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Abstract— This study investigates the use of Riemannian 

geometry to detect and monitor physiological states such as 

mental workload (MWL) from an EEG dataset collected in an 

aeronautical context. The analysis, based on EEG data recorded 

from 14 participants performing a Simon’s task after inducing 

MWL by the Multi Attribute Task Battery-II (MATB), aimed 

to differentiate low and high workload conditions while tracking 

MWL effect over time. Using covariance matrices and a 

Minimum Distance to Mean classifier, Temporal Generalization 

Method (TGM) was used to assess stable decoding performance, 

indicating a consistent neural signature of MWL throughout the 

trials. Results demonstrate spatial effects of mental workload 

irrespective of the investigated time domain:  spatial 

information is distributed evenly across all explored timescale.  
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I. INTRODUCTION  

“Mental State Monitoring” (MSM) refers to the in-line or 
retrospective estimation of an individual’s mental state using 
physiological and neurophysiological measurements, such as 
ocular activity or neuroimaging signals. The ability to reliably 
assess cognitive states is essential in numerous application 
domains, including driving assistance, aviation, and human–
machine interaction [1]. In this context, passive Brain–
Computer Interfaces (pBCIs) have emerged as promising 
tools: they acquire cerebral activity, process and classify it, 
and extract indicators of underlying cognitive processes [2]. 

Among the available neurophysiological recording 
modalities, electroencephalography (EEG) is particularly 
favored due to its low cost, non-invasive nature, and high 
temporal resolution, making it suitable for tracking mental 
states dynamically. EEG signals reflect the electrical activity 
generated by synchronized neuronal populations and are 
characterized by variations in amplitude, polarity, latency, and 
spatial distribution [3]. In machine learning applications, these 
signal properties are exploited to learn a function mapping 
EEG data samples to class labels within a ground-truth 
training dataset. Once this mapping is established, new 
samples can be classified, and model performance can be 
evaluated. 

State-of-the-art machine learning approaches for EEG 
classification rely on the analysis of Spatial Covariance 
Matrices (SCMs), which condense multichannel time series 

by quantifying the correlations between signals collected by 
electrode pairs [4]. By construction, these matrices are 
Symmetric Positive-Definite (SPD+) and therefore lie on the 
𝑆𝑦𝑚+(𝓃, ℝ) manifold. This geometric structure has 
motivated the introduction of Riemannian geometry as a 
theoretically grounded framework for their processing [5]. 
Within this framework, two fundamental concepts emerge: 
distance (Affine-Invariant Riemannian distance) and mean 
(geometric mean) are redefined to fully exploit the structure 
of any SPD+ matrix [6, 7].  

Leveraging this intrinsic geometry enables a more faithful 
representation of manifold curvature and inter-matrix 
distance, ultimately leading to improved classification 
performance [6, 8]. Riemannian-based models have been 
successfully applied to various neurocognitive decoding tasks, 
including the characterization of motor imagery [5, 8] and the 
monitoring of mental states [9]. 

Mental workload (MWL) refers to the cognitive demand 
imposed by a task and the mental effort required to perform it. 
However, these resources are inherently limited: when task 
demands exceed the available capacity, cognitive overload 
occurs, often leading to performance degradation [10]. An 
increase of cognitive load can result in a modulation of brain 
activity measurable using EEG [11]. 

This work aims to investigate time-resolved decoding of a 
physiological state, here MWL, and the model ability to 
generalize over time using Riemannian classification and 
Temporal Generalization methodology [12]. Segmenting 
signals into sub-windows were used to provide a framework 
for investigating the variability and temporal dynamics of the 
spatial signature of MWL in EEG signal, enabling a precise 
assessment of the behavior of the model and performances 
with the distribution of data evolving over time. The model 
functions as a proxy measure aiming to enable the monitoring 
of physiological state in real-world applications.     

II. MATERIAL 

The present study relies on a previously acquired dataset 
investigating MWL within an aeronautical context, collected 
by ONERA (the French Aerospace Lab) [11]. EEG activity 
was recorded from 21 participants exposed to different 
experimentally manipulated workload conditions, using 64-
channel active-electrodes positioned according to the 
international 10|20 system and sampled at 500 Hz. 
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Mental workload was measured using the Multi-Attribute 
Task Battery II (MATB-II) [13], configured with two 
difficulty levels—low and high—completed in two separate 
sessions. Workload levels were assessed by adjusting both the 
number of sub-task and their execution speed. Following each 
MATB-II session, participants completed three evaluation 
tasks. Those tasks were selected to be representative of the 
three main executive functions, involved in piloting activities: 
inhibitory control (Simon task [14]), cognitive flexibility 
(Switching task [15]), and working memory (N-back [16]). 
This design enabled the assessment of cognitive function 
influenced by the prior workload manipulation. This paper is 
focusing only on the results of the Simon task.  

III. METHOD 

A. Analysis 

EEG recordings from 14 participants were retained for the 
subsequent analyses: 7 of the original 21 subjects were 
excluded due to artifacts rejection during preprocessing stage. 
For each remaining participant, EEG data were preprocessed 
by interpolating bad channels, applying a 50 Hz notch filter, a 
0.1 Hz high-pass filter, and re-referencing signals to the 
common average. Artifact removal was performed using 
Signal-Space Projection (SSP) [17]. Ocular artifacts were 
identified through dedicated EOG channels for blink detection 
and AF7|AF8 electrodes for saccade detection.  

Stimulus-locked epochs were extracted for all the EEG 
data, with a baseline correction applied over the interval           
[-0.1s, 0s], relative to stimulus onset at 0s and a total epoch 
interval of [-0.3s, +1.0s]. For each participant and workload 
condition, around 273 (± 20) stimulus-locked epochs were 
created for each recorded signal depending on the previous 
artifact rejection phase. Based on previous findings [11] 
evidencing a strong workload-related effect over central 
electrodes (Pz, CPz, Cz, FCz, Fz), the analysis focused on these 
sites, supplemented by five additional electrodes on each 
lateral scalp region (right: P2, CP2, C2, FC2, F2; left: P1, CP1, 
C1, FC1, F1). According to the results reported in [18], using a 
smaller set of electrodes to compute Spatial Covariance 
Matrices (SCMs) reduces computational cost, while 
preserving good classification performance. 

The study aim was to classify mental states associated with 
low versus high workload across EEG time course, thereby 
enabling a continuous monitoring of workload dynamics. The 
following section will describe the proposed methodology. 
The algorithm was implemented using Python and libraries 
such as MNE (v.1.11.1) for EEG data processing, pyRiemann 
(v.0.9) for Riemannian geometry computations, and scikit-
learn (v.1.7.2) for machine learning procedure.  

B. Methodology 

Previous work [19] has demonstrated a high level of 
classification performance on the ERP epochs of this dataset 
using Riemannian manifold–based methods.  Building on this, 
the present study aims to determine whether specific segments 
of the signal contain discriminative information, and to 
identify those intervals that most strongly contribute to 
classification performance.  

Each stimulus-locked epoch ([-0.3s, +1.0s]) was first 
segmented into 0.1s sub-windows with 50% temporal overlap 
between consecutive windows, resulting in a total set of 25 
sub-windows per epoch. As SCMs do not account for 
temporal structure, segmenting the data into shorter epochs 

enables the extraction of temporal dynamics within the EEG 
signals. For every of these sub-windows, SCMs were 
estimated using the Oracle Approximated Shrinkage (OAS) 
method [20], yielding in a set of 25 SCMs per epoch. These 
matrices constituted the input features for classification with 
the following Riemannian classification method.  

Within-subject classification was performed using the 
Minimum Distance to Mean (MDM) classifier [7] based on 
Riemannian’s metrics. The Affine-Invariant Riemannian 
distance (AIR) (1) quantifies the shorter length (e.g., the 
geodesic) between two SPD+ matrices, Σ1  and Σ2,  on the 
manifold. With ‖. ‖𝐹 the Frobenius norm of a matrix. 

 𝛿𝑅(Σ1, Σ2) = ||𝑙𝑜𝑔(Σ1
−1 Σ2)||𝐹 = ∑ 𝑙𝑜𝑔2𝜆𝑛 ,𝐶

𝑐=1          () 

The geometric mean (2) corresponds to the barycenter of 
a set of matrice on the manifold, i.e., the matrix minimizing 
the sum of squared Riemannian distances to all matrices of the 
dataset:  

 𝐶̅(Σ1, … , Σ𝐼)  = 𝑎𝑟𝑔𝑚𝑖𝑛Σ∈𝒫(𝑛) ∑ 𝛿𝑅
2(Σ, Σ𝑖)𝐼

𝑖=1          () 

The MDM classifier operates on two steps; First, during 
the learning phase the model estimates barycenter of each 
class, i.e., the mean covariance matrix of the associated trials 
for both low- and high-workload conditions. Then during the 
testing phase, for each new trial, the distance to each class 
barycenter is computed, the trial is assigned to the class whose 
Riemannian distance from the barycenter is the smallest.  

 Model performance was assessed through a shuffle-split 
cross-validation scheme consisting of 20 iterations, each 
employing 80% of the data for training. For each split, the 
model was trained on all the epochs of the training set for a 
given time window and tested on all epochs of the test set 
across all time windows, thereby generating a Temporal 
Generalization Matrix (TGM) [12]. We use the classification 
accuracy as a proxy to determine whether the information 
learned at a given time point t allows for decoding at another 
time t’.  

IV. RESULTS 

A. Classification scores results 

The classification of mental workload performed with the 
MDM classifier and a cross-validation scheme (20 splits with 
80% used for training), based on the full stimulus-locked 
epoch, achieved a mean accuracy level on subjects (N=14) of 
0.95 with a standard deviation of 0.03. 

Additionally, classification performance was assessed 
across time sub-windows (0.1s sub-windows with 50% 
temporal overlap) and cross-validation folds (20 splits with 
80% used for training). We obtain a mean inter-subject 
(N=14) accuracy over the sub-windows of 0.83 with a 
standard deviation of 0.01.  

B. Temporal decoding results  

For the temporal decoding results, we first analysed the 
classification scores obtained using the same temporal sub-
window across all epochs for training and testing (Fig. 1).  The 
mean accuracy on participants (N=14) and cross-validation 
splits (20 folds, 80% for training) over time reach a 
classification score of 0.83 (± 0.01). In addition to the average 
value, we also plot the standard deviation (SD) of the 
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classification scores obtained through the folds. The temporal 
analysis reveals a significant decoding regardless the selected 
time interval and in particular for pre-stimulus periods. We 
also notice a small increase of accuracy around +0.20s post-
stimulus (maximal accuracy= 0.85). 

C. Temporal Generalization results  

The Fig. 2 (A) gives the mean temporal generalization 
matrix on all the participants (N=14) and folds (20 splits with 
80% used for training), obtained when mixing the selected 
sub-intervals for training and testing. This matrix is a sub-
window by sub-window matrix (25 x 25), the x-axis are the 
tested windows and the y-axis is representing the time of 
trained windows. The vertical and horizontal black lines 
represent the stimulus onset (0s).  

 The results of the main diagonal are reported in the 
previous sub-section (Fig. 1).  The off-diagonal results 
indicate a sustained and generalized effect on all sub-windows 
times, with high accuracy scores (maximal accuracy= 0.85; 
minimal accuracy= 0.80).  

D. Statistics on Temporal Generalization results 

This analysis aim is to determine whether the differences 
observed between the pixels of the generalization matrix are 
statistically significant, in order to assess whether specific 
train–test intervals yield optimal performance or whether 
classification accuracy remains relatively uniform across the 
matrix. We extracted the maximum and minimum value (min 
mean matrix = 0.80 and argmin= [+0.80, +0.35]s, max mean 
matrix = 0.85 and argmax= [+0.20, +0.20]s) of the mean 
matrix across-subjects.  

The differences distribution was tested for normality 
(Shapiro–Wilk: W = 0.834, p = 0.0138). In the absence of 
normality, we applied a Wilcoxon signed-rank test: V = 
[11.0], p = 0.015, r = [0.64] (Fig. 3). The 95% confidence 
intervals for the mean difference were [0.017; 0.110]. 

 

Fig. 1. Temporal decoding curve. Mean curve of accuracy classification on 

all the participants (N=14) and folds (20 split and 80% for train) over time, 

blue line (mean) and band ± SD.  

V. DISCUSSION 

Application of Riemannian geometry framework to EEG 
covariance matrices yielded high classification performance 
(0.95 ± 0.03) on our dataset. Previous work [21] reported an 
accuracy of 0.64 for binary mental workload classification 
using a Support Vector Machine (SVM) classifier trained on 
a single feature.  This result is consistent with accumulating 
reference demonstrating the superiority of Riemannian 
method for the classification of physiological and cognitive 
states [6, 8]. 

Temporal decoding analyses (Fig. 1) revealed 
unexpectedly strong classification performance during the 
baseline interval, reaching levels comparable to those 
observed after stimulus presentation. Moreover, decoding 
accuracy remained relatively stable across different time 
windows, with a maximum score located around +0.20s. In 
light with previous ERPs analyses on this dataset [11], this 
peak could be plausibly attributed to a transient increase in of 
Signal-to-Noise Ratio (SNR) at that latency. Those findings 

 

Fig. 2.  Temporal generalization matrice of MWL decoding. (A)  Mean inter-subject and folds TGM ; (B) Standard Deviation inter-subject and folds TGM. 

Each cell (i,j) represent the accuracy when the model is trained on the window i (y axis) and tested on the j window (x axis). Black lines = stimulus onset 

at 0s. The diagonal pixels of the matrix are the specific “temporal decoding”. The Off-diagonal pixels of the matrix are the temporal generalisation. 
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demonstrate that the spatial signature of the workload effect 
in the brain manifests itself over the epoch domain. 

The temporal generalization matrix (Fig. 2A) further 
supports this interpretation. A coherent region of high 
temporal generalization emerged between roughly                           
[0s, +0.25s], for both training and testing time points. The 
diagonal—together with sustained off-diagonal 
performance—suggests the presence of temporally stable 
neural representations that support generalization across 
distinct timescales. 

Inter-participant variability analyses (Fig.  2B) further 
demonstrate that this temporal interval (around 0s, +0.25s) is 
associated with the smaller across-subject variability. 
Standard deviation values were minimal within the [0s, 
+0.25s] range, indicating that the neural dynamics 
underpinning the decodable information are robust but also 
reliably conserved across individuals. 

Statistical comparison analysis between the highest and 
lowest values of the TGM has shown significant differences 
(p < 0.0159) with a high effect size (r = 0.64) (Fig. 3). These 
results suggest a significant difference, indicating that certain 
train–test combinations (maximum value = 0.85) achieve 
substantially higher performance than others (minimum value 
= 0.80), rather than reflecting a uniformly distributed 
classifier’s accuracy across the entire matrix. Further statistics 
analysis such as permutation-cluster-based test [22] could be 
applied to the mean of TGM to ensure this statistical 
significance. 

The methodological framework introduced here is not 
restricted to MWL estimation. It generalizes naturally to 
transient cognitive or affective states such as acute stress or 
surprise, and can accommodate diverse physiological 
modalities (e.g., electro-ocular, or electro-cardiac activity). It 
also lends itself to multimodal integration within hybrid 
passive BCIs, for which the combination of complementary 
metrics has been shown to enhance classification performance 
[23].   

 Finally, we followed analysis by applying this 
approach in a multitasking context— by training the model on 
two tasks data (e.g., Simon, N‑Back) and evaluating it on a 
third task (e.g., MTAS) —yielded strong cross-task 
generalization, with a mean accuracy of 0.78 ± 0.1. 

 This study demonstrates that, even within ERP data, 
cognitive states can be assessed without confining the analysis 
to specific components such as the P300. Instead, the relevant 
information appears to be distributed across the entire epoch 
domain. Within this framework, such approach offers 
promising perspective for detection and tracking of cognitive 
states (e.g., stress, overload, surprise), that may be 
implemented in real-time devices to provide early alerts and 
decision‑support clues to enhance safety and performance in 
operational settings such as aviation. 
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Fig. 3.  Distribution of minimum and maximum accuracy scores among 

participants. The inner box indicates the median and quartiles. The Wilcoxon 
test shows that maximum accuracy is significantly higher than minimum 

accuracy (W = 11, p = 0.016, r = 0.64).  
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