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Abstract Multinomial Logistic Regression (MLR) as a classification layer

We propose a neuromimetic online classifier for always-on digit recognition. To achieve this, we extend an existing Similarity mesure:

event-based algorithm [1] which introduced novel spatio-temporal features: time surfaces. Built from asynchronous

events acquired by a neuromorphic camera, these time surfaces allow to code the local dynamics of a visual scene and [ Be(t) = (We, S()) = >_nep Wa,c * Salt) ]

create an eficient hierarchical event-based pattern recognition architecture. Its formalism was previously adapted in . . =Ta(t)

the computational neuroscience domain by showing it may be implemented using a Spiking Neural Network (SNN) where S, is the value of the time surface at address a: Sy(t) = e~ 7

of leaky integrate-and-fire models and Hebbian learning [2]. Here, we add an online classification layer using a and wg, ¢ is the weight associated to class c at address a defined in the dendritic address D.

multinomial logistic regression which is compatible with a neural implementation [3]. A decision can be taken at any

arbitrary time by taking the arg max of the probability values associated to each class. We extend the parallel with Probability to predict class c:

computational neuroscience by demonstrating that this classification layer is also equivalent to a layer of spiking neu- v | N Prly — ot W) = e B

rons with a Hebbian-like learning mechanism. Our method obtains state-of-the-art performances on the N-MNIST R r(y = clt; W) = S~ Nelass o3 | oc(t)
dataset [4] and we show that it is robust to both spatial and temporal jitter. As a summary, we were able to develop a .

neuromimetic SNN model for online digit classification. We aim at pursuing the study of this architecture for natu- Always-on decision process:

ral scenes and hope to offer insights on the efficiency of neural computations, and in particular how mechanisms of - )
decision-making may be formed. y(t) = argmax,o¢(t) = argmax, f¢(?) |
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Update rule during supervised learning:

- S(t) - (1 —oc(t)), for c = y(t)
R R i

Event-Based Signal

Analogy with a layer of the HOTS network:

IOFF event =

» The decision process of the MLR model is the same as the spiking mechanism used in the HOTS network.

Bio-plausibility:
« The similarity measure corresponds to the integration of the presynaptic spikes with different synaptic weights;
» A stochastic spiking WTA can be built from the softmax function [5];
. Logistic regression is a neurally plausible computation to read out a population code [3];

« The update rule of the weights corresponds to a Hebbian-learning mechanism.

t Always-on decision process:

Figure 1: A miniature event-based ATIS sensor (Left) which, compared to a classical frame-based representation « For each event as input of the network, a decision for digit recognition is taken.
(Middle), outputs an event-based representation of the scene (Right). The output of an event-based camera is a dis-
crete stream of events which can be formalized as an ordered set of addresses: {ai}z‘e[o N.,) where Ng, is the total Results

number of events in the data stream. Each address is typically in the form a; = (x;, y;, p;), where (x;, y;) defines its
position on the pixel grid and p; its polarity. ON and OFF polarities correspond respectively to an increase or decrease
in luminance at a specific address.

Online classification performance

N-MNIST dataset

Some advantages of a neuromorphic event-based camera (Dynamic Vision Sensor):
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Figure 4: Online classification performance on the N-MNIST dataset. We show the average accuracy computed with
respect to the number of events since the beginning of the stream (a) and also as a function of the corresponding
time (b). The label online RAW corresponds to the MLR classifier fed by the raw stream of events as output of the
0.25 event-based camera. online hHOTS is the method proposed in this work and original HOTS is the method described
in [1]. In this last method, prediction is performed offline with a k-nearest neighbors classifier on the histograms of
activation of the output neurons.
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Figure 2: Illustration of the different event-based data types used in the HOTS network at a given event time. The two
rows correspond respectively to the OFF and ON polarities of the events as output of the event-based camera. (Left)
Screenshot of one single event (in white) at ¢;. (Middle) Timings of the latest events recorded, or time context, at time
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Figure 5: Robustness of classification performances on N-MNIST. The input stream was perturbed by changing the

position or timing of the events and we report classification results as a function of (a) standard deviation of spatial
jitter or (b) standard deviation of temporal jitter (in logscale). Blue curves show fits for the results of the method
presented in this study and these are compared to the performance of the HOTS algorithm with (in green) or without
(in red) an homeostatic regulation rule for the activation of the different neurons. With homeostatis, neurons within
the same layer are equally activated during the clustering phase (see [6]). Dots are the mean values of accuracy over
10 trials for discrete values of jitter. Transparent outlines represent the 5% and 95% quantiles.
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Conclusion

By adding a bio-plausible classifier to an existing event-based algorithm for object recognition, we propose a SNN for

axonal address online classification. We boost the performances of the original method and allow for robust ultra-fast categorization
output event stream space with this event-driven decision process.

Figure 3: Illustration of the core computation made within one layer of the HOTS algorithm. On the top of the plot,
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