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Introduction. Predictive Coding (PC) is an influential framework introduced by Rao & Ballard [1] to model neural processes in
the primary visual cortex of mammals (V1). PC exploits the hierarchical structure of sensory information into a bi-directional update
scheme: Higher-level cortical layers predict at best the activity of the lower-level ones and send the prediction through feedback
connections. This prediction is compared to the activity of the lower-level layers to generate a prediction error that is sent to the upper
layer through feed-forward connections [2]. Interestingly, PC gives a possible explanation to extra-classical receptive fields effects
in V1 [1], this is also in line with the abundance of feedback connectivity in the brain [3]. Additionally, this model has provided
an elegant way to model task-driven learning in the brain by approximating error back-propagation, commonly used in deep neural
networks, only by means of Hebbian plasticity and local computations [4, 5]. When implemented in a recurrent neural network, with
the addition of sparsity constraints, PC can explain the emergence of edge sensitive cells in low-level visual areas as well as more
specific descriptors in higher cortical areas [6]. We show that such a model, called Sparse Deep Predictive Coding network (SDPC),
can also account for the topological organization of the primary visual cortex when imposing a max-pooling operator operator across
small groups of neurons. Moreover, we show that the resulting model encodes for edges of specific orientation independently of
their phase, a behaviour analogous to the one observed in neural recordings of complex cells [7, 8].
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Figure 1: (a) Simplified state update scheme of the SDPC: black and red arrows indicate respectively excitatory and inhibitory connections. [ is
the input image, -1 and -2 are neural activity maps, D1 and D5 the convolutional kernels and 7 the non-negative soft-thresholding operator as
in [9]. The function f is a spatial transformation between layers and ks is a coefficient that regulates the strength of feedback information flow.
(b) Scheme of the pooling functions MaxPool2D and GroupM axzPool2D where ps, indicates a spatial max-pooling layer (with kernel size
2 X 2 and a stride of 2) and p., indicates a max-pooling across organized in 100 overlapping groups of 4 channels. The results shown in Fig. 2 (a)
and (b) were obtained respectively by setting f = MaxzPool2D = psp, and f = GroupMaxzPool2D = pcp, 0 Dsp.

Methods. We implemented a model of cortical area V1 as a neural network composed of two layers, implementing simple and
complex cells respectively. Our algorithm combines the architecture of a convolutional neural network with the predictive coding
model proposed by Rao & Ballard [1] (see Fig. 1a) into a Sparse Deep Predictive Coding network (SDPC) architecture [6]. In
this model, the state variables are sparse neural activity maps (v; and =2) encoding the input and the feedback signals. Sparsity
is imposed through a ¢;-norm penalty on the neural activity. The (learned) parameters of the system are convolutional kernels
optimized through Hebbian learning. Note that these kernels describing the convolutional channels, D1 and Ds, can be interpreted
as synaptic weights shared across spatial locations. In order to replicate the behavior of complex cells, we extended the original
algorithm [6] by introducing a more generic max-pooling function between the layers, as defined by f in Fig. 1-a,b [8]. The first one
is a simple spatial pooling (f = MaxzPool2D in Fig. 1b), where f(+1) is computed by selecting the maximum response of a neuron
across different neighboring spatial locations of the activity map ;. Here, we added a second pooling function where in addition
to the spatial pooling, the maximum activity is selected across small groups of neighboring neurons, or equivalently a two-phases
pooling (f = GroupMaxPool2D in Fig. 1b). The competition mechanism introduced by these operators enforces neighbouring
neurons to encode for similar features. As the resulting SDPC network minimizes the prediction error (f (1) — D*~y,), this should
introduce some degree of tolerance with respect to small variations in the input image, making the complex-cells model account for
non-linear relationships with the presented stimulus.



Results. To test this prediction, we trained two SDPC networks using f = MaxPool2D, and a f = GroupMaxPool2D,
respectively. Both networks are composed of two layers characterized by 121 channels of convolutional neurons each. Each network
was trained for 50 epochs on the STL-10 data-set of colored natural images [10]. Fig. 2 shows the 1°¢ layer of kernels after learning.
In presence of a classical spatial pooling (M ax Pool2D) the network is able to extract localized edge detectors (Fig. 2a) analogous
to the receptive fields of simple cells in V1 [11]. In this case, the disposition of the filters is invariant to permutations of the channels.
While this model is able to account for invariance to small shifts of the input stimulus [12], it is not able to explain the disposition
of edge sensitive simple cells in V1. On the other hand, when the two stages pooling is applied (GroupM ax Pool2d), a topological
structure emerges along with formation of the kernels (Fig. 2b). Interestingly, the topological structure is solely a consequence of
the feedback connection coming from the 2"¢ layer: Enforcing the pooling across neighbouring channels constrains neighbouring
kernels to encode for similar features. In particular, edge-like filters with similar orientation and phase tend to be grouped in
neighboring channels. This organization shows qualitatively strong similarities with the formation of macro-columns structures
as found in V1, for which edges of similar orientation, frequency, and color are shown to be encoded by groups of neighbouring
neurons around a pinwheel [13].
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Figure 2: (a) Emergence of Gabor-like kernels D1 in the 1°* layer of the network (121 kernels, 8 x 8 pixels) learned from the STL10 databse [10]
for ks, = 4 and f = MaxPool2D. Their relative position in the grid is random. (b) Kernels learned when introducing group sparsity with
kfy =4 and f = GroupMaxPool2D. The red square indicates one of the pooling groups used by pcp.

Additionally, we observed qualitatively that when f = GroupM axPool2D, the activity of the model in the second layer shows
an invariance to the phase of an oriented edge as is exhibited by biological V1 complex cells. To specifically test this property, we
fed both networks with a set of oriented edge-like images (Gabors) [14] with the same center but different phases (¢ € [0, 7)) and
different orientations (6 € [8 , )) see Fig. 3-a. We then evaluated the difference in activity with respect to a reference stimulus
(¢rer = 0,0rEr = 871') When f = MazPool2D and f = GroupMaxPool2D. The results of this experiment are shown
in Fig. 3-b and c. In Fig. 3-b, a network showing a topological organization appears to be strongly phase invariant, with changes
in network activity being only dependent on variations in orientation §: Changes in phase marginally modify the complex cells
activity. In this case, the network shows also a relative tolerance for variations in the stimulus orientation. On the other hand, Fig.3-c
shows the network without a topological structure and which does not generalize over the range of inputs: Changes in phase induce
variations in network activity. The invariant behaviour of a network trained with f = GroupMaxPool2D is explained by the
induced topological organization of its 1°¢ layer. Indeed, neighboring kernels tend to encode similarly oriented edges with different
phases, and pooling across these neurons leaves the resulting response unchanged. As a results, this makes the model complex cells
encode for one oriented stimulus independently of its local properties. The same response will be evoked for different local contrast
(phase) and small variations in stimulus orientation. This behaviour has already been observed in complex cells in V1 and likely
represents a key computational step to build an invariant representation of the input [7, 8].

Conclusions. We showed that a two-layered SDPC model of V1 can predict highly non-linear cell behaviors observed in the
mammals’ visual cortex [7]. We suggest that invariance to the input stimuli in complex cells could emerge directly from imposing
a topological organization to V1, rather than from a simple pooling across spatial locations. We predict that we should find such
differences between species which lack a topological organization (mice for instance) and other which have such an organization
(such as primates). Moreover, such a behaviour would be of key importance for implementing object recognition in a neural
substrate. Indeed, natural images are known to be efficiently described by co-linear and co-circular sets of edges described by
Gabor filters of similar orientation disposed along smooth trajectories [15]. Complex cells are likely implementing a hierarchical
model [13] by exploiting such regularities together with other functional structures of the visual cortex.
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(a) Examples of oriented stimuli
used in the experiment.

(b) Invariance heatmap
for f = GroupMaxPool2D.

(c) Invariance heatmap
for f = MaxPool2D.
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Figure 3: Variation in network activity for different phases and orientations of the input stimulus with respect to a reference edge. (a) example of
different stimuli generated by varying the phase ¢, in the range {0, 7}, and the angle 0, in the range {éw, %ﬂ'}‘ The stimulus used as reference
for this experiment is highlighted by the red square. (b-c) The distance between the reference and the considered filter in computed as the /5
norm of the difference between the model complex cells response to the two stimuli, v2¥ and -y, for the current stimulus, normalized by the
number of active cells for the input, Nqcrive. We show the change in activity respectively for a network showing a topological structure trained
with f = GroupMazPool2D (b) and for a network with no topological structure trained with f = MaxPool2D (c).
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