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Abstract
The response of a biological neuron depends on the precise timing of afferent spikes. This temporal aspect of
the neural code is essential in understanding information processing in neurobiology and applies particularly
well to the output of neuromorphic hardware such as event-based cameras. However, most artificial neural
models do not take advantage of this minute temporal dimension. Inspired by this neuroscientific observa-
tion,we develop amodel for the efficient detection of temporal spikingmotifs based on a layer of neuronswith
hetero-synaptic delays. Indeed, the connectivity of the dendritic tree allows to discriminate between differ-
ent temporal sequences, and we show that this can be formalized as a time-invariant logistic regression which
can be trained using labelled data. We apply this model to solve one specific computer vision problem,motion
detection, anddemonstrate its application to syntheticnaturalistic videos transformed into event streamssim-
ilar to the output of event-based cameras. In particular, we quantify how its accuracy can vary with the total
computational load. This end-to-end event-driven computational brick could help improve the performance
of future spiking neural network (SNN) algorithms currently used in neuromorphic chips.

Hetero-synaptic delaysmodel
Illustration
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Figure 1: (a)The afferent information consists of the repeated occurrence of groups of precise motifs of spikes
that we call “polychronous groups” (PGs). We highlight them by different colors, an information hidden to a
detection model. (b)Themodel is defined as an assembly of neurons (here for 4 PGs) each defined by a set of
different synapses described by weights (increasing with the radius of the black dots) at each different delay.
The propagation of the afferent information through these delaymay generate at each time step a synchronous
pattern on a subset of synapses. (c)The output of the model provides with the predicted probability of occur-
rence of each PG pattern at any time, which may be used to generate a spike as a Bernoulli trial, providing in
this particular case with an exact identification of PGs occurrences.

Mathematical formalism

Event stream:
ε = {(ar, tr)}r∈[1,Nev]

whereNev ∈ N is the total number of events, tr is the time occurence of event number r and ar an associated
address , which is typically in the form ar = (xr, yr, pr).

Spiking neuronwith hetero-synaptic delays:

σn = {(ans , wn
s , δ

n
s )}s∈[1,Nn

s ]

is a set ofNn
s synapses, associated to neuron n, where each synapse σ

n
s is associated to a weight w

n
s , a delay

δns and a presynaptic address a
n
s .

Activeweights:
Wn(t) = {wn

s |ar = ans and t = tr + δns }r∈[1,Nev], s∈[1,Nn
s ]

Activation function (Multinomial Logistic Regression):

Pr(k = n | t) = 1
Zexp(C

n(t) + bn)

where Cn(t) =
∑

Wn(t) is the sum of the synaptic weights and bn is the bias linked to neuron n and
Z =

∑Nclass
c=1 Pr(k = c | t).

Temporal convolution:
In this simplifiedmodel,wewill consider that hetero-synaptic delays are limited in range such that the synaptic
set can be represented by the dense matrixKn giving for each neuron n the weights as a function of presy-
naptic address and delay: ∀s ∈ [1, Nn

s ], K
n(ans , δ

n
s ) = wn

s (see Figure 3). Using this dense representation, the
counting Cn(t) defined above can be computed as a temporal convolution of the dense representation of the
event streamE with the dense kernels formed by the set of synapses:

Cn = Kn ∗ E

Event-basedMotion Clouds
To test our model, we will quantify its ability to categorize different motions. In that order, we will first define
a set of synthetic stimuli,MotionClouds [1], which are natural-like random textures forwhichwe can control for
velocity, among other parameters.

(b)(a) (c)
Figure 2: Motion detection task. (a)The motion direction represented as the plain red vector, other possible
motion directions are represented in light red. (b) A screenshot of one generated naturalistic textured stim-
ulus at a specific time. (c)The corresponding ON (in red) and OFF (in blue) event stream generated from the
stimuli on (b) and constituting the input to the spiking neural network.
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Results
Learning hetero-synaptic delays

Figure 3: Representation of the weights for the 8 learned kernels of themodel corresponding to the OFF polar-
ities and selective to the different motion directions (because of the symmetry observed between the ON and
OFF event streams, kernels are similar for the ON polarities). One sees positive (excitatory) coefficients for the
specific direction of motion and negative (inhibitory) coefficients for all other directions.

Accuracy as a function of the number of computations
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Figure 4: Accuracy as a function of the number of computation load for the hetero-synaptic delays model (in
blue) and for a method using 2D time surfaces (in red) [2]. The relative computational load (on a log axis) is
controlled by changing the percentage of active weights relative to the dense convolution kernel. We observe a
similar accuracy than HOTS, yet that our model could achieve a similar accuracy with significantly less coeffi-
cients.

Conclusion
We have introduced a generic SNN using hetero-synaptic delays and shown how it compares favorably with a
state-of-the-art event-based algorithm used for classification [2]. This shows that wemay use the precise tim-
ing of a spike to enhance neural computations. One advantage of our model is the generality of the approach.
Indeed, this supervised learning scheme can be extended to a novel task by defining a new set of supervision
pairs (for instance supervisedby local orientation)whichwould lead to the emergenceofnewkernels adapted to
this new task. This constitutes a major advantage over other algorithms which derive event-based algorithms
from specific physical rules. We aim at extending the application of this model on more generic datasets ac-
quired in natural conditions for progressively more complex tasks such as time-to-contact maps.
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