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Motivation

It is widely assumed that visual processing follows a forward sequence
of processing steps along a hierarchy of laminar sub-populations of
the neural system. Taking the example of the early visual system
of mammals, most models are consequently organized in layers from
the retina to visual cortical areas, until a decision is taken using the
representation that is formed in the highest layer. Typically, features
of higher complexity (position, orientation, size, curvature, ...) are
successively extracted in distinct layers [2, 3]. This is prevalent in
most deep learning algorithms and stems from a long history of feed-
forward architectures [2]. One of the most successful paradigm to
achieve such a representation relies on algorithms performing alter-
nately sparse coding and dictionary learning. As shown in previous
studies [4, 6], such an algorithm converges to a set of kernels that has
strong analogies with the receptive fields of simple cells located in
the Primary Visual Cortex of mammals (V1). Using the Multilayer
Convolutional Sparse Coding (ML-CSC) from [8] we unsupervisedly
trained a simple two-layer convolutional neural network on a set of
natural images with a growing number of neurons in the second layer.
By doing this, we could quantitatively manipulate the complexity
of the representation emerging from such learning and analyze the
sub-populations composed by the combination of the simple-cell-like
oriented kernels found in the first layer.
Within the ML-CSC, [8] gives theoretical guarantees of stability and
recovery for the learning and coding problem. Given an input sig-
nal yk ∈ RN , this problem consists in finding a set of sparse maps
{γki }

L
i=1 and dictionaries {Di}Li=1 that fit the the Lasso formulation:


min

{γki }{Di}

K∑
k=1

‖yk −D(L) ~ γkL‖
2
2 +

L∑
i=2

ζi‖Di‖1 + λL‖γkL‖1

Di = [d1
i , d

2
i , ..., d

J
i ]

s.t. ∀i, j ‖dji‖2 = 1,
(1)

where d
j
i is the jth atom of the ith dictionary.

ML-CSC algorithm

Input: training set {yk}Kk=1, initial dictionaries {Di}Li=1
for k = 1 to K do

D(L) = D1 ~D2 ~ ...~DL−1

D̂(L)← D(L)/Norm(D(L))

γL = SparseCoding(yk, D̂
(L), λL)

γL← γL/Norm(D(L))
for i = L to 2 do
Di← Sζi(Di − η∇f (Di))
Di← Di/Norm(Di)

end
D1← D1 − η∇f (D1)
D1← D1/Norm(D1)

end

Output: γL, {Di}Li=1
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Fig. 1:
Scheme of ML-CSC: Schematic view of the Sparse Dictionary
Learning in the ML-CSC framework for L = 2. First the inner
representation has been inferred via Convolutional Sparse Coding,
in this case a modified ISTA [1]. Then the reconstruction error is
propagated trough the network forward and backward in order to
calculate the gradient of the optimization function. The first layer
dictionary D2 is then updated trough a gradient descent algorithm,
while a proximal operator, in this case a soft thresholding is used
to induce sparseness in the second layer dictionary D2.

Why sparse coding?
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Fig. 2:
Resemblance between RCs found in V1 and those pre-
dicted by sparse coding: Example of the ability of Sparse
Dictionary Learning to predict bandpass, localized, oriented filters
similar to the receptive fields (RCs) of simple cells in the primary
visual cortex. Other Linear Methods like ICA fail in such task.
Adapted from [6]

Learning on natural images
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Fig. 3:
Example of ML-CSC applied to the AT&T face
dataset [7]
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Fig. 4:
Results for different architectures with increasing
complexity: We show the result of the optimization function
(1) applied to a dataset of patches (64× 64 pixels) extracted from
a dataset of natural with a level of sparsity λL = 10. All the net-
works were trained with a first layer dictionary, D1, composed of 8

convolutional kernels (atoms d
j
1) of 8× 8 pixels (L1). We trained

4 different networks with an increasing number of atoms d
j
2 in the

second layer dictionary: (A), (B), (C) and (D), corresponding to
second layer dictionaries composed of respectively 32, 64, 128 and

256 atoms d
j
2. A single atom d

j
2 was always composed of 9 × 9

pixels and 8 channels, with an effective dimension of 16× 16 pixels
(as in Fig. 1, L2).

Quantitative analysis
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Fig. 5:
Scatter plot of orientation co-occurrences: The analysis
of co-occurrences was performed using two measures of angular dis-
tance between each pair of edges, (the localized oriented filters in
D1), in the effective representation of the second layer dictionary

D(2) [5]. The two measures are the orientation difference θ and
the azimuth difference ψ (A), in particular, the axis ψ = 0 corre-
sponds to co-circular edges configuration, while θ = 0 to co-linear
configurations, an example of this statistics extracted by a set of
natural images is given in (B). We show how co-linear features are
dominant in all the 4 tested architectures: (C), (D), (E) and (F)
corresponding to second layer dictionaries composed of respectively

32, 64, 128 and 256 atoms d
j
2. The first architecture (C) shows al-

most uniquely co-linear configurations, right angles and parallel
configurations start emerging for higher second later dimensions
(D), (E). The greatest variety is present in the last architecture
(F) where, though co-linearity is still dominant, a greater number
of complex combination can be observed: co-circular, right angles
and ”Y” shaped configurations.
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