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Abstract—Decoding the semantic content of images is nowa-
days dominated by the use of deep convolutional neural networks
(DCNNs). However, their generalization capability is still under-
mined by the small translation invariance of their max-pooling
layers. Taking inspiration from biological vision, we develop
here a new methodology for translation-invariant processing with
DCNNs. We build upon a recent model that implements two
key biological mechanisms: foveated vision and the separation
of the visual processing into a “what” and a “where” pathways.
Alongside such foveal vision, we demonstrate the capability of a
foveated spatial transformer to learn both pathways in an end-to-
end fashion, without any spatial labelling whatsoever. Our results
pave the way towards a new class of spatial visual transformers,
implementing the principles of active (saccadic) vision over large
visual displays.

Index Terms—Neural Models of Perception, Visual system,
Attention, Bioinspired and Biomorphic Systems, Brain-inspired
cognitive architectures.

I. INTRODUCTION

S INCE the emergence of AlexNet; the winner of the 2012
ILSVRC image classification competition [2], computer

vision has been dominated by the use of deep convolutional
neural networks (DCNNs) [3] to capture the semantic content
of images. Nowadays, most classifiers are capable of surpass-
ing human level performance on specific visual categorization
challenges [4]. From object recognition [5], [6] and natural
language processing tasks [7], [8], to lymph node metastasis
detection [9] and diagnostic radiology in patient care [10],
there is no questioning the breadth of their applications
throughout various fields. Thanks to the massive sharing
of weights in convolutional layers inside their architecture,
DCNNs keep the number of parameters to be learned relatively
small, which facilitates the abstraction of complex feature
spaces. Although DCNNs provide an exceptionally powerful
set of architectures for computer vision, they still lack one
very important property of a visual processing system: spatial
invariance, that is, the ability to separate the object’s pose and
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position from its identity, i.e., its texture and shape. In practice,
small invariance to features in the visual space can be achieved
by local max-pooling layers embedded within the architecture,
but it remains limited in scope due to the small spatial support
(e.g., 2 × 2 pixels), leaving unsolved the invariance to large
transformations in input data [11].

On the one hand, the spatial distribution of objects in space
can be addressed, in the general case, from the perspective
of inverse graphics [12], the subjective shape and position of
a given object being the result of a certain number of affine
transformations (shifts, rotations, ...) operated in the physical
world over object templates. Learning such transformations
together with the object identity (that is learning the inverse
transformation to operate on the data) is thus expected to
implement a wider range of spatial invariance, providing
more parsimonious and interpretable classifiers by aligning
the visual input to a limited number of object templates. To
this end, Spatial Transformers Networks (STN) were intro-
duced [13], a fully differentiable module that can be inserted
inside a DCNN at any depth giving it the ability to learn
how to actively manipulate and transform input feature maps
spatially without any extra supervision (e.g. pose annotation)
added to the process, allowing the network to only select
relevant regions of the image (attention mechanism). Learning
is also performed in an end-to-end fashion with standard
backpropagation without modifying the optimization hyper-
parameters. State-of-the-art results were achieved on several
benchmarks giving DCNNs invariance to several classes of
spatial transformations, most notably affine transformations,
i.e., scaling, rotation, translation, shear, and reflection.

On the other hand, leveraging spatial transformations comes
with a cost: the processing of a transformation itself, imple-
mented in a conventional deep convolutional neural network.
Stacking a transformer over a classifier provides a more
efficient use of the visual data, at the cost of twice more pa-
rameters to tune. The tuning of parameters being the principal
cost and concern when time and computational resources are
limited, one should consider more parsimonious approaches
to inverse transformations. Finding such transformations from



message passing and node to node agreement was for instance
proposed in [14]. Key-Query based visual attention, such as
the one proposed in Visual Transformer [15], [16], was also
proposed as a solution to effectively implement spatial routing
agreement, by analogy with the sequential agreement found in
text processing.

Coming from a different line of research, biologically-
inspired image processing has converged towards a quite
similar description of the main processes taking place in the
brain when animals have to detect objects of interest in a visual
scene. For the same reason that the Neocognitron [17]; the
predecessor of modern DCNNs, was inspired by the discovery
of simple and complex cells in the primary visual cortex in
mammals [18], the need for architectures that are inspired from
biological underlying principles is growing [19]. Indeed, the
human visual processing system is still considered unrivalled
when it comes to speed of detection and computational effi-
ciency. Bio-inspired artificial visions systems thus concentrate
on the most salient aspects of biological visual processing,
that is the use of non-spatially homogeneous visual sensors
(foveated retina) and the use of eye saccades to shift attention
toward different parts of the visual scene. Considering foveated
inputs implies, at first hand, the compression of the visual
data through a center-surround log-polar grid representation,
as is the case of the foveated vision in mammals [20]. Next
key aspect of natural vision is the use of high-speed eye
movements [21], that is shifting the fovea that concentrates
most of the photoreceptors, towards specific spatial positions
to improve the decoding [22]. Finally, the processing of visual
information that is found in mammals is anatomically sepa-
rated in two pathways, namely the dorsal pathway responsible
for the localization, and the ventral pathway responsible for
object recognition [23]. Next comes the question: how to
effectively implement such principles? And, more importantly,
why and how such a specific visual processing is optimal with
regards to the physical and ecological constraints found in the
natural world?

One recent paradigm for the application of these principles
is the artificial What/Where model [24] that combines each
previous aspect in a trainable deep convolutional architecture.
This model works in a sequential way. The foveated visual
input is processed through a first neural network layer, referred
to as the “Where” module, in order to determine the optimal
viewpoint upon which the agent shall fixate its center of gaze.
Next, after moving the eye towards this new position, a second
neural network, named the “What” module, will oversee
classifying a small region around the center (mimicking the
“fovea”) to detect the object contained within it. One key
result here is the considerable information gain provided by
iterating only one saccade over the visual field [25], which
allows to link saccade selection to the more general active
inference principles [26], [27]. As a side result, the log-polar
compression, placed at the entry level of this architecture,
provides a complexity (processing time) that is sub-linear with
regards to the number of pixels, which is unprecedented with
regards to classical computer vision that is still considered
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Fig. 1: The datasets that were used for the visual search task.
(a) The 28 × 28 pixel Noisy Shifted MNIST dataset. (b) the
128×128 pixels Noisy Shifted MNIST dataset. (c) Visualizing
the Polar-Logarithmic (POLO) version of the 128×128 Noisy
dataset by using the pseudo-inverse transform, images are
compressed up to 95%

linear in the number of pixels. This decrease in the computa-
tional load can be seen as the main reason why such principles
are so largely adopted in biology. From a practical standpoint
however, the training of each module was done separately, over
spatially-shifted targets with a noisy background, providing
an explicit spatial labelling of the targets during the training
phase. This supervised training, used as a shorthand, renders
the method impracticable to implement over real world natural
images, assuming that explicit spatial labelling is not provided
in general.

To overcome this limitation, we thus developed a new
architecture that consists of training a spatial transformer
as a replacement for the original “Where” module, and
progressively implements the different properties required,
namely log-polar compression, saccade selection and foveal
downsampling. We were able to demonstrate in a step-by-
step fashion that the full What/Where processing pipeline,
including the log-polar foveal magnification, saccade selection
and foveal processing, can be trained in an end-to-end fashion,
i.e., without supervision of the spatial transformation.
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Fig. 2: POLO [1] LogPolar encoding pipeline

II. MATERIALS AND METHODS

The task at hand is a simple environment where the agent
must localize and identify a random handwritten digit inside a
big cluttered noisy image, similar to the one described in the
original What/Where model [24]: a random handwritten digit
is placed inside a screen with added clutter and noise, and
the agent’s mission is to classify the digit; as in determining
its label. However, the digit is placed in a random position
and the difficulty of the task will be modified according to
two parameters, the eccentricity; the digit’s distance from the
center point of the image, and the contrast, or the digit’s
visibility relative to the background. The larger the eccen-
tricity or the lower the contrast, the harder the task. Train-
ing datasets are prepared, and networks are implemented in
Python, using the high-performance deep learning framework
“PyTorch” [28]. All networks are trained on a GTX 1660
Ti GPU, and results are visualized and organized within
Jupyter Notebooks using Python’s scientific plotting libraries
NumPy [29] and Matplotlib [30]. The source code is available
at https://github.com/dabane-ghassan/int-lab-book

A. Datasets

The MNIST database [6] is used for this task. It consists
of a set of 70000 grayscale images of handwritten digits of
size 28×28 split between 60000 training examples and 10000
validation examples. The input data is made of grayscale im-
ages containing a MNIST digit placed randomly over a noisy
background. Moreover, the digit’s contrast varies randomly
between 70% and 30%. For the purpose of this application,
three variants are prepared. In a first variant, said the “foveal”
28× 28 dataset, the input images keep their original size, but
a synthetic random texture is added in the background [24],
[31] (see Fig. 1a for some examples) and, importantly, the
digits are randomly shifted away from the center. Depending
on the shift and the contrast, the classification difficulty ranges
from “easy” toward “extremely hard” or even impossible when
the digit is only partly visible at the border. In a second one,
said the 128 × 128 “full visual field”, the MNIST digits are
placed randomly over a similar random texture, but the image

is much larger (128×128 pixels), and includes a circular mask
(of radius 64) (Fig. 1b). In that case, the digit’s eccentricity can
vary between 0 and 40 pixels, forcing the digit to fit entirely
inside the circular mask.

Last, a compressed ”LogPolar visual field” dataset, mimics
the log-polar encoding of the mammalian retina over the full
visual field. The principles of the log-Polar encoding pipeline
is presented on Fig. 2. For computational efficiency reasons,
the encoding of the image is split in two phases. The image
is first recoded with a Laplace pyramid [32], and cropped at
the different resolution levels in order to only keep a series of
32 × 32 or 64 × 64 snippets of Laplacian coefficients, for
the K different levels considered [33], [34]. Then a bank
of Log-Gabor filters, radially disposed on a log-polar grid,
serves to linearly transform the snippet images into log-gabor
coefficients. The resulting coefficients are then stacked in a
3D tensor, organized spatially with their log-polar coordinates,
and 8 orientations for the depth. In our case, the original
image size is 128×128 = 16384. The number of levels varies
from 3 to 6 depending on the compression rate. Two banks
are considered in our experiments. A first bank has 3 levels,
each level providing 16 azimuthal, 2 radial and 8 orientation
coordinates, making a total of 3×2×16×8 = 768 predisposed
filters, providing a compression rate of approximately 95%
(1− (768/16384)). A second keeps the two first precedented
levels and adds 2 additional ”high-resolution” levels based
on 64 × 64 snippets, having 32 azimuthal, 4 radial and 8
orientation coordinates, making a total of 2 × 2 × 16 × 8 +
2 × 4 × 32 × 8 = 2560 filters, providing a compression
rate of approximately 85% (1 − (2560/16384)). It is also
worth mentioning that the original What/Where model has a
compression rate of about 83% [24], which can be helpful to
test and benchmark Spatial Transformers on roughly the same
compression rate and also on a higher one. In order to visualize
the compressed version of the dataset, it remains possible
to represent it in the visual space using the pseudo-inverse
of the transform (Fig. 1c). Finally, the radial organization
of the log-Gabor filters makes it possible to represent the
obtained coefficients on a bi-dimensional grid, using log-polar
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TABLE I: Different architectures and their parameters

Parameter
Network STN 28×28 STN 128×128 ATN POLO ATN convPOLO ATN

Dataset 28× 28 128× 128 128× 128 128× 128 Noisy 128× 128 Noisy
Noisy Noisy Noisy + Compressed (85/95%) + Compressed (85%)

Localization 2 CN∗ Layers, 4 CN∗ Layers, 4 CN∗ Layers, Only 2 CN∗ Layers,
Network 2 FC∗∗ Layers 2 FC∗∗ Layers 2 FC∗∗ Layers 2 FC∗∗ Layers 2 FC∗∗ Layers

Grid 28× 28 128× 128 28× 28 28× 28 28× 28
generator (DS∗∗∗) (DS∗∗∗) (DS∗∗∗)

Output size 6 6 3 2 2
Transformation Affine Affine Attention Fixed Attention Fixed Attention

types (scaling, translations) (translations) (translations)
Epochs trained 160 110 110 110 270
Learning rate 0.01 0.01 0.01 0.005 0.005
Learning rate None 0.1 every 0.5 every 0.5 every 0.1 every

decay 30 epochs 10 epochs 10 epochs 10 epochs
∗Convolutional layer, ∗∗Fully-connected layer, ∗∗∗Downsampling

Fig. 3: The STN 28x28 Network. Examples of spatially
transformed input feature maps with the network, when the
input image (from the 28× 28 Noisy dataset) is presented.

coordinates instead of cartesian ones (the azimuth on one axis
and the log-eccentricity on the other), making the log-polar
data amenable for a bi-dimensional convolutional processing
(see fig. 2).

B. Networks

To natively compare the performance of the What/Where
model with a Spatial Transformer Network (STN), i.e., a
Spatial Transformer augmented DCNN classifier, four different
STN architectures are created from a similar computational
graph. All networks are composed of two main modules,
namely a spatial transformer module, the localization network
mainly, whose output is a set of spatial transformation coordi-
nates, implementing the group of affine transformation over the
visual field (that is translation, scaling, rotation, shear, etc.).
Implemented in PyTorch, a fully differentiable grid sampler
allows to apply the transformation over the pixel input, feeding
the second module (see Fig. 4). This second module, said the
classifier, uses the “LeNet” architecture [6] as a backbone
classifier for digit recognition, similar to the one used in
the original What network [24]. This module has two 5 × 5
convolutional layers (stride 1, no padding) interleaved with
2 × 2 max-pooling layers, followed by two fully connected
layers that lead to a 10-way classifier.

Next, four distinct localization modules are considered here.
They correspond to both an incremental complexity of the
models as well as an incremental difficulty of the localiza-
tion/classification task. The first one; The STN 28x28, serves
to test the robustness of a Spatial Transformer on a small

generic dataset from the original task (e.g., by classifying only
a 28 × 28 pixels image). It also serves as a comparison with
the What module of the original What/Where Network.

The other three localization modules are concerned with
the processing of the full visual field. Each of them evolves
from the previous one in an incremental way, presenting an
important supplementary feature, that is the foveal down-
sampling, and the log-polar compression at the input, finally
implementing all the features of the original What/Where
model.

• A first vanilla STN is parametrized to detect all types of
affine transformations; scaling, rotation, and translation,
the STN 128x128.

• The second one; The ATN (Attention-only spatial
Transformer Network), is restricted only for atten-
tion, i.e., scaling and translation, and will introduce a
downsampling mechanism of the image by passing from
128 × 128 pixels to 28 × 28 pixels in the grid sampler
inside its transformer module. This combination of a
visual shift followed by a downsampling contains both
the principles of a gaze shift and the the selection of the
foveal part of the visual field for further processing.

• Finally, the last model; The POLO ATN (POlar-
LOgarithmic Attention-only spatial Transformer Net-
work), is similar to the previous one, except that it is
set to detect only translations (fixed attention), and uses
as input the coefficients of the Log-Polar transformation
of the original image. This latter network is tested on
the different Log-Polar compression configurations, the
POLO ATN 85% and the POLO ATN 95% for a
compression rate of 85% and 95%, respectively, this high
compression rate gives the possibility to use an only fully-
connected network inside the localization module within
the spatial transformer. Last, in order to check whether the
visual processing architecture of the localization network
inside the STN plays a role in performance, a convolu-
tional counter part is tested, the convPOLO ATN 85%,
with two convolutional layers followed by two fully-
connected layers, only using a compression rate of 85%.
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Fig. 4: Computational graph of a Foveated Spatial Transformer. The image is first compressed to its Log-Polar counterpart
using a bank of filters, the compressed feature vector is then passed to the localization network that takes charge of determining
the translation over the two axes. After this, the fixed attention matrix is built and used by the downsampled grid generator
to hightlight the region of interest with its coordinates, i.e., the digit. Finally, the downsampled and attention-restricted feature
vector is passed to the classification network.

In all of our convolutional architectures, the first convolu-
tional layer has 20 filters and the second one has 50 filters,
except the STN 128x128 which has 100 filters in its second
convolutional layer; this choice was made because this network
is the only architecture that operates on a full 128×128 image
for classification.

A curriculum learning training scheme [35] is used to train
the networks, meaning that at the beginning of training, only
small eccentricities with a fixed high contrast are used, then
incrementally making the task harder throughout epochs. It is
worth mentioning that all networks place a 2×2 max-pooling
layer subsequent to every convolutional layer and use rectified
linear (ReLU) non-linearities. For more information concern-
ing the four architectures and their training, see Table I.

III. RESULTS

A. Foveal transformations

The central accuracy is defined as the performance of the
network when the digit’s eccentricity is set to 0, the general
accuracy is when the digit’s shift can vary up to 15 pixels.
After training, the STN 28x28 was able to achieve a central
accuracy of 88% and a general accuracy of 43% on this
dataset. Then, to see how the transformer operates on input
images, some examples of feature vectors are transformed
with the Spatial Transformer module of the STN 28x28 and
represented next to their original counterparts (see Fig. 3), we
can see that the Spatial Transformer is going to crop relevant
parts of the image and center them, this happens before feeding
the feature vector to the classification network.

B. Full-field transformations

In order to investigate the attentional mechanism and the
inner workings of each of the three full-field architectures,
dataset images with different varying eccentricity values (a
maximum of 40 pixels) and different varying contrasts were
transformed using the trained spatial transformer modules
(Fig. 5). First, and in the case of STN 128x128, we can

observe that the Spatial Transformer is going to center the digit
by creating another warped 128 × 128 pixels version of the
original feature map (see Fig. 5a), even when the eccentricity
is at its maximum and the task becomes harder, it is capable of
centering the region of interest. Second, for the ATN, we can
see that the transformer is capable of attending to the digit and
centering it on the small 28× 28 grid that will be fed later to
the classification network (see Fig. 5b), in the same manner as
the STN 128x128, and even when the contrast is fixed to 0.3
and the digit is barely visible, the ATN network will be able
to localize the digit inside the 128× 128 screen. Finally, and
the conv POLO ATN 85 was tested on the hardest setup for
this particular dataset, with targets placed at random between
0−40 pixels away from the center, and a contrast randomly set
in the 30− 70% range. For the majority of cases, the network
was able to bound the digit inside its sampler, centering it
perfectly in some cases and close calling its position for the
remaining, and sometimes totally missing it out (see Fig. 5c).

C. Model benchmarking

It is worth highlighting that in the case of log-polar com-
pression, the visual information is mostly conserved around
the center of sight and at the fovea, and strongly compressed
at the periphery. This makes the visual targets more difficult
to detect in the latter, which leads the network to make
errors, doing a greater proportion of missed displacements,
and lowering the overall classification accuracy. The three
architectures; STN 128x128, ATN and POLO ATN, were
then benchmarked on eccentricities ranging from 0 to 40, on
each of the three different following contrasts; 0.7, 0.5 and
0.3. Classification accuracies are represented alongside the
performance of the baseline What/Where model on the same
dataset parameters (see Fig. 6).

When considering the baseline What/Where model, as it is
reported in [24], the effect of the log-polar compression is
reflected in a decreasing classification accuracy with regards
to the eccentricity. The leftmost value corresponds to the



Fig. 5: Examples of some of the spatial transformations that
were learned, The 128× 128 dataset images before and after
passing the Spatial Transformer architecture. (a) Transforma-
tions applied by the STN 128x128 network, the digit shift’s is
set to 40 pixels and the contrast is set to 70%. (b) Transforma-
tions applied by the ATN network, dataset configuration is at
its hardest, digit’s shift is set to the maximum amount allowed
which is 40 pixels and the digit’s contrast is set to 30%.
(c) Transformations applied by the convPOLO ATN network,
digit’s shift and contrast vary randomly between 0−40 pixels
and 30− 70%, respectively.

“central accuracy”, that is the classification rate when the
target is at the center. Then, the “0 saccade” curve reflects
the mere foveal classification obtained with varying target
eccentricities, without transformation. There, the values above
0.1 reflect the baseline shift invariance of the “What” classifier.
Then, the “1 saccade” curve reflects the intervention of the
localization network (the “Where” module), that is displacing
the fovea toward the putative target, and then classifying the
foveal image. The lower the decrease (with respect to the
center), the higher the radial distance at which targets can
be detected. The contribution of the localization network can

Fig. 6: Benchmark comparison between the three Spatial
Transformer architectures (STN 128x128, ATN and con-
vPOLO ATN) and the What/Where model on the 128 × 128
Noisy MNIST dataset, classification accuracy as a function of
the digit’s eccentricity and contrast, the baseline performance
is the What/Where 0 saccades which corresponds to a normal
LeNet classifier that was trained and tested on the dataset
without any architectural modification.

be measured quantitatively in terms of information gain, that
is the difference in classification rate before and after the eye
saccade [25].

Considering first the STN 128x128 and the ATN archi-
tectures, higher overall accuracies on all eccentricities and
contrasts are observed compared to the What/Where model
(with 1 saccade). This is expected as the two models take ad-
vantage of the full visual information. For these two networks,
small to no difference in performance is observed between
contrasts 0.7 and 0.5, followed by a decrease for a contrast
of 0.3. Another important feature that can be observed from
these two architectures is that eccentricity does not affect the
classification rate, i.e., no matter how far the digit is, the



Fig. 7: Benchmark between the three POLO ATN
architectures (POLO ATN 85%, POLO ATN 95%,
convPOLO ATN 85%) on the 128×128 Noisy MNIST
dataset, accuracy as a function of eccentricity and contrast.

network will be able to classify it, which is not the case
for the remaining architectures that use Log-Polar compressed
coordinates (the What/Where model and POLO ATNs).

Jumping on to the convPOLO ATN 85 architecture, the
classification accuracy, as expected, now tends to decrease
in proportion with the eccentricity. This decreasing perfor-
mance with the target eccentricity here clearly outperforms the
What/Where model for contrasts of 70% and 50%, showing a
higher accuracy over a wider range of eccentricity, providing
a remarkable stable performance up to an eccentricity of
30 pixels, covering about 75% of the total visual field with
only 15% of the visual information. A more linear decrease
is observed in the low contrast case (30%), with slightly
lower classification rates than the original What/Where model.
Interestingly, the difference is stable along the eccentricity
range, showing that the accuracy deficit may be imputable to
the final classifier rather than the localization module, which
indicates that it may possibly be improved with increasing
training time.

To measure the effect of compression and convolutional
processing on the architecture, the convPOLO ATN 85%
architecture is compared with the POLO ATN 85% and
POLO ATN 95% models in Fig. 7. Considering the effect
of the log-polar compression first, a small but significant
drop in classification is observed for the higher compression
(95%) with regards to the lower compression (85%). Interest-
ingly, the same drop is observed across the full eccentricity
range, keeping the same qualitative decrease. The difference is
more pronounced, when comparing the convolutional network
with the non-convolutional ones. The convolutional network
clearly outperforms the two others in the high-medium contrast
case, and closely compares with the others in the low con-
trast case. Considering that both convPOLO ATN 85% and
POLO ATN 85% process the same visual information, this
brightly illustrates the advantage of exploiting the 2D structure
of the log-polar grid to put a greater constraint (inductive bias)
on information processing to improve learning.

IV. DISCUSSION

Our step-by-step investigation of the properties of the spatial
transformer networks over fully-resolved and then log-polar
compressed visual inputs has provided a way to fill the gap
between the original vanilla STNs and the more biologically
relevant visual processing architectures, reaching and even
surpassing the performance of the original What/Where model
in the absence of any spatial labelling.

• On the one hand, STN 128x128 and ATN perform excep-
tionally well on this dataset and largely outperform their
counterpart. However, they are more computationally
costly as they process the full 128 × 128 image instead
of the log-polar compressed version. It should be empha-
sized that although the ATN architecture limits the num-
ber of transformations to attention only and introduces a
downsampling mechanism, the difference of performance
with the STN 128x128 is considered minimal, meaning
that this architecture should be privileged when thinking
in terms of localizing the object in visual space without
log-polar compression.

• On the other hand, the POLO ATN architecture, which
implements the log-polar compression of the input, shows
a similar decrease in performance with the eccentricity
than its close counterpart, the What/Where model. Still it
was able to surpass the What/Where model and to gain
a stable performance for lower to mid eccentricities. All
this inaugurates the POLO ATN as a viable candidate for
implementing object localization in more general visual
search setups.

Three key results finally emerge from this series of experi-
ments. The first and the main outcome is that we demonstrated
how to leverage the properties of spatial transformers to get
rid of the spatial labelling constraint that was inherent to
the original What/Where model. On contrary, our specially-
modified Spatial Transformer Networks follow the classical
Deep Learning paradigm, that is being totally differentiable,
and learning in an end-to-end fashion how to map each input to
its appropriate linear spatial transformation in an unsupervised
manner and solely based on a classification criterion during
training. This is at the condition, in our specific setup, to use
a curriculum learning scheme that progressively increases the
difficulty of the task. The tuning of this curriculum training
was done by hand and requires quite a few care and expertise
to get to the final result.

A second result is the capability of spatial transformers
to deal with non-linear spatial deformations of their visual
inputs to process attention shift over the full visual field.
This distortion invariance of STNs shown in our simulations,
makes it possible to consider a new class of visual processing
setups that can track objects in a sub-linear fashion rather than
analyzing all the pixels of the image. This comes with a strong
reduction of the number of parameters of the localization
network, that should make it possible to scale-up the method
to size-realistic input images. This is a generic property of the
log-polar encoding (with a number of coefficients scaling like



the log of the initial data), combined with attentional shift
[25]. The notion of “Foveated” Spatial Transformers finally
comes to light (see Fig. 4); wholly based on specially modified
attention-only spatial transformers [13], they integrate the
biological realism and the computational efficiency of a Log-
Polar based artificial vision system alongside the easiness of
learning of spatial transformers of different translations in
objects inside images, without any annotation added to the
training procedure.

Last, we demonstrate that convolutions matter! In the case
of a spatially structured log-polar encoding, the convolutional
layers that follow the organization of a spatially-homotopic
transformation, improve the learning of the spatial transformer.
This is connected to the conservation of the spatial topographic
organization of the retina throughout multiple layers in visual
and visuo-motor processing in the brain. This is at odds
with recent trends claiming that DCNNs are not necessarily
important for optimizing image classification tasks; examples
are the Vision Transformer architecture [15] as well as MLP-
mixer [36], that only use either a linear self-attention mecha-
nism [37] or even only fully-connected layers, respectively.

Finally, extending the visual search task to more elaborate
setups that can handle natural images is clearly required
for scaling up our “Foveated Spatial Transformers” towards
real world applications. For that, in addition to VGG-19
style convolutional backbones [5], non-convolutional Vision
Transformer/MLP-Mixer architectures should also be consid-
ered for deeper comparison. Last, our proposed architecture
is only evaluated over one translational movement toward
one target object inside an image. Extending the operational
range to multiple saccades and multiple objects is a rather
straightforward task and should provide in the future additional
insight about natural vision and the natural processing of
complex visual scenes.
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[24] E. Daucé, P. Albiges, and L. U. Perrinet, “A dual foveal-peripheral visual
processing model implements efficient saccade selection,” Journal of
Vision, vol. 20, no. 8, pp. 1–20, 2020.
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