A Hierarchical, Multi-Layer Convolutional Sparse Coding Algorithm based on Predictive Coding
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Predictive Coding (PC) is an influential framework introduced by Rao & Ballard [1] to model neural
processes in the primary visual cortex of mammals (V1). PC exploits the hierarchical structure of
sensory information into a bi-directional update scheme: Higher-level cortical layers predict at best
the activity of the lower-level ones and send the prediction through feedback connections [2].

PC gives a possible explanation to extra-classical receptive fields effects in V1 [1], this is also in
line with the abundance of feedback connectivity in the brain [3].

When implemented in a recurrent neural network, with the addition of sparsity constraints, PC
can explain the emergence of edge sensitive cells in low-level visual areas as well as more specific
descriptors in higher cortical areas [4].

We show that this model, called Sparse Deep Predictive Coding network (SDPC), can also account
for the topological organization of the primary visual cortex when imposing a max-pooling operator
operator across small groups of neurons. Moreover, we show that the resulting model encodes for
edges of specific orientation independently of their phase, a behaviour analogous to the one observed
in neural recordings of complex cells [5].

VIETHOD
SDPC Network for simple and complex cells modeling:

We implemented a model of cortical area V1 as a neural network composed of two layers, imple-
menting simple and complex cells respectively. Our algorithm combines the architecture of a convolutional
neural network with the predictive coding model proposed by Rao & Ballard [1] (see Fig. 1a) into a
Sparse Deep Predictive Coding network (SDPC) architecture [4]. We introduce a pooling function where,
in addition to a spatial pooling, the maximum activity is selected across small groups of neurons from
neighboring channels, enforcing a 2D topology. The competition mechanism introduced by this operators
enforces neighbouring neurons within this topology to encode for similar features. This functional
organization induces some degree of tolerance with respect to small variations in the input image, making
the complex-cells model account for non-linear relationships with the presented stimulus.
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Figure 1: Simplified state update scheme of the SDPC: black and white arrows indicate respectively feedforward
and feedback connections. x is the input image, ¥, and y are neural activity maps, W and W the
convolutional kernels. The function f is a spatial transformation between layers that regulates the shape of
feedback information flow.

Mathematical formulation:
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Receptive Fields learned from Natural Images:

Fig. 2 shows the 1°7 layer of kernels after learning. In presence of a classical spatial pooling the
network is able to extract localized edge detectors (Fig. 2a) analogous to the receptive fields of simple cells
in V1 [6]. In this case, the disposition of the filters is invariant to permutations of the channels. Fig. 2b,
on the other hand, shows the organization that emerges when a topological structure is imposed on the
pooling function. Enforcing the pooling across neighbouring channels constrains neighbouring kernels
to encode for similar features. In particular, edge-like filters with similar orientation and phase tend to
be grouped in neighboring channels. This organization shows qualitatively strong similarities with the
formation of macro-columns structures as found in V1, for which edges of similar orientation, frequency,
and color are shown to be encoded by groups of neighbouring neurons around a pinwheel [7].
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Figure 2: (a) Emergence of Gabor-like kernels W in the 1°7 layer of the network (225 kernels, 7 X 7 pixels) learned
from the STL10 database [8]. Their relative position in the grid is random. (b) Kernels learned when
enforcing a topological structure. The red square indicates one of the pooling groups.
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Complex Cells-like invariance to phase:

(a) Examples of oriented stimuli
used in the experiment.

(b) Invariance heatmap
when a topological structure

(c¢) Invariance heatmap
when a topological structure
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Figure 3: Variation in network activity for different phases and orientations of the input stimulus with respect to a
reference edge. (a) example of different stimuli generated by varying the phase ¢, in the range {0, 7}, and
the angle 6, in the range {%ﬂ, %ﬂ'}. We show the change in activity respectively for a network showing a
topological structure (b) and for a network with no topological structure (c).
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Figure 4: Example of two stimuli that maximize the activity of the simple cells (center) and the complex cells layers
(right), with the reference stimulus (left).

CoNcCLUSION
* We showed that a two-layered SDPC model of V1 can predict highly non-linear cell behaviors
observed in the mammals’ visual cortex [5].

* Such a behaviour is likely of key importance for implementing object recognition in a neural
substrate. Indeed, natural images are known to be efficiently described by co-linear and co-circular
sets of edges described by Gabor filters of similar orientation disposed along smooth trajectories [9].

* Complex cells are likely implementing a hierarchical model [7] by exploiting such regularities
together with other functional structures of the visual cortex.
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