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Abstract

The spiking response of a biological neuron depends on the precise timing of afferent spikes. This tempo-

ral aspect of the neuronal code is essential in understanding information processing in neurobiology. In this

model, raster plot analysis showed repeated activation of specific spikingmotifs, which exhibit a precise tem-

poral sequence of neural activations. Our first contribution is to develop a model for the efficient detection

of temporal spiking motifs based on a layer of neurons with hetero-synaptic delays. Indeed, the variety of

synaptic delays on the dendritic tree allows synchronizing synaptic inputs as they reach the basal dendritic

tree. Second, we propose a bio-plausible unsupervised learning rule on both weights and delays through the

derivation of a loss function which depends on the membrane potential of the spiking neuron and a sparse-

ness regularization. We demonstrate on synthetic data that such a layer of spiking neurons is able to learn

different repeating spatio-temporal motifs embedded in the spike train. Then, we test the robustness of the

detection accuracy of themodel by adding Poisson noise and compare it to a layer of Leaky-Integrate and Fire

neurons trainedwith STDP. Results show a large improvement in performanceswhen adding temporal delays

for computations and a great increase in robustness to noise. We show that using synaptic delays for neuronal

computations highly increases the representational capacities of a single neuron and its resilience to noise.

Hetero-synaptic delaysmodel
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Figure 1: (a) The afferent information consists of the repeated occurrence of groups of precisemotifs of spikes

that we call “polychronous groups” (PGs). We highlight them by different colors, an information hidden to a

detection model. (b) The model is defined as an assembly of neurons (here for 4 PGs) each defined by a set of

different synapses described by weights (increasing with the radius of the black dots) at each different delay.

Thepropagationof the afferent information through these delaymaygenerate at each time step a synchronous

pattern on a subset of synapses. (c) The output of the model provides with the predicted probability of occur-

rence of each PG pattern at any time, which may be used to generate a spike as a Bernoulli trial, providing in

this particular case with an exact identification of PGs occurrences.

Mathematical formalism

Membrane potential of our spiking neuronmodel:

V (t) = Vrest + γ · (Vθ − Vrest) ·
∑

sws
∑

r∈ξs Ks(t, tr)−
∑

f∈ξp(Vθ − Vrest) ·H(t− tf )

whereVrest is the restingmembrane potential,ws is the synaptic weight of synapse s, ξs and ξp are both event
streams associated respectively to the presynaptic address s and the postsynaptic address p, Vθ is the mem-

brane potential threshold andH is the Heaviside step function. Ks is the kernel applied to the input spikes.

Loss function:

L(tf ) = −V (tf ) + λ ·
∣∣Nf − rp · T

∣∣
λ is a regularization factor, Nf is the number of spikes that occured during time window T and rp is the

wished average firing rate for neuron p.

Learning rule for the delays:

δs = δs + µδ · ws ·
∑

r∈ξs
∂Ks(tf ,tr)

∂δs

Learning rule for theweights:

ws = ws + µw ·
∑

r∈ξs Ks(tf , tr)

Homeostatic adaptation of the gain:

γ = γ + µγ · λ ·Nf · sgn(1− γ)/T

The non causal LIF kernel

Ks(tf , tr) = e−
∣∣∣tf−tr−δs

∣∣∣
τ

∂V (tf)
∂δs

= ws
τ

∑
r∈ξs sgn(tf − tr − δs) ·Ks(tf , tr)

Conclusion

We have introduced an unsupervised learning rule (STDP) to adjust the synaptic delays in order to synchro-

nize spikes from a repeating input pattern. This synchronization maximizes the membrane potential of the

spiking neuron and allows the detection of a specific spatio-temporal motif embedded in the raster plot.

This rule can be combined with an STDP on the synaptic weights to allow more flexibility on the spatio-

temporal motif to be learnt.

While the learning has been tested on different synthetic input patterns, a remaining goal is to train a layer

of such spiking neurons to learn multiple patterns at the same time.

We aim at extending this unsupervised learning to realistic data: Dynamic Vision Sensor [1] signal, electro-

physiological data, VSDI recordings, ...
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Results

Unsupervised learning of the synaptic delays
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Representation of the learned delay
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