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ABSTRACT

The response of a biological neuron depends on the precise
timing of afferent spikes. This temporal aspect of the neuronal
code is essential in understanding information processing in
neurobiology and applies particularly well to the output of
neuromorphic hardware such as event-based cameras. How-
ever, most artificial neuronal models do not take advantage of
this minute temporal dimension and here, we develop a model
for the efficient detection of temporal spiking motifs based on
a layer of neurons with hetero-synaptic delays. Indeed, the
variety of synaptic delays on the dendritic tree allows to syn-
chronize synaptic inputs as they reach the basal dendritic tree.
We show this can be formalized as a time-invariant logistic re-
gression which can be trained using labelled data. We apply
this model to solve the specific computer vision problem of
motion detection, and demonstrate its application to synthetic
naturalistic videos transformed into event streams similar to
the output of event-based cameras. In particular, we quantify
how its accuracy can vary with the total computational load.
This end-to-end event-driven computational brick could help
improve the performance of future Spiking Neural Network
(SNN) algorithms and their prospective use in neuromorphic
chips.

Index Terms— time code, event-based computations,
spiking neural networks, motion detection, efficient coding,
logistic regression

1 Introduction
In 1982, Abeles asked if the role of cortical neurons is
whether to integrate synaptic inputs or rather to detect co-
incidences in temporal spiking patterns [1]. While the first
possibility favors the rate coding theory, the second highlights
the function of temporal precision in the neural code. Since,
numerous studies demonstrated the emergence of synchronic-
ity in the activity within a neural population [2, 3], efficient
encoding thanks to the use of spike latencies [4, 5] or pre-
cise timing in the auditory system [6, 7]. All these findings,
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and more [8], highlight the importance of the temporal as-
pect of the neural code and suggest the existence of repeated
spatio-temporal patterns in biological spike trains.

In neuronal models, an efficient use or detection of these
spatio-temporal patterns embedded in the spike train comes
with the integration of heterogeneous delays [9, 10, 11].
Notably, Izhikevich [12] introduced the notion of the poly-
chronous group as a repetitive motif of spikes defined by a
subset of neurons with different, yet precise, relative spiking
delays. This representation has a much greater information
capacity in comparison to a firing-rate based neural coding
approach through the variety of configurations and the pos-
sible coexistence of multiple superposed motifs. However,
most current neuroscience-inspired computer vision algo-
rithms (for instance convolution neural networks) do not
make use of this dynamic aspect. A novel emerging represen-
tation is that provided by event-based cameras, in which each
pixel independently processes its input and emits an event for
positive or negative increments of the log-luminance. The
shift from the classical, dense representations to this sparse
encoding of visual information offers a better analogy to neu-
robiology, but also offers more energy-efficient computations.
Yet, flexible and robust event-driven algorithms for classical
computer vision tasks, such as motion detection, are still not
able to compete with the state-of-the-art of dense computer
vision solutions.

In this work, we study the emergence of such spatio-
temporal spiking motifs when training a single layer of spik-
ing neurons on a supervised classification task (see Fig. 1).
We develop a SNN-like method able to learn hetero-synaptic
delays to perform motion detection on a synthetic event-based
dataset. Because neuromorphic devices are, by design, good
candidates to integrate computations with time, we highlight
the fact that this event-driven algorithm is transferable to such
hardware.

2 Methods
In a recent study, we have introduced a classification model
applied to event streams based on Multinomial Logistic Re-
gression (MLR) [13]. To represent temporal relationships be-
tween events, this model first builds “time surfaces”, an im-
age computed using the time difference to the last recorded
events [14]. By transforming each event in the stream as a
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vectorial input, this MLR classifier is able to make a deci-
sion for every single event. We have demonstrated on several
datasets that it provides with online computations resulting
in ultra-fast classification. Additionally, we made a formal
bridge between the event-based MLR and a SNN, demon-
strating the bio-plausibility of this method and its possible
integration to neuromorphic hardware.

Here, we propose to extend such a model to a layer
of spiking neurons which include, in addition to synaptic
weights, hetero-synaptic delays. In particular, one afferent
may be connected with multiple delays and, crucially, we will
explicitly use the delay as a computational process. The ob-
jective in this model, by including the dimension of temporal
delays, is to increase the representational capacities of the
classifier. In the perspective of building energy-efficient al-
gorithms, we will also titrate quantitatively the best trade-off
between robustness and computation time when increasing
the number of these hetero-synaptic delays.

2.1 Task definition: fast motion detection
To test our model, we will quantify its ability to categorize
different motions. In that order, we use a set of synthetic vi-
sual stimuli, Motion Clouds [15] which are natural-like ran-
dom textures for which we can control for velocity, among
other parameters (see Fig. 1). In particular, we will set the
spatial size to (NX, NY) and consider a discretization of time
with a time step of 1 such that t ∈ N. Movies’ duration are
here set to Nt = 400. This procedure defines a set of textures
with different spatial properties and different motions v⃗k with
1 ≤ k ≤ Nclass and Nclass = 8 defined by a constant speed
and linearly spaced directions: vk = (v · cos

(
2π · k

Nv

)
, v ·

sin
(
2π · k

Nv

)
) (see Fig. 1-(a) for an illustration). For any

given velocity, we also varied the parameters of the textures,
such as the mean and variance of the orientation or spatial fre-
quency content. This method provides a rich dataset of tex-
tured movies for which we know the ground truth for motion.

(b)(a) (c)

Fig. 1. Motion detection task. (a) The motion direction rep-
resented as the plain red vector, other possible motion direc-
tions are represented in light red. (b) A screenshot of one gen-
erated naturalistic textured stimulus at a specific time. (c) The
corresponding ON (in red) and OFF (in blue) event stream
generated from the stimuli on (b) and constituting the input to
the spiking neural network.

To transform each movie into events, we compute a gra-
dient image (initialized at zero) by adding the gradient of the
pixels’ intensity over two successive frames. If, on a specific
pixel at that specific timestamp, the absolute value of this gra-
dient exceeds a threshold, an event is generated. The event has
either an OFF or ON polarity, respectively whether the gradi-
ent is negative or positive. This signed threshold value is then
subtracted from the residual gradient image. When applied to
the whole movie, the event stream is then similar to the output
of a neuromorphic camera [16], that is, a list of events defined
by xr and yr (their position on the pixel grid), their polarity
pr (ON or OFF) and time tr (see Fig. 1-(c)). The goal here is
to infer the correct motion solely by observing these events.

2.2 Hetero-synaptic delays model
The sensory signal representing the output of an event-based
camera forms a discrete stream of events, which can be
formalized as an ordered set of addresses and timestamps:
ϵ = {(ar, tr)}r∈[1,Nev ] where Nev ∈ N is the total num-
ber of events in the data stream and the rank r is the index
of each event ϵr. This event has a time of occurrence tr
and an associated address, which is typically in the form
ar = (xr, yr, pr). This defines a presynaptic address space
A = [1, NX]× [1, NY]× [1, Np] ⊂ N3 where (NX, NY) is the
size of the sensor in pixels and Np is the number of polarities
(Np = 2 for ON and OFF polarities).

We may now define a layer of neurons n ∈ B by first
describing how each neuron connects to presynaptic afferent
from A. In biology, a single cortical neuron has generally sev-
eral thousands of synapses, and each synapse may be defined
by its synaptic weight and its delay, that is, the time it takes
for one spike to travel from the presynaptic neuron’s soma to
that of the postsynaptic neuron. A postsynaptic neuron n ∈ B
is then not only described by synaptic weights connecting to
a presynaptic afferent from A but also by the set of possible
delays. For each neuron n, we define a set of Nn

s synapses, as
σn = {(ans , wn

s , δ
n
s )}s∈[1,Nn

s ], where each synapse σn
s is as-

sociated to a weight wn
s , a delay δns and a presynaptic address

ans . Note that a neuron may contact an afferent neuron with
multiple different delays.

The corresponding input presynaptic spikes ϵ will be
integrated by this synaptic set and notably by the respec-
tive delays, which will multiplex in time all possible pat-
terns. For each time t the integration of ϵ is defined by a
list of weights Wn linked to the synapses that match a pre-
cise spatio-temporal motif as input: Wn(t) = {wn

s |ar =
ans and t = tr + δns }r∈[1,Nev ], s∈[1,Nn

s ]. The activation func-
tion of our spiking neuron is a softmax function implement-
ing a form of Multinomial Logistic Regression (MLR) [13],
in analogy to a spiking Winner-Take-All network [17]. It
transforms this list of weights into a probability with the fol-
lowing formula: Pr(k = n | t) = 1

Z exp(Cn(t) + bn) where
Cn(t) =

∑
Wn(t) is the sum of the synaptic weights and

bn is the bias linked to neuron n. In particular, we expect
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Fig. 2. Representation of the weights for the 8 learned kernels of the model corresponding to the OFF polarities and selective to
the different motion directions (because of the symmetry observed between the ON and OFF event streams, kernels are similar
for the ON polarities). These weights are associated to a specific delay on the delays axis and to a presynaptic address defined
on the two other axes. For the sake of clarity, the values in range [−0.05, 0.05] are not shown. One sees positive (excitatory)
coefficients for the specific direction of motion and negative (inhibitory) coefficients for all other directions.

that some specific motifs may become tightly synchronized
as they reach the basal dendritic tree, leading to a high post-
synaptic activity which makes it progressively more likely to
generate an output spike.

2.3 Temporal Logistic Regression
In our MLR model with Nclass classes, a probability value is
predicted for each event at address ar and at time tr as a soft-
max function described in the above hetero-synpatic delays
model. Such a probability can be computed for each neu-
ron n in association to a specific class. From the perspec-
tive of simulating such event-based computations on standard
chips, it is useful to transform this sparse representation into
a dense representation. As such, we may first write any event-
based input as the boolean matrix A ∈ {0, 1}A. In this sim-
plified model, we will consider that hetero-synaptic delays
are limited in range such that the synaptic set can be repre-
sented by the dense matrix Kn giving for each neuron n the
nonzero weights as a function of presynaptic address and de-
lay: ∀s ∈ [1, Nn

s ],K
n(ans , δ

n
s ) = wn

s . Using this dense rep-
resentation, the counting defined above becomes:

Cn(a, t) =
∑
a,δns

Kn(ans , δ
n
s ) ·A(a, t− δns )

This shows that Cn is a temporal convolution of the dense rep-
resentation of the event stream with the dense kernels formed
by the set of synapses: Cn = Kn ∗ A. This well-known
computation defines a time-invariant, differentiable measure
which is very efficiently implemented for GPUs and which we
will use for learning the classification of different patterns in
the event stream. In particular, we may extend the convolution
to a 3D convolution such that the representation would also
benefit from spatial invariance. The use of spatio-temporal
filters on a stream of events was shown to improve CNN per-
formances for an action recognition task in [18]. For that,
we design 3D kernels of shape (Kx,Ky,Kt) = (15, 15, 8),
respectively representing the two spatial dimensions and the
range of delays. An example of such kernels is given in Fig-

ure 2. Computations are performed on spatio-temporal win-
dows, defined by the kernels, sliding around the events, that
is, the center of the spatio-temporal window around the cur-
rent event ϵr. Finally, the output of the MLR model results in
an event with the highest probability class, keeping the same
timing as the event as input. The loss function of the MLR
model is the binary cross entropy on the output of the classifi-
cation layer. Simulations are performed thanks to the PyTorch
library using gradient descent with Adam (with 212 epochs
and a learning rate of 10−5).

3 Results
3.1 Kernels learned for motion detection
After training our model, we first observe the weights learned
for the different neurons (see Fig. 2). Focusing on the pos-
itive weights, a strong selectivity is observed along specific
axes for the different kernels. These directions can be easily
associated to the direction of motion controlled in the motion
clouds. For instance, the third and the seventh kernels show
a horizontal selectivity to motion directions. With the nega-
tive weights, one can observe an anti-selectivity for directions
that do not correspond to the motion to which the kernel is se-
lective to. This qualitative look at the 3D kernels allows the
reader to infer for the 8 different motion directions used to
generate our synthetic event streams.

If one focuses on the interpretation of these kernels in
terms of spatio-temporal patterns embedded in the event
stream, it can lead to interesting outcomes. In [13], a link
between event-based MLR training and Hebbian learning is
drawn, allowing to say that the present model will learn its
weights according to a presynaptic activity associated to the
different motion directions. Each neuron becomes selective
to a specific motion direction through the learning of an asso-
ciated prototypical spatio-temporal spike pattern. Each voxel
in the 3D kernels defines a specific timestamp and a specific
address. Then, our model is able to detect precise spatio-
temporal patterns embedded in the spike train and associated
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to the different motion directions. The cone shape for the
positive weights distribution highlights a loss of precision for
longer delays, i.e. events away in the past. For the directions
not coherent to the class of a training sample, an anti-Hebbian
learning is also observed through the negative weights in the
kernels of Figure 2.

3.2 Accuracy for the motion detection task
Once our MLR is trained, we obtain 3D kernels correspond-
ing to the weights associated to the hetero-synaptic delays of
our layer of spiking neurons and which may be used for detec-
tion. We observed that the distribution of the kernels’ weights
is sparse, with most values near zero. As shown in the for-
malization of our event-based model, the computational cost
of our model if implemented on a neuromorphic chip would
be dominated by the number of spikes times the number of
synapses. This scales with the number of nonzero synaptic
weights. To assess the robustness of the classification as a
function of the computational load, we will prune the weights
in {σs}s∈[0,Ns) that are below a defined threshold.

In Figure 3, we plot the classification accuracy as a func-
tion of the relative number of computations, or active weights,
per decision for each neuron of the layer. As a comparison
and to account for the gain in performance by using hetero-
synaptic delays, we provide the accuracy obtained with a
MLR model using 2D time surface (in red) as in [13]. This
latter method is based on delays from the last recorded events
and uses fewer computations (in our case 15 × 15) than the
dense 3D kernels without any pruning (15 × 15 × 8). While
less computations are needed, the classification performance
obtained for the model using time surfaces is similar to our
method using all the weights of the kernels. By pruning
weights, we observe that the evolution of accuracy as a func-
tion of the log percentage of active weights follows a sigmoid
curve. Half-saturation level is reached at about 3.5× 10−3%
of active weights, corresponding to a total amount of 6 com-
putations per decision. Compared to the full kernels, the
accuracy of our method is maintained to its top performances
when dividing the number of computations by a factor up to
about 200. In this case, the number of computations is greatly
reduced compared to [13], thus demonstrating the efficiency
of the presented method.

4 Discussion
Here, we have introduced a generic SNN using hetero-
synaptic delays and shown how it compares favorably for a vi-
sual motion detection task with a state-of-the-art event-based
algorithm used for classification. The event-driven compu-
tations of our method can be reduced drastically through the
pruning of synapses, while maintaining top performance for
classification. This shows that we may use the precise timing
of spikes to enhance neural computations.

Note that this supervised learning scheme can be extended
to a variety of tasks. It would follow from the emergence of

10 3 10 2 10 1

Number of computations as a percentage of the total 
amount of weights in the 3D kernel (in %)

0

20

40

60

80

100

Ac
cu

ra
cy

 (i
n 

%
)

chance level
accuracy for our method 
(with sigmoid fit)
accuracy for a MLR using 
time surfaces

Fig. 3. Accuracy as a function of the number of computation
load for the hetero-synaptic delays model (in blue) and for a
method using 2D time surfaces (in red). The relative com-
putational load (on a log axis) is controlled by changing the
percentage of active weights relative to the dense convolution
kernel. We observe a similar accuracy than HOTS, yet that
our model could achieve a similar accuracy with significantly
fewer coefficients.

new kernels adapted to this new task after supervised learn-
ing. This constitutes a major advantage over other algorithms
which derive event-based algorithms from specific physical
rules (see for instance [19] for computing the optic flow using
the luminance conservation rule). We aim at extending the ap-
plication of this model on more generic datasets acquired in
natural conditions for progressively more complex tasks from
motion extraction, optic flow or time-to-contact maps.
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