identified set of recorded neurons. For neuromorphic hardware like the output
of a DVS or our task, this can be defined as [1, Np] × [1, NX] × [1, NY] ⊂ N3,
where Np is the number of polarities (Np = 2 for the ON and OFF polarities
encoded in event-based cameras) and (NX, NY) is the height and width of the
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Fig. 2 Core mechanism of the HD-SNN model. (Left-Top) Four presynaptic neurons
show some spiking activity in which a spiking motif is embedded (starting at time t = 50 ms).
(Right) An illustration of a spiking neuron with different synaptic weights (represented by
the thickness of the synapses) and different synaptic delays (represented by the length of
the synapses). (Left-Middle) Each spike is weighted by the synaptic weights (height of the
blue bars) and shifted in time according to the synaptic delays on each respective synapse
(input spikes are shown in light gray for comparison). As a result, the spikes from the
spiking motif are synchronized as they reach the soma of the postsynaptic neuron. (Left-
Bottom) These spikes are then integrated, and contribute to a modification of the membrane
potential of the output neuron according to the neural activation function. In this example,
we use the activation function of a Leaky Integrate-and-Fire neuron. The first spiking motif
is synchronized by the synaptic delays and causes a sudden rise in the membrane potential of
the postsynaptic neuron. An output spike is emitted at time t = 75 ms when the membrane
potential reaches the threshold, and it is then reset.

image in pixels. Thus, each address ar is typically in the form (pr, xr, yr) for
event-based cameras.

In the HD-SNN model, neurons b ∈ B are connected to presynaptic afferent
neurons from A using realistic synapses. In biology, a single cortical neuron
typically has several thousand synapses. Each synapse can be defined by its
synaptic weight and its delay, that is, the time it takes for a spike to travel from
the soma of the presynaptic neuron to the soma of the postsynaptic neuron.
Note that a neuron can contact another afferent neuron with different delays
through different synaptic connections. By scanning all postsynaptic neurons b,
we may thus define the full set of Ns synapses, as S = {(as, bs, ws, δs)}s∈[1,Ns],
where each synapse is associated with a presynaptic address as, a postsynaptic
address bs, a weight ws, and a delay δs. This defines the full connectivity of
the HD-SNN model (see Fig. 2-Right for an illustration of the connectivity of
one neuron with synaptic weights and delays).

Of interest is to define the emitting field of a presynaptic neuron Sa =
{(as, bs, ws, δs)∥as = a}s∈[1,Ns] ⊂ S, or also the receptive field of a postsy-
naptic neuron Sb = {(as, bs, ws, δs)∥bs = b}s∈[1,Ns] ⊂ S. In particular, when
driven by a stream of spikes ϵ = {(ar, tr)}r∈[1,Nev ], each incoming spike is
multiplexed by the synapses of the receptive field Sb of postsynaptic neuron
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b. This results in a weighted event stream (see Fig. 2-Left-Middle) for each
postsynaptic neuron b:

ϵb = {(ar, wr, tr + δs)∥ar = as}r∈[1,Nev ],s∈Sb (1)

In biology, this new stream of events is naturally ordered in time as events reach
the soma of postsynaptic neurons. In simulations, however, it should be prop-
erly reordered. Once transformed by the synaptic connectivity, this weighted
event stream may be integrated, for instance as the membrane potential of a
Leaky-Integrate-and-Fire neuron (see Fig. 2-Left-Bottom), yet the activation
function of the HD-SNN neurons can be selected from the full range of spik-
ing neuron response functions. Importantly, this activation function has to be
such that when postsynaptic neurons are activated at their soma by a spe-
cific spatiotemporal motif imprinted in the synaptic set, and such that these
spikes converge at the soma in a synchronous manner, the discharge probability
should increase. In this subsection, we have briefly defined the HD-SNN model
in all generality (see [56] for a more specific description and treatment), and
in the next subsection we describe an implementation of our model adapted
to the motion detection task.

2.3 Application of HD-SNN to motion detection
In fact, it is possible to adapt the HD-SNN model specifically for common
computer vision tasks. First, neural addresses are defined to represent the
range of possible positions and polarities. Second, to simulate such event-
based computations on standard CPU- or GPU-based computers and to benefit
from parallel computing acceleration, we transform the temporal event-based
representation into a dense discretized representation. Indeed, by using this
discretization, we transform any event-based input from an event-based cam-
era into a Boolean matrix A ∈ {0, 1}Np×NT×NX×NY defined for all polarities
p, times t, and space coordinates x and y. The values are, by definition,
equal to zero, except when events occur: ∀r ∈ [1, Nev], A(pr, tr, xr, yr) = 1.
Similarly, one may discretize the connectivity of the HD-SNN model defined
above. The longest synaptic delay defines the depth KT of the kernel, so
that all possible delays associated with the different presynaptic addresses
are represented. In particular, for each class c of the supervision task, the
entire synaptic set can be represented as a kernel, which is represented by
the dense matrix K of size (Nc, Np,KT,KX,KY), where Nc is the number
of classes, KT the number of delays and KX and KY are the number of pix-
els in each spatial dimension. To keep the analogy with the HD-SNN model,
K gives the synaptic set that defines the weight of all synapses s defined
as a function of their class c, polarity, synaptic delay and relative position:
∀p ∈ [1, Np], δt ∈ [1,KT], δx ∈ [1,KX], δy ∈ [1,KY], K(c, p, δt, δx, δy) = ws. In
our simulations, we define as many classes as the number of motions (direc-
tions and velocities): Nc = 12 × 3 and set the size of the model’s kernel
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to (Nc, Np,KT,KX,KY) = (36, 2, 21, 17, 17). Such a kernel defines a dense
representation of the full synaptic set.

Then, it can be noted that by using a discretization, the computational
block used in equation (1) corresponds to a weighted reordering of the input A
with each kernels and positions assigned to the postsynaptic neurons [26]. Let
us define evidence as the logit of a probability, that is, the inverse sigmoid of
that probability. By this definition of evidence, logistic regression takes advan-
tage of the fact that if different independent observations (here, the estimated
motion at different spatial locations and timings) share a common cause (here,
the rigid local motion of the image on the receptive field), then an optimal
estimate of the evidence of this motion is the sum of the evidences from the
independent sources. Interpreting the weights of the kernel as evidences (also
called factors in logistic regression), we may therefore define the activity B of
postsynaptic neurons as the integration of this activity in each voxel and for
each channel c in order to infer the evidence of each motion:

∀x, y, t, B(c, t, x, y) =
∑

p,δt,δx,δy

K(c, p, δt, δx, δy) ·A(p, t−δt, x−δx, y−δy) (2)

where δx and δy are the relative addresses of the synapses within a kernel and δt
is the synaptic delay. In this formulation, we recognize that it takes advantage
of the position invariance observed in images and exploited in CNNs. Here, we
further assume that synaptic motifs should be similar across different times
as defined in the temporal convolution. As a consequence, this defines a 3D,
spatiotemporal convolutional operator, in which the layers of neurons assigned
to specific kernels form channels. Using this dense representation, the model’s
processing of the input A can be written as layer-wise convolution: B = K ∗A
(see Fig. 3 for an illustration).

The well-known convolution defines a differentiable measure, which is
very efficiently implemented for GPUs, and which we will use to detect the
motion direction in the event stream. A similar type of spatiotemporal fil-
tering was used as a preprocessing stage for an existing pattern recognition
algorithm [22]. In addition, Sekikawa et al. [68] developed an efficient 3D con-
volutional algorithm that implements a motion estimation task. By assuming
locally a constant motion, the authors assume that the 3D kernel can be decom-
posed into a 2D kernel representing the shapes and a 3D kernel representing
the motion. For convenience, the connectivity of the neuron b is defined locally
around its position (xb, yb). Furthermore, it is important to consider that in
order to adhere to the limitations of causal computation using biologically
realistic neurons, synaptic delays are assigned positive values. This ensures
that only past information contributes to the inference made at the present
moment. In practice, the kernels are temporally shifted so that the inference at
the present time is solely influenced by past information. This temporal shift
occurs after a duration equivalent to the depth of the kernel, denoted as KT.
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Such a method contrasts with classical methods for delay learning, which
explicitly manipulate the delay as a variable and which are not directly differ-
entiable [46]. Keeping the analogy with spiking neurons, the analog activity B
represents the integration of synaptic activity, and we will now try to define
the detection of motion using the spatiotemporal kernels. Since we know that
at each instant, there may be different motions, we will define the activation
function of our model as a sigmoid function that implements a form of Multi-
nomial Logistic Regression (MLR). In our MLR model, a probability value for
each class (i.e., each direction of motion) is predicted for each position x, y
and time t as a sigmoid function σ(β) = 1

1+exp(−β) of the result of the convo-
lution. Formally, using the kernels, the input raster plot is transformed into a
probability with the following formula:

∀x, y, t, ∀c ∈ [1, Nc], P r(k = c | x, y, t) = σ(B(c, t, x, y) + βc) (3)

where βc is a scalar representing the bias associated with the class c. In par-
ticular, we anticipate that certain specific patterns could result in closely
synchronized outputs when they are integrated within the basal dendritic tree,
consequently leading to heightened postsynaptic activity. By utilizing this ana-
log representation of the evidence for each potential motion at every moment,
we can progressively increase the likelihood of generating an output spike. To
determine the spiking output, we establish a firing threshold. Here, we com-
puted this threshold to ensure that neurons, on average, generate one spike per
second. Therefore, the spiking output of the model corresponds to the motions
in space and time that represent the highest probability.

Now that this general framework has been described formally, we may
include some heuristics based on neuroscientific observations to constrain our
model and its strategies for solving the ecological task described in section 2.1.
Note that the general framework is an extension to that presented in [26], in
particular by: including a more complex task, the deeper analysis of the results,
and these novel neuroscience-inspired heuristics. First, to avoid introducing
biases in the directions which may be learned, we apply a circular mask to the
spatial dimensions of the kernels. We also included a prior in the selectable
motions, as there is a prior for slow speeds in natural scenes [70]. Since we want
to capture the possible convergence of the trajectories of the events converging
on each voxel, we apply a mask to the spatiotemporal kernels such that the
smaller the delay, the smaller the radius of the circular mask that is applied
(see Fig. 4 for an illustration). In our simulations, we observed that including
this prior accelerated the learning but was not necessary to reach convergence.
Second, we observed that moving images produced trajectories of ON and
OFF spikes, and that these were present in both polarities. This is due to
the fact that our whitened images have a relative symmetry in the luminance
profiles, that is, that an image with inverted contrast is indistinguishable from
a standard one. Since this arrangement of polarities is independent of motion,
we added a mechanism that collects the linear values for the movie and that
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Fig. 3 Applying HD-SNN to the task of motion detection. (Left) We plot a 2D
representation of the input event stream as a raster plot (showing ON spikes in red and
OFF spikes in blue for each presynaptic address and time). A spatiotemporal convolution
is applied to the dense representation of the input with 2 different convolution kernels (the
green and orange kernels), which define the output channels. The convolution is summed
over the two polarities. Since we have two axes X and Y to represent the presynaptic
addresses, like the pixel grid of a DVS, this results in a 3D convolution. Here we simplify the
illustration to a 2D representation and to 2 possible classes (green and orange) associated
to two different directions of motion. (Middle) For each position (address, time) one can
compute the activation resulting from the convolution. The output of the convolution is
processed by the nonlinearity of the MLR model (i.e., the sigmoid function). The output of
the MLR gives a probability for each class associated with a particular kernel (colored bars
in the highlighted pixel). (Right) By adding a spiking mechanism, here a winner-takes-all
associated with thresholding, we obtain as output of the HD-SNN model a new spike train
with the different spikes associated with a particular motion class. Note that the position
of the output spikes does not systematically correspond to the position of the input spikes,
but only when enough evidence is reached.

with the ON and OFF cells flipped, keeping only the maximum value for each
voxel. This is similar to the computation done for complex cells in primary
visual cortex.

2.4 Supervised learning of the motion detection task
Since the model is fully differentiable, we can now implement a supervised
learning rule to learn the weights of the model’s kernel. This rule was imple-
mented using the binary input events as inputs and the corresponding motion’s
labels as the desired output. The loss function of the MLR model is the binary
cross entropy of the output of the classification layer knowing the ground truth.
The labels were defined at each time point as a one-hot encoding of the cur-
rent motion in the channel corresponding to the current motion, and applied
for all positions. Note that in this context, the label is known, but the position
of visual features is not, mainly due to the sparse spatial content of natural
images. However, the supervised optimization of this MLR model adjusts the
weights of the kernels. As a result, we observed that the error is only propa-
gated back to the spatial locations of these most active cells. This is reminiscent
of previous methods that solve this problem using a winner-takes-all mecha-
nism [45], but is implicit in our formulation. Simulations are performed with
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the PyTorch library using gradient descent with Adam (for 210 movies, each
of size 256× 128× 128, a learning rate of 10−5 and 100 epochs).

Finally, the output of the MLR model is a representation that predicts the
probability of each motion at each position and time. Such an output pro-
vides a form of optical flow that can be exploited for non-rigid motion, but
we have defined here, for simplicity, an evaluation method that applies to
our full-field motion task. Using the properties of logistic regression, by tak-
ing the mean evidence represented in the output given by the model at all
positions for any given time, and using the sigmoid function, we can derive
each motion’s probability at that time. Taking the most probable class as
the output, this allows one to calculate the accuracy as the percentage of
times the motion is accurately predicted at any given time step. For valida-
tion, these calculations are performed on a different input dataset than the
one used in the training or validation steps. The complete code to reproduce
the results of this paper is available at https://github.com/SpikeAI/2023_
GrimaldiPerrinet_HeterogeneousDelaySNN (see Data Availability).

3 Results

3.1 Kernels learned for motion detection
Once our model has been trained, we can begin by examining the learned
weights for the various motions (see Fig. 4). Notably, when we track each spa-
tial motif from the shortest delay (on the right) to the longest delay (on the
left), we observe that the cells exhibit highly localized selectivity and their pref-
erences are conveyed along linear trajectories in the space-delay domain. When
focusing on the positive weights, we notice a pronounced selectivity along spe-
cific motion axes for each kernel, and these directions correspond closely to
the associated motion’s physical direction in visual space. For instance, the
first kernel demonstrates a robust preference for downward motion. The nega-
tive weights are symmetrically arranged around these positive weights, forming
a center-surround profile that is known to enhance the response. We also
observed a strong dependence between the weights reaching the ON polarities
and those reaching the OFF polarities. In particular, whenever a weight for a
given position and delay is positive for one polarity, it will be negative for the
other. This property is due to the way events are generated and the fact that
the luminance cannot increase and decrease at the same time. Interestingly,
the relative organization of the receptive fields that we observe is in quadra-
ture of phase and follows a push-pull organization predicted by Kremkow et al.
[37] to explain neurophysiological results obtained after showing similar nat-
ural scenes with synthetic eye movements [3]. Finally, we observe that these
receptive fields show also a relative selectivity to the orientation perpendicu-
lar to motion, similar to what is found for neurons in cortical area MT which
is known to be selective to visual motions [17]. This reflects the way events
are generated and in particular the so-called aperture problem which implies

https://github.com/SpikeAI/2023_GrimaldiPerrinet_HeterogeneousDelaySNN
https://github.com/SpikeAI/2023_GrimaldiPerrinet_HeterogeneousDelaySNN
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delay

Fig. 4 Representation of the weights for 8 directions for a single speed (among the 12× 3
different kernels of the model) as learned on the dataset of naturalistic scenes. The directions
are shown as red arrows in the left insets, where the disks correspond to the set of differ-
ent possible motions. The spatiotemporal kernels are shown as slices of spatial weights at
different delays. Delays vary along the horizontal axis from the far right (delay of one step)
to the left (up to a delay of 12 steps, the remaining synapses being not represented). Each
image corresponds to the weights at a given delay, with excitatory and inhibitory weights in
warm and cold colors, respectively. Due to the symmetry between the ON and OFF event
streams, we observed that the kernels for the OFF polarities are very similar and are not
shown here. Different kernels are selective for the different motion directions, and we observe
a slight orientation preference perpendicular to the respective direction for all kernels.

that a line moving along its axis would generate no change in luminance and
therefore generate no event [59].

If we now widen our focus on the interpretation of these kernels in terms
of spatiotemporal motifs embedded in the event stream, these show a pro-
totypical anisotropic profile adapted to motion detection [34]. In [24], a link
was drawn between event-based MLR training and Hebbian learning, allowing
to say that the present model learns its weights according to a presynaptic
activity associated with the different motion directions. Each neuron becomes
selective to a specific motion direction through the learning of an associated
prototypical spatiotemporal spiking motif. Each voxel in the 3D kernels defines
a specific property by associating a weight to a position and a delay. Conse-
quently, our model is able to detect precise spatiotemporal motifs embedded in
the spike train and associated with the different motion directions. Note that
as the delays become larger, two effects can be remarked. First, coefficients
become lower which is consistent with the fact that trajectories are defined in a
piece wise fashion, such that this decrease provides with an optimal integration
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Fig. 5 In response to a specific event-based input instance (Left), we present the neural
activity of the HD-SNN model (Right). To aid visualization, we display a single spatiotem-
poral slice for a given vertical position (here y = 32) and the 10 first horizontal positions.
The input spiking activity comprises ON and OFF spikes, as explained in Fig. 1, showcas-
ing the switching within the naturalistic event-based stream from one motion to another
due to saccades. The dots above the graph indicate the corresponding motion class at each
instant (the motion being represented by the matching color). The output activity consists
of two components. Firstly, there is an analog component that corresponds to the evidence
accumulated by the model on the spatiotemporal kernels. Secondly, there is a spiking com-
ponent represented by vertical bars superimposed on the analog activity. These spikes signify
moments when the evidence surpasses the spiking threshold. Importantly, this activity aligns
with the motion depicted in the input stream. Finally, it is possible to compute the accuracy
by comparing the ground truth motion in the input video with the motion predicted by the
model (as represented by the colored dots on top of the graph).

considering the gradual diminishing of evidence as time progresses [50]. Sec-
ond, coefficients become less localized compared to the kernel’s spatial profile
at short delays, consistent with the average diffusion of information included
in the generative model and with the diffusion introduced in motion-based
prediction models [35, 59].

3.2 Accuracy versus efficiency tradeoff
After training our MLR model, we obtain spatiotemporal kernels correspond-
ing to the weights associated with the heterogeneous delays of our layer of
spiking neurons, which can be used for detection. For this, we quantify its abil-
ity to categorize different motions, i.e. on event streams for which the ground
truth motion is known at each instant. When applied to new instances of the
input movies, the model develops a neural activity which may be used to infer
the correct motion (see Fig. 5) and from which we may deduce an accuracy
value. This accuracy was computed on a novel dataset of 200 novel movies.
The accuracy computed on the test set was approximately 91% (with a chance
level of 1/12/3 ≈ 2%).

We also observed that the distribution of the kernel’s weights is sparse,
with most values close to zero (see Fig. 4). As shown in the formalization of
our event-based model, the computational cost of our model, if implemented
on a neuromorphic chip, would be dominated by the computations used for
the convolution operation. In a dense setting, this corresponds for all voxels in
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Fig. 6 Accuracy as a function of computational load for the HD-SNN model (blue dots)
with error bars indicating the 5% - 95% quantiles and a sigmoid fit (blue line). The relative
computational load (on a logarithmic axis) is controlled by changing the percentage of
nonzero weights relative to the dense convolution kernel. If we shorten the length of the
kernel by using only the weights at the shortest delays, the accuracy quickly drops. However,
if we prune the lowest coefficients from the whole kernel, we observe a stable accuracy value,
with a drop to half-saturation observed at about 670 times fewer computations.

the output to a sum over all voxels in the inputs for all weights in the kernel.
But if the information support is sparse, then computations can be now per-
formed only on those events. Specifically, if we set some weights of the kernels
to zero, then the additive operation in the convolution for those addresses can
be dropped. As a consequence, computations will be performed only on those
events which were multiplexed by the pruned connectivity matrix. Thus, know-
ing the sparseness of the input, the total number of computations scales with
the number of spikes multiplied by the number of nonzero synaptic weights.
This hypothesis is consistent with biological observations which have shown
that communication consumes 35 times more energy than computation in the
human cortex [40].

In order to evaluate the resilience of the classification performance with
respect to computational load, we adopt first a pruning approach, where we
remove weights in K that fall below a specified threshold. The accuracy of clas-
sification is then plotted as a function of the relative number of computations
or active weights per decision for each neuron in the layer (refer to Fig. 6).
To provide a basis for comparison and to account for the benefits of utiliz-
ing variable delays, we also present the accuracy achieved by an MLR model
employing a shortening strategy. This strategy involves adjusting the temporal
width by selecting only the weights associated with the shortest delays. In com-
parison with the inference performed using the complete 3D kernels without



Learning heterogeneous delays of spiking neurons for motion detection 15

any pruning (36× 2× 21× 17× 17), both approaches demonstrate a reduction
in computational requirements as indicated by the number of nonzero weights.

By selectively setting certain weights to zero, we observe that the accu-
racy’s evolution, as a function of the logarithmic percentage of active weights,
aligns well with a sigmoid curve for both pruning and shortening strategies.
The shortening strategy (depicted in orange) demonstrates a rapid decline in
accuracy, reaching half-saturation when approximately one-third of the weights
remain. On the other hand, the pruning strategy (shown in blue) exhibits a
different behavior. It reaches half-saturation with 652 synapses, that is, a ratio
of active weights equal approximately to 1.5× 10−3, corresponding to around
670 less computations compared to the dense scenario. In comparison with
using the complete kernels, our method maintains accuracy close to its peak
performance even when the number of computations is divided by a factor of
up to around 31. This substantial reduction in computations showcases the
robustness of the presented method.

3.3 Testing with natural-like textures
In order to assess the influence of spatiotemporal parameters of the stimuli on
the performance of the model, we now test the model on simpler, parameter-
ized stimuli. For this purpose, we use a set of synthetic visual stimuli, Motion
Clouds [39], which are natural-like random textures for which we can control
relevant parameters for motion detection, including motion direction, spatial
orientation, and spatial frequency along with their respective precisions (see
Fig. 7) [70]. By matching the spatial and temporal characteristics of the gen-
erated movies with those of the motion task mentioned earlier, we created a
range of textures featuring different spatial properties and motions. This pro-
cedure defines a set of textures with different spatial properties and different
motions chosen from the same set of 12 directions and 3 speeds. For each
motion, we also varied the texture parameters, such as mean and variance of
orientation or spatial frequency content, to provide some naturalistic variabil-
ity. This method provides a rich dataset of textured movies for which we know
the ground truth for the motion.

We observe some interesting facts. First, as we change the mean spatial
frequency of the texture, we observe a broadly tuned response in accuracy.
This comes as a similar trend as shown in the primary visual areas [60, 62] and
reveals the most informative scales learned by our model. Then, by modifying
the bandwidth in spatial frequency, we show that the accuracy is worse for
a grating-like stimulus than for a large one (which qualitatively resembles a
more textured stimulus), reminiscent of the behavioral response of humans to
such stimuli [63, 69]. Interestingly, we also see a modulation of accuracy as a
function of orientation bandwidth. When the stimulus is grating-like and the
orientation is arbitrary with respect to the direction of motion, the system
faces the aperture problem and experiences a sharp decrease in accuracy. This
is not the case for isotropic stimuli or when the orientation is perpendicular
to the direction of motion. Finally, we manipulated the amount of change
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Fig. 7 Role of stimulus parameters in motion detection accuracy. Accuracy as a
function of (from left to right) mean spatial frequency, bandwidth in spatial frequency (from
gratings (left) to isotropic textures (right)), bandwidth in orientation (from isotropic textures
(left) to gratings (right)), bandwidth in speed (from a rigid motion (left) to independent
frames (right)). Examples snapshots are shown as an illustration in the top insets. Note
that these accuracies are computed both in the case where the orientation of the synthetic
texture is necessarily perpendicular to the motion (’perpend’ condition) and in the generic
case where the orientation is independent of direction (’aperture’).

between two successive frames, similar to a temperature parameter. This shows
a progressive decrease in accuracy, similar to that observed in the amplitude
of human eye movements [43].

4 Discussion
This paper presents a novel and versatile heterogeneous delay spiking neu-
ral network (HD-SNN) that was trained using supervised learning for visual
motion detection. We demonstrate the effectiveness of our model by com-
paring its performance to other event-based classification algorithms for this
specific task. Notably, the learned model exhibits similarities with neurobi-
ological and behavioral observations. One key advantage of our approach is
the ability to significantly reduce the computational requirements through
synapse pruning, while still maintaining robust classification performance. This
highlights the potential to leverage the precise timing of spikes to enhance
the efficiency and effectiveness of neural computations. Overall, our findings
underscore the potential of incorporating precise spike timing in neural mod-
els and demonstrate the promising capabilities of our heterogeneous delay
SNN for event-based computations, specifically in the context of visual motion
detection.

4.1 Synthesis and main contributions
The HD-SNN model was trained and evaluated on a naturalistic motion detec-
tion task with realistic eye movements. It is defined such as to provide an
optimal detection of spatiotemporal motifs and learns kernels similar to those
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found in the visual cortex [17, 37]. We have evaluated the computational cost of
this model when implemented in a setting similar to event-based hardware. We
show that the use of heterogeneous delays may be an efficient computational
solution for future neuromorphic hardware, but also a key to understanding
why spikes are a universal component of neural information processing.

We would like to highlight a few innovations in the contributions presented
in this paper. First, while [22, 75] use a correlation-based heuristic, the generic
heterogeneous model is formalized from first principles for optimal detection of
spatiotemporal spiking motifs using a time-invariant logistic regression. More-
over, compared to classical CNN solutions, the parameters of this one-layered
model (weights and delays) are explainable, as they directly inform about the
evidence of detection for each spatiotemporal spike motif, where we define
evidence as the logit of the probability, that is, the inverse sigmoid of the prob-
ability. Another novelty is that the model learns simultaneously weights and
delays. In contrast, the polychronization model [33] learns only the weights
using STDP, while the delays are randomly drawn at initialization and their
values are frozen during learning. In addition, the model is evaluated on a
realistic task, while models such as the tempotron are tested on simplified toy
problems [28]. Another major contribution is to provide a model that is suitable
for learning any kind of spatiotemporal spiking motif and that can be trained
in a supervised manner by providing a dataset of supervised pairs. Instead
of relying on a careful description of the physical rules governing a task, e.g.
the luminance conservation principle for motion detection [4, 15], this allows
a more flexible definition of the model using this properly labeled dataset.

4.2 Main limits
We have identified a number of limitations of our model, which we will now
discuss in detail. First, this implementation of the HD-SNN model is based
on a discrete binning of time, which is not compatible with the continuous
nature of biological time. We used this binning to efficiently implement the
framework on conventional hardware, especially GPUs, in particular to be able
to use fast, differentiable three-dimensional convolutions. This is consistent
with the relative robustness of other event-based frameworks [24, 38], where
accuracy was unaffected when the input spikes were subjected to noisy per-
turbations up to 4 ms on the N-MNIST dataset [24]. It suggests the potential
advantage of analytically including an additional precision term to the tem-
poral value of input spikes. Such a mechanism may be implemented by the
filtering implemented by the synaptic time constant of about 5 ms. Further-
more, it is possible to circumvent the need for time discretization by the use
of a purely event-based scheme. In fact, it is possible to derive event-triggered
computations of the continuous activity of the SNN [30] and thus to define a
purely event-based framework. Such an architecture could provide promising
computational speedups.
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Another limitation is that the model is purely feed-forward. Thus, the
spikes generated by the postsynaptic neurons are based solely on the infor-
mation contained in the classical receptive field. However, it is known that
neurons in the same layer can interact with each other through lateral inter-
actions, for example in V1, and that this can be the basis for more complex
computational principles [12]. For example, the combination of neighboring
orientations may contribute to image categorization [58]. Furthermore, neural
information may be modulated by feedback information, e.g. to distinguish a
figure from its background [65]. Feedback has been shown to be essential for
building realistic models of primary visual areas [9, 10], especially to explain
nonlinear mechanisms [8]. Currently, mainly due to our use of convolutions, it
is not possible to implement these recurrent connections in our implementation
(lateral or feedback). However, by inserting new spikes into the list of spikes
reaching presynaptic addresses, the generic HD-SNN model is able to incor-
porate them. While this is theoretically possible, it must be properly tuned
in practice so that these recurrent connections do not bring neuronal activity
outside a homeostatic state (by extinction or explosion).

Such recurrent activity would be essential for the implementation of predic-
tive or anticipatory processes [5]. This is essential in a neural system because
it contains several delays that require temporal alignment [31]. This has been
modeled before to explain, for example, the flash-lag illusion [35]. As mentioned
previously, this could be implemented using generalized coordinates (i.e., vari-
ables such as position complemented by motion, acceleration, jerk, . . . ), and
knowing that “neurobiologically, using delay operators just means changing
synaptic connection strengths to take different mixtures of generalized sensa-
tions and their prediction errors” [57]. Our proposed model using heterogeneous
delays provides an alternative and elegant implementation solution to this
problem.

4.3 Perspectives
In defining our task, we emphasized that the generation of events depends
on the spatial gradient in each image. This gradient has both horizontal
and vertical dimensions, and its maxima are generally orientation dependent.
Taken together, these oriented edges form the contours of visual objects in the
scene [36]. Thus, there is an interdependence between motion information and
orientation information within the event stream, which we put in evidence by
the shape of the kernels. It would be crucial to investigate this dependency
further. This could be initiated by training the model on a dataset with labels
that provide local orientation. Exploring this dependence will allow us to dis-
sociate and integrate these two forms of visual information. In particular, it
will allow us to consider that the definition of motion is more accurate per-
pendicular to an oriented contour (that is, the aperture problem). Thus, it will
allow us to implement recurrent prediction rules, such as those identified to
dissociate this problem [59].
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The model is trained on a low-level local motion detection task, and one
might wonder if it could be trained on higher-level tasks. An example of such
a task would be depth estimation in the visual scene. There are several sources
of information for depth estimation, such as binocular disparity or changes
in texture or shading, but in our case motion parallax would be the most
important cue [66]. This is because objects that are close to an observer move
on the retina relatively faster than an object that is far away, and also because
visual occlusions depend on depth order. Using this information, it is possible
to segment objects and estimate their depth [74]. However, this would first
require the computation of the optic flow, i.e., the extension of the framework
described here for a rigid full-field motion to a more general one where the
motion may vary in the visual field. One possible implementation is to add
a new layer to our model, analogous to the hierarchical organization which is
prevalent in the visual cortex. This is theoretically possible by using the output
of our model (which estimates motion in retinotopic space) as input to a new
layer of neurons that would estimate motion in the visual field, including the
depth dimension in the output supervision labels. This could have direct and
important applications, e.g. in autonomous driving to detect obstacles in a
fast and robust way. Another extension would be to actively generate sensor
motion (physical or virtual) to obtain better depth estimates, especially to
disambiguate uncertain estimates [47].

In conclusion, the HD-SNN model that we have presented provides a way
to efficiently process event-based signals. We have shown that we can train
the model using a supervised rule that infers what is the output label, but
not where it occurs. Another perspective would be to extend the model to
a fully self-supervised learning paradigm, i.e. without any labeled data [2].
This type of learning is thought to be prevalent in the central nervous system
and, assuming the signal is sparse [48], one could extend these Hebbian sparse
learning schemes to spikes [44, 52]. We expect that this would be particularly
useful for exploring neurobiological data [56]. Indeed, there is a large literature
showing that brain dynamics often organize into stereotyped sequences, such
as synfire chains [32], packets [41], or hippocampal sequences [49, 72]. These
motifs are stereotyped and robust, as they can be activated following the same
motif from day to day [29]. In contrast to conventional methods of processing
neurobiological data, such an event-based model would be able to answer key
questions about the representation of information in neurobiological data, and
it would open possibilities in the field of computational neuroscience. Further-
more, it would open possibilities in the field of machine learning, especially in
computer vision, to address current key concerns such as robustness to attacks,
scalability, interpretability, or energy consumption.
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