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Abstract

We propose a neuromimetic architecture able to perform pattern recognition. To achieve this, we ex-
tended the existing event-based algorithm from [1] which introduced novel spatio-temporal features: time
surfaces. Built from asynchronous events acquired by a neuromorphic camera, these time surfaces allow
to code the local dynamics of a visual scene and to create an efficient hierarchical event-based pattern
recognition architecture. Inspired by biological findings and the efficient coding hypothesis, our main
contribution is to integrate homeostatic regulation to the Hebbian learning rule. Indeed, in order to be
optimally informative, average neural activity within a layer should be equally balanced across neurons.
We used that principle to regularize neurons within the same layer by setting a gain depending on their
past activity and such that they emit spikes with balanced firing rates. The efficiency of this technique was
first demonstrated through a robust improvement in spatio-temporal patterns which were learned during
the training phase. We validated classification performance with the widely used N-MNIST dataset [2]
reaching 87% accuracy with homeostasis compared to 70% accuracy without homeostasis. Finally, study-
ing the impact of input jitter on classification highlights resilience of this method. We expect to extend
this fully event-driven approach to more naturalistic tasks, notably for ultra-fast object categorization.
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Event-Based Signal

Figure 1: A miniature event-based ATIS sensor (left) which, compared to classical frame-based representations (middle),
outputs an event-based representation of the scene (right).

Some advantages of a neuromorphic event-based camera (Dynamic Vision Sensor):

• high temporal resolution

• energy efficiency

• reduction of redundancy

• high dynamic range

Events are recorded asynchronously on the pixel grid when observing a significant change in brightness.
An event is defined as δ = (a, t) where t is the time of the event, a = (x, y,p) where x and y define its
position and p its polarity. Polarities can be ON or OFF to represent the sign of brightness change.

HOTS network from [1]

Figure 2: Illustration of the HOTS network extracted from [1]

Materials and Methods
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Figure 3: Simplified illustration of neuronal computations within the SNN. On the left, incoming events are illustrated as
spikes with colors related to their timing, and overlaid grey curves represent the evolution of pre-synaptic inputs as a function
of time, following the differential equation (5). Input of the layer at the time of event δi (indicated by a green frame) gathers
the contributions of all pre-synaptic neurons nk. Columns are the post-synaptic neurons mj within the layer and circles are the
synaptic weights wnk,mj

associated to the different input neurons. These weights adapt through Hebbian learning and result
in kernels, also called time surfaces, observed in figure 4. All weighted contributions are summed for each neuron to yield
post-synaptic currents (framed in purple). These post-synaptic currents are, for each neuron, a measure of similarity between
the synaptic weights and the pre-synaptic input. Output neuron m∗ which gets the highest score (arg maxmj

nonlinearity) will

spike giving rise to an output event. This event gets the same address (x, y) and timing as the input but with a new polarity
associated to m∗: p∗.

Event-based formalism

For each layer of the network, computations are
done discretely on an event-based timestamp. For
a given event δi = (ni, ti), we update the timing
of the last event on each input neuron nk:

tnk[i] = max
j≤i

(tj|nj = nk) (1)

Then, elements of the time surface are computed
with the following formula:

sca[i] = e
−t−tca[i]

τL (2)

where τL is increased in the next layer such that
τL+1 = kττL (usually, kτ = 2).

For each output neuron mj of the layer, we com-
pute the scalar product of its weights with the time
surface as input:

βmj =
〈Wmj, S[i]〉
‖ Wmj ‖‖ S[i] ‖

=

∑
nk wnk,mj.snk[i]

‖ Wmj ‖‖ S[i] ‖
(3)

m∗ = arg max
mj

(βmj) (4)

Equation (4) indicates that neuron m∗ will send
a spike defining the event’s new polarity. The out-
put of layer L is the event δ′i = (m∗, ti) where
a′i = (xi, yi,p

∗)

ODE formalism

For each input neuron nk the pre-synaptic input
can be described on a time continuum by the fol-
lowing differential equation:

τL
dunk(t)

dt
= −unk(t) + (1− unk(t))δ(t− tnk(t))

(5)
where

tnk(t) = max
tj≤t

(tj|nj = nk) (6)

It corresponds to a nonlinear Leaky Integrate-and-
Fire model where unk(t) is the contribution to
membrane potential from pre-synaptic neuron nk.
One solution to the equation is

unk(t) = e
−t−tnk(t)

τL (7)

Synaptic current response on neuron mj is then

Imj(t) =

∑
nk wnk,mj.unk(t)∑

nk w
2
nk,mj

∑
nk unk(t)

2
(8)

• competition between neurons is added by using
arg max function

• inhibition of every neuron compensates their ac-
tivity between every timestamp

Homeostasis

For each layer, a homeostatic gain γmj controls the activation of each post-synaptic neuron. We use the
simple heuristic derived in [3] to redefine the post-synaptic activation as m∗ = arg max(γmjβmj), with

γmj = eλ·(pp·NL−1) where λ is a regularization parameter, pmj is the relative activation frequency of
polarity mj and NL the total number of features of the layer. This regulation rule allows to train the
different features in a balanced fashion and avoid response of some neurons for too specific features.

Results
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Figure 4: Activation histograms and time surfaces obtained in the self-supervised learning algorithm for the original HOTS
network (a) (replicated from [1]) and for the bio-plausible version with homeostasis (b). Associated time surfaces are plotted
below histogram bins. The different lines are the different polarities of the features (ON and OFF for the first layer), that
is, the output neurons of the previous layer for the next one. Note the unbalanced histograms in the left figure. Some time
surfaces are so rarely activated that they remain close to the first inputs they were initialized with. These unevenly matured
clusters lead to an inefficient coding within the network.

Classification
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Figure 5: Classification performances on N-MNIST using histogram distances and as a function of (a) spatial or (b) temporal
jitter. Blue dots show results of the HOTS method with homeostasis and these are compared to the performance of the original
HOTS algorithm (Red dots). Colored lines are the corresponding sigmoid fits of the results.

Conclusion

In this work, we have presented the implementation of a neuromimetic SNN model which is capable
to perform online digit classification. Instability of the original method was compensated with a sim-
ple homeostatic regulation rule on post-synaptic neurons’ activation. Its implementation is available at
https://github.com/SpikeAI/HOTS and allows to reproduce all results presented here. These results
demonstrate the role of competition and cooperation in models of neural computations.
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