
A homeostatic gain control mechanism to improve
event-driven object recognition
Antoine Grimaldi

Institut de Neurosciences de la Timone (UMR 7289),
Aix Marseille Univ, CNRS,

Marseille, France
antoine.grimaldi@univ-amu.fr

Victor Boutin
Institut de Neurosciences de la Timone (UMR 7289),

Aix Marseille Univ, CNRS,
Marseille, France

victor.boutin@univ-amu.fr

Sio-Hoi Ieng
Sorbonne Université, INSERM,
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Abstract—We propose a neuromimetic architecture able to
perform pattern recognition. To achieve this, we extended the
existing event-based algorithm from [1] which introduced novel
spatio-temporal features: time surfaces. Built from asynchronous
events acquired by a neuromorphic camera, these time surfaces
allow to code the local dynamics of a visual scene and create
an efficient hierarchical event-based pattern recognition archi-
tecture. Inspired by biological findings and the efficient coding
hypothesis, our main contribution is to integrate homeostatic
regulation into the Hebbian learning rule. Indeed, in order
to be optimally informative, average neural activity within a
layer should be equally balanced across neurons. We used that
principle to regularize neural activity within the same layer by
setting a gain depending on their past activity and such that
they emit spikes with balanced firing rates. The efficiency of this
technique was first demonstrated through a robust improvement
in spatio-temporal patterns which were learnt during the training
phase. In order to compare with state-of-the-art methods, we
replicated past results on the same dataset as [1] and extended
results in this study to the widely used N-MNIST dataset [2].
We expect to extend this fully event-driven approach to more
naturalistic tasks, notably for ultra-fast object categorization.

Index Terms—vision, pattern recognition, event-based compu-
tations, spiking neural networks, homeostasis, efficient coding,
online classification

I. INTRODUCTION

Bio-inspired engineering aims at taking advantage of our
understanding of the complex and impressively efficient mech-
anisms found in Nature. Event-based cameras perfectly illus-
trate this process. Also called silicon retinas, these sensors are
inspired by biological retinas and allow capturing luminous
information asynchronously. Unlike its classical frame-based
counterpart, an event-based camera responds to the scene’s
dynamics in a pixel-wise fashion: when a light change is
detected, an event is emitted. The event is labeled with an
ON or OFF polarity whether it corresponds, respectively, to
an increase or decrease in brightness (see Figure 1). Event-
based cameras offer various advantages and notably: a high
temporal resolution, energy efficiency, redundancy reduction,

and a high dynamic range. Numerous interesting applications
and use cases of event-based cameras are nowadays flourishing
in the scientific community (for a review, see [3]). This
new technology, along with its Address Event Representation
(AER) specification [4], can bring a paradigm shift in the way
dynamical visual information is processed.

Fig. 1: A miniature event-based ATIS sensor (Left) which,
compared to classical frame-based representations (Middle),
outputs an event-based representation of the scene (Right).

Efficient event-driven solutions were found to solve clas-
sical computer vision problems like optical flow [5–7], 3D
reconstruction [8–10] or the Simultaneous Localization and
Mapping (SLAM) problem [11, 12]. In this work, we focus
on event-driven pattern recognition and in particular digit
recognition as defined by the event-based version of MNIST
called N-MNIST [2]. Some existing approaches train Artificial
Neural Networks (ANN) and then convert them into Spiking
Neural Networks (SNN) [13–15] with overall good classi-
fication results. Alternatively, some competitive event-driven
algorithms are developed using backpropagation adapted for
SNN [16–18]. More recently, it was proposed to use saccades
to boost object recognition [19]. In [1], object recognition
is achieved through a feedforward hierarchical architecture
using time surfaces: a spatio-temporal object making use of
the local dynamics of a scene. Then, these are assembled in a
Hierarchy of Time-Surfaces (HOTS). Using a form of Hebbian
learning, the network is able to learn, in an unsupervised way,



progressively more complex spatio-temporal features which
appear in the event stream. It was shown to make accurate
predictions on a letter and digit dataset [20], on a flipped card
dataset [21] and on a dataset of scenes with faces.

We identified some limitations in the HOTS algorithm. For
instance, an unequal activation of the different features during
learning can lead to a poor variety of time surfaces and
consequently to a loss in efficiency. While it is controllable
in simplified datasets, we observed a performance drop when
replicating HOTS in order to learn to classify digits from the
N-MNIST dataset. In [22], robustness was achieved by averag-
ing time surfaces gathered in a temporal window ∆t. Here, we
propose the use of a simple and bio-plausible homeostatic gain
control mechanism. Unsupervised learning of the features is
qualitatively improved by balancing activations of the different
neurons within the same layer. The robustness of the classifi-
cation is tested over different amounts of spatial and temporal
noise added to the input event stream. A full implementation of
the algorithm is available at https://github.com/SpikeAI/HOTS
and allows to reproduce all results presented in this paper,
and we will give links to reproducible notebooks within this
text. As a summary, we extended an existing event-driven
object categorization algorithm by including a simple bio-
plausible regulation rule in its training. We show qualitative
and quantitative improvements on the unsupervised learning of
time surfaces and on the resulting classification performances.

II. METHODS

A. Datasets

A collection of datasets, taken from different sources and/or
different event-based sensors are used in this work. They are
formatted and loaded into the processing pipeline with the
community-built tonic1 python package. It currently offers the
possibility to load five different event-based datasets and is
based on the PyTorch language [23]. This allows to load event
streams in a standard fashion and to optionally apply data
augmentation methods to the event streams. Once loaded, an
event-based camera recording is a Nev × 4 matrix in which
Nev represents the number of events and the 4 columns are
respectively for the x and y positions on the pixel grid, the
time and polarity values. Timestamps are in microseconds and
polarities are 0 and 1 respectively for OFF and ON events.

1) Poker-DVS: Poker-DVS [24] is one of the first publicly
available DVS recordings from a real-world scene and was
used to test performances of [1]. It consists of 131 occurrences
of the four different card symbols as extracted from 3 separate
DVS recordings while browsing very quickly poker cards. The
sensor size is 31×31 pixels and recordings last between 10 to
30 ms. In tonic, there is an available training set of 48 samples
and a testing set of 20 samples.

2) N-MNIST: The widely used N-MNIST dataset [2] was
recorded by moving an event-based camera in front of a screen
on which MNIST digits [25] were projected. MNIST digits are
originally 28 × 28 pixels and they were resized to project to

1https://github.com/neuromorphs/tonic

28× 28 pixels of the Asynchronous Time Based Image Sensor
(ATIS) camera [26]. For N-MNIST, tonic registered maximum
values of x and y are equal to 34 due to the saccades of the
camera, such that sensor size is 34× 34 pixels.

3) DVS barrel: The DVS barrel dataset [20] is a collection
of digits and letters captured by a DVS. Movement (and thus
events) is created by a rotating barrel with printed characters.
The dataset is composed of 76 samples, 36 samples, one per
class, for the training set, and 40 samples for the testing set.
Each sample of DVSbarrel is a 32 × 32 pixels event-based
recording. Unlike past datasets, DVS barrel is not included in
the tonic package.

B. HOTS algorithm

The HOTS network is fully described in [1] and we give
here its guiding principles. The network can be assimilated to
a Spiking Convolutional Neural Network (SCNN).

The input of the network is a stream of ON or OFF events.
An event, or spike, ϵi is defined by its timing ti, and its address
ai = (xi, yi,pi), where xi and yi are the coordinates on the
pixel grid and pi is 0 or 1 respectively for an OFF or ON
event. To make use of the temporal dynamics of this flux of
events, [1] introduces time surfaces. Time surfaces are local
matrices of analog values obtained by applying an exponential
decay to the event stream. A time surface is defined locally in
time relatively to the constant τ of the exponential decay and
in space by a spatial window. In order to use the information
given by the two polarities of the event stream, contributions of
ON and OFF events will be stored in two distinct matrices. A
time surface is thus represented by a 3D matrix of dimensions
(2R+1)×(2R+1)×2, where R is the parameter that defines
the size of the spatial window and 2 is the number of polarities.
Specifically, for an event ϵi emitted at time ti in the network
at the address ai, analog values assigned to the time surface
defined around this event are:

Si(atsi) = e−
ti−t̄(atsi

)

τ

where τ is a time constant and t̄(atsi) is the time of the last
event recorded at address atsi , which is defined as follows:

ats = (xtsi , ytsi ,p)

∣∣∣∣∣∣
xtsi ∈ [xi −R, xi +R]
ytsi ∈ [yi −R, yi +R]
p ∈ [0, 1]

.

This 3D matrix is then sent to the first layer of the network
and compared to weight matrices Wn associated to each of
the N neurons of the layer. This match is computed as the
normalized scalar product (or correlation coefficient):

βn =
⟨Wn, Si⟩

∥Wn∥ · ∥Si∥
As a consequence, each Wn acts as a convolution kernel,

but computations need only to be performed locally around
address ai of event ϵi to produce a vector of the possible
matches βn. Then, the neuron which has its weights matrix the
most similar to the input time surface Si produces an event.

https://github.com/SpikeAI/HOTS
https://github.com/neuromorphs/tonic
https://github.com/neuromorphs/tonic
https://github.com/neuromorphs/tonic
https://github.com/neuromorphs/tonic
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Its index is simply n∗ = argmaxn βn. The output of the
first layer is also an event stream that keeps the temporal, ti,
and spatial, xi and yi, information of the incoming events but
modifies its polarity to match that of the best matching neuron:
n∗. As a consequence, neurons within a layer L are competing
to produce spikes and each incoming event produces a post-
synaptic event. Besides, once a postsynaptic event is chosen,
a Hebbian-like mechanism is used to take the selected weight
matrix closer to the observed time surface. This mechanism
is similar in principle to that used by the k-means algorithm
of other unsupervised learning schemes [27]. More generally,
each layer takes input events from its previous layer and feeds
events to the next one by reproducing the steps described
above. The number of neurons, the time constant and the size
of time surfaces will increase when passing from one layer
to the next. As a consequence, the network will learn more
and more complex spatio-temporal features hierarchically. The
output of the last layer is finally fed to a classifier layer, which
will recognize the object in the input. In the methodology
defined in [1], classification is performed using a “bag-of-
words representation” by accumulating output spikes of the
last layer of the network in a histogram representation (see
below).

Up to the classification layer, the algorithm that is presented
here is fully event-driven, i.e. computations are performed only
when an incoming event is observed. When observing the
definition of the time surfaces and the structure of the network,
one can see the equivalence to a SNN of leaky integrate-and-
fire (LIF) models in analogy with a SCNN.

C. Homeostasis

In this work, we follow the same method defined in [1] but
complement it by using for each layer a homeostatic gain γn
controlling for the activation of neurons during the learning.
Such mechanisms of regulation are generally observed in
living systems and are well justified in terms of efficient
coding [28]. We use the simple heuristic derived in [29] to
redefine the postsynaptic activation as βn = γn · ⟨Wn,Si⟩

∥Wn∥·∥Si∥
with γn = eλ·(pn·NL−1), where λ is a regularization parameter,
pn is the relative activation frequency of neuron n and NL the
total number of features of the layer. The homeostatic gain rule
was found empirically such that γn > 1 if neuron n is less
activated than the average 1

NL
on the layer and γn < 1 in

the opposite case. The activation frequency of the neuron is
measured by simple counting of the history of its activations.
This regulation rule allows to train the different neurons in
a balanced fashion and avoid the response of some of them
for too specific features. When the activity of neurons within
a layer is balanced, we reach the efficient coding hypothesis,
making our algorithm more efficient while being bio-plausible
and robust. Note that once this equilibrium state is reached,
γn = 1 and the coding is similar to that of HOTS.

In practice, we observed that adding homeostasis to balance
the activation of neurons allows avoiding heuristics to reach
convergence. In [1], weight matrices or synaptic weights
associated with each neuron are initialized with the first

incoming time surfaces. This method makes the learning of
weight matrices very sensitive to initialization. In addition,
the hierarchy is learnt sequentially, one layer after the other.
Here, they are initialized at random and allow spikes to cross
each layer when they enter the network even if a layer is
not fully trained. This method for the unsupervised learning
phase makes our method more similar to the conditions faced
by living systems.

D. Classifier

In the original HOTS algorithm [1], classification is per-
formed by comparing the activation histograms across the
neurons of the last layer of the network to that observed on
average for each given class. We noticed a drop of efficiency
for this method when datasets have a large number of training
samples and decided to use a simple k-Nearest Neighbors
(k-NN) as done in [30]. In practice, we first trained the
hierarchical network using unsupervised learning, then we
recorded activation histograms for each training sample, and
finally performed a weighted k-NN with euclidean distance
on the activation histogram of the tested sample.

To test for the robustness of the proposed algorithm, we
used the tonic package to transform and augment the dataset.
In particular, it allows the addition of spatial or temporal jitter
to the input stream. As relevant information is supposed to
be represented by the timing and position of input spikes, we
can assume that classification performance should get worse as
the jitter increases. Therefore, we will use this module to test
differentially the robustness of the algorithms by progressively
adding some noise to the input signal. To do so, we use a
subset composed of 1000 randomly selected samples from
the N-MNIST testing set. We keep the exact same subset
and apply different amounts of spatial and temporal jitter
independently.

III. RESULTS

A. Replication of HOTS
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Fig. 2: Performance scores with and without homeostasis av-
eraged over 100 trials with different clusterings for each trial.
Bhattacharyya distances is used to compare with averaged
histogram per class, k-NN are performed with one histogram
per training sample. Error bars represent the 5% and 95%
quantiles.
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We had access to two datasets, DVS barrel and Poker-DVS
used in [1] and followed the original methodology to replicate
the results.

For DVS barrel, we were able to obtain comparable results
with a small drop of performances: we reached an accuracy of
98% instead of 100% announced in [1]. The classification was
performed as in [1] with histogram comparison using the Bhat-
tacharyya distance. Results for classification in this dataset are
shared in an online notebook: RESULTS 01 SimpleAlphabet.
We obtain similar accuracy values close to the maximum, such
that the impact of the homeostatic gain is not significant.

For Poker-DVS, we were not able to replicate past results
with the original parameters and had to perform parameter
tuning to obtain the best performance of the original method.
In order to reach 95% recognition accuracy close to the results
obtained in [1], we changed the time constant for τ = 70 µs
and used a k-NN with k = 3. With these parameters, accuracy
improved and reached 100% when including homeostasis.
In general, poorer performances were obtained when using
one histogram per class with Bhattacharyya distance instead
of one histogram per sample with k-NN. With this small
dataset, we could easily test the impact of clustering over
classification. We repeated the unsupervised learning of the
features and then the training and testing of the network to
check for classification variability with different clustering
results. Figure 2 illustrates this variability. Note the larger
error bars when using the original method compared to the
higher average accuracy and the more stable performance
when adding the homeostasis rule.

One can infer that clustering is highly dependent on its
initialization and then, given the fact that it is initialized
with the first time surfaces as input, the original method will
have greater variability in clustering. This directly impacts
accuracy as is shown in the comparison with the method using
random initialization. Transferring the past methodology to
a more bio-plausible one makes it more robust in terms of
classification performances. Parameters tuning and results are
shared in RESULTS 02 PokerDVS.

B. Testing the method on a widely used dataset: N-MNIST

Once the original method compared to ours with the datasets
used in [1], we will now extend the study to a commonly used
dataset: N-MNIST. The rest of the study will give results using
a k-NN classifier (with k = 12) as it is applied on the space
of activation histograms [30].

For this dataset, we first show results of the clustering phase,
i.e. the time surfaces learnt by the different neurons in each
layer of the network. In figure 3 (a), we can observe the time
surfaces, represented by weight matrices, as they are learnt by
the network without homeostasis. Different blocs correspond
to different layers, and within a layer, a column corresponds
to a single neuron. In a column, lines correspond to different
polarities for each associated time surface in the previous
layer: In the hierarchy of the network, polarity number p in
layer L is linked to neuron number p of layer L− 1. On top
of the plot for each layer, we show activation histograms for

(a)

0
f1

Layer 1

0
f2

Layer 2
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Unsupervised clustering for original HOTS

(b)
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Unsupervised clustering with homeostasis

Fig. 3: Activation histograms and time surfaces obtained in
the unsupervised learning algorithm (a) for the original HOTS
network (replicated from [1]) and (b) for the bio-plausible
version with homeostasis. Associated time surfaces are plotted
below histogram bins. The different lines are the different
polarities of the features (ON and OFF for the first layer), that
is, the output neurons of the previous layer for the next one.
Note the unbalanced histograms in the left figure. Some time
surfaces are so rarely activated that they remain close to the
first inputs they were initialized with. These unevenly matured
clusters lead to an inefficient coding within the network.

the different neurons. Notice the unbalanced activations and
learning of the neurons for the original method. In figure 3 (a),
neurons that are never or rarely activated have kernels that
remain close to the time surface they were initialized with,
meaning that they did not learn from enough inputs. Thus,
they will respond only to very specific time surfaces, probably
the ones they were initialized with, like grand-mother cells.
When trying initialization with different, randomly selected,
digits, great variability was observed in learnt time surfaces.
The network clustering is not stable and leads to significant
differences in encoding for the same dataset. This can result in
a great variability of performances as observed in figure 2. If
initialized at random and using the same methodology, only a
few kernels have structured patterns after clustering and most
kernels remain at their initial, random state.

Homeostasis prevents the network from following this be-
havior and balances the learning between all neurons within
the same layer (see figure 3 (b)). It leads to more generic
kernels which are equally activated, in line with the ef-
ficient coding hypothesis. Similar results can be observed
with previously used datasets, as shown in notebooks RE-
SULTS 01 SimpleAlphabet and RESULTS 02 PokerDVS.
Note that our study still gives results far behind the state-

https://github.com/SpikeAI/HOTS/blob/master/notebooks/RESULTS_01_SimpleAlphabet.ipynb
https://github.com/SpikeAI/HOTS/blob/master/notebooks/RESULTS_02_PokerDVS.ipynb
https://github.com/SpikeAI/HOTS/blob/master/notebooks/RESULTS_01_SimpleAlphabet.ipynb
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https://github.com/SpikeAI/HOTS/blob/master/notebooks/RESULTS_02_PokerDVS.ipynb
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Fig. 4: Classification performances on N-MNIST using histogram distances and as a function of (a) standard deviation of
temporal jitter in logscale or (b) standard deviation of spatial jitter. Blue curves show fits for the results of the HOTS method
with homeostasis and these are compared to the performance of the original HOTS algorithm (Red curves). Dots are the mean
values of accuracy over 10 trials for discrete values of jitter. Transparent outlines represent the 5% and 95% quantiles.

of-the-art and does not improve significantly the accuracy of
the original algorithm. However, this work achieves a slightly
better performance while being more bio-plausible. Moreover,
it is simpler and does not need to include heuristic rules,
suggesting better robustness.

Figure 4 represents classification performances as a function
of both spatial (a) and temporal (b) jitter. Jitter is applied
only on the testing set to add noise to the signal used for
classification. As expected, the higher the jitter, the stronger
its negative impact on classification. The drop in accuracy as
a function of jitter approximately follows a sigmoı̈d function
reaching chance level (i.e. 10 % accuracy), such that one can
define a critical standard deviation of jitter in pixels or in
ms where accuracy drops to half its maximal value compared
to chance level. This half-saturation level reveals a signature
value for the relevant information contained in the signal.

For figure 4 (a), mean accuracy for the original method
and ours reaches its half-saturation level respectively for a
temporal jitter with a standard deviation equal to 23.44ms
and 100.0ms. Even for the original method, the half-saturation
level is great and classification accuracy is not very impacted
by temporal jitter. This robustness can originate from the use
of time surfaces for signal encoding. Indeed, we compare the
signal as input to smooth time surfaces with a scalar product on
the whole spatial window gathering a subset of recent events.
This technique makes the encoding of input events more robust
to local temporal variations. Homeostasis greatly increases the
network’s resilience to temporal jitter with a half-saturation 4
times greater.

In figure 4 (b) we focus on spatial jitter and one can observe
a shift to the right for the blue curve. For the original HOTS
method and ours respectively, half-saturation is reached for a
spatial jitter with a standard deviation of 1.34 pixels and 2.19

pixels. It means that homeostasis gives more resilience to the
network. This resilience can come from the better clustering
phase of the method with homeostasis, allowing more robust
encoding.

IV. DISCUSSION

To summarize, we have proposed to include a bio-inspired
homeostatic mechanism within the existing HOTS algorithm.
By testing the efficiency of the original and modified algo-
rithms, we have demonstrated that this additional mechanism
is beneficial to the robustness of the network’s learning, as
shown in the learnt time surfaces but also quantitatively as it
impacts positively the classification performance.

This biologically plausible homeostatic regulation rule al-
lows reaching higher and more stable performances on all the
datasets studied in this work. In particular, we were able with
this study to observe resilience to different types of noise in the
N-MNIST classification task. Our implementation of the [1]
algorithm and of the extensions proposed in this study is fully
available at https://github.com/SpikeAI/HOTS.

This work opens the way to further scientific perspectives
in the domain of event-driven algorithms, and in particular in
the use of time surfaces as a proxy for information processing.
Future work should explore the efficiency of these kernels
in capturing the relevant signal and in improving future
algorithms.
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