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Abstract— This study investigates the use of Riemannian
geometry to detect and monitor physiological states such as
mental workload (MWL) from an EEG dataset collected in an
aeronautical context. The analysis, based on EEG data recorded
from 14 participants performing a Simon’s task after inducing
MWL by the Multi Attribute Task Battery-11 (MATB), aimed
to differentiate low and high workload conditions while tracking
MWL effect over time. Using covariance matrices and a
Minimum Distance to Mean classifier, Temporal Generalization
Method (TGM) was used to assess stable decoding performance,
indicating a consistent neural signature of MWL throughout the
trials. Results demonstrate spatial effects of mental workload
irrespective of the investigated time domain: spatial
information is distributed evenly across all explored timescale.
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. INTRODUCTION

“Mental State Monitoring” (MSM) refers to the in-line or
retrospective estimation of an individual’s mental state using
physiological and neurophysiological measurements, such as
ocular activity or neuroimaging signals. The ability to reliably
assess cognitive states is essential in numerous application
domains, including driving assistance, aviation, and human-
machine interaction [1]. In this context, passive Brain—
Computer Interfaces (pBCls) have emerged as promising
tools: they acquire cerebral activity, process and classify it,
and extract indicators of underlying cognitive processes [2].

Among the available neurophysiological recording
modalities, electroencephalography (EEG) is particularly
favored due to its low cost, non-invasive nature, and high
temporal resolution, making it suitable for tracking mental
states dynamically. EEG signals reflect the electrical activity
generated by synchronized neuronal populations and are
characterized by variations in amplitude, polarity, latency, and
spatial distribution [3]. In machine learning applications, these
signal properties are exploited to learn a function mapping
EEG data samples to class labels within a ground-truth
training dataset. Once this mapping is established, new
samples can be classified, and model performance can be
evaluated.

State-of-the-art machine learning approaches for EEG
classification rely on the analysis of Spatial Covariance
Matrices (SCMs), which condense multichannel time series
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by quantifying the correlations between signals collected by
electrode pairs [4]. By construction, these matrices are
Symmetric Positive-Definite (SPD*) and therefore lie on the
Sym*(n,R) manifold. This geometric structure has
motivated the introduction of Riemannian geometry as a
theoretically grounded framework for their processing [5].
Within this framework, two fundamental concepts emerge:
distance (Affine-Invariant Riemannian distance) and mean
(geometric mean) are redefined to fully exploit the structure
of any SPD* matrix [6, 7].

Leveraging this intrinsic geometry enables a more faithful
representation of manifold curvature and inter-matrix
distance, ultimately leading to improved classification
performance [6, 8]. Riemannian-based models have been
successfully applied to various neurocognitive decoding tasks,
including the characterization of motor imagery [5, 8] and the
monitoring of mental states [9].

Mental workload (MWL) refers to the cognitive demand
imposed by a task and the mental effort required to perform it.
However, these resources are inherently limited: when task
demands exceed the available capacity, cognitive overload
occurs, often leading to performance degradation [10]. An
increase of cognitive load can result in a modulation of brain
activity measurable using EEG [11].

This work aims to investigate time-resolved decoding of a
physiological state, here MWL, and the model ability to
generalize over time using Riemannian classification and
Temporal Generalization methodology [12]. Segmenting
signals into sub-windows were used to provide a framework
for investigating the variability and temporal dynamics of the
spatial signature of MWL in EEG signal, enabling a precise
assessment of the behavior of the model and performances
with the distribution of data evolving over time. The model
functions as a proxy measure aiming to enable the monitoring
of physiological state in real-world applications.

II.  MATERIAL

The present study relies on a previously acquired dataset
investigating MWL within an aeronautical context, collected
by ONERA (the French Aerospace Lab) [11]. EEG activity
was recorded from 21 participants exposed to different
experimentally manipulated workload conditions, using 64-
channel active-electrodes positioned according to the
international 10|20 system and sampled at 500 Hz.
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Mental workload was measured using the Multi-Attribute
Task Battery 1l (MATB-II) [13], configured with two
difficulty levels—Ilow and high—completed in two separate
sessions. Workload levels were assessed by adjusting both the
number of sub-task and their execution speed. Following each
MATB-II session, participants completed three evaluation
tasks. Those tasks were selected to be representative of the
three main executive functions, involved in piloting activities:
inhibitory control (Simon task [14]), cognitive flexibility
(Switching task [15]), and working memory (N-back [16]).
This design enabled the assessment of cognitive function
influenced by the prior workload manipulation. This paper is
focusing only on the results of the Simon task.

I1l. METHOD

A. Analysis

EEG recordings from 14 participants were retained for the
subsequent analyses: 7 of the original 21 subjects were
excluded due to artifacts rejection during preprocessing stage.
For each remaining participant, EEG data were preprocessed
by interpolating bad channels, applying a 50 Hz notch filter, a
0.1 Hz high-pass filter, and re-referencing signals to the
common average. Artifact removal was performed using
Signal-Space Projection (SSP) [17]. Ocular artifacts were
identified through dedicated EOG channels for blink detection
and AF7|AF8 electrodes for saccade detection.

Stimulus-locked epochs were extracted for all the EEG
data, with a baseline correction applied over the interval
[-0.1s, 0s], relative to stimulus onset at Os and a total epoch
interval of [-0.3s, +1.0s]. For each participant and workload
condition, around 273 (x 20) stimulus-locked epochs were
created for each recorded signal depending on the previous
artifact rejection phase. Based on previous findings [11]
evidencing a strong workload-related effect over central
electrodes (P, CP,, C;, FC,, F,), the analysis focused on these
sites, supplemented by five additional electrodes on each
lateral scalp region (right: P2, CP2, Cy, FCy, F2; left: Py, CPy,
C1, FCy, F1). According to the results reported in [18], using a
smaller set of electrodes to compute Spatial Covariance
Matrices (SCMs) reduces computational cost, while
preserving good classification performance.

The study aim was to classify mental states associated with
low versus high workload across EEG time course, thereby
enabling a continuous monitoring of workload dynamics. The
following section will describe the proposed methodology.
The algorithm was implemented using Python and libraries
such as MNE (v.1.11.1) for EEG data processing, pyRiemann
(v.0.9) for Riemannian geometry computations, and scikit-
learn (v.1.7.2) for machine learning procedure.

B. Methodology

Previous work [19] has demonstrated a high level of
classification performance on the ERP epochs of this dataset
using Riemannian manifold—based methods. Building on this,
the present study aims to determine whether specific segments
of the signal contain discriminative information, and to
identify those intervals that most strongly contribute to
classification performance.

Each stimulus-locked epoch ([-0.3s, +1.0s]) was first
segmented into 0.1s sub-windows with 50% temporal overlap
between consecutive windows, resulting in a total set of 25
sub-windows per epoch. As SCMs do not account for
temporal structure, segmenting the data into shorter epochs
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enables the extraction of temporal dynamics within the EEG
signals. For every of these sub-windows, SCMs were
estimated using the Oracle Approximated Shrinkage (OAS)
method [20], yielding in a set of 25 SCMs per epoch. These
matrices constituted the input features for classification with
the following Riemannian classification method.

Within-subject classification was performed using the
Minimum Distance to Mean (MDM) classifier [7] based on
Riemannian’s metrics. The Affine-Invariant Riemannian
distance (AIR) (1) quantifies the shorter length (e.g., the
geodesic) between two SPD+ matrices, X, and X,, on the
manifold. With ||. ||F the Frobenius norm of a matrix.

8r(21,Z2) = [[log Er ' Z)||r = X1 logP Ay, ()

The geometric mean (2) corresponds to the barycenter of
a set of matrice on the manifold, i.e., the matrix minimizing

the sum of squared Riemannian distances to all matrices of the
dataset:

C(Zy, ., Bp) = argmingepm) Li=q 64, %) @)

The MDM classifier operates on two steps; First, during
the learning phase the model estimates barycenter of each
class, i.e., the mean covariance matrix of the associated trials
for both low- and high-workload conditions. Then during the
testing phase, for each new trial, the distance to each class
barycenter is computed, the trial is assigned to the class whose
Riemannian distance from the barycenter is the smallest.

Model performance was assessed through a shuffle-split
cross-validation scheme consisting of 20 iterations, each
employing 80% of the data for training. For each split, the
model was trained on all the epochs of the training set for a
given time window and tested on all epochs of the test set
across all time windows, thereby generating a Temporal
Generalization Matrix (TGM) [12]. We use the classification
accuracy as a proxy to determine whether the information
learned at a given time point t allows for decoding at another
time ¢".

IV. RESULTS

A. Classification scores results

The classification of mental workload performed with the
MDM classifier and a cross-validation scheme (20 splits with
80% used for training), based on the full stimulus-locked
epoch, achieved a mean accuracy level on subjects (N=14) of
0.95 with a standard deviation of 0.03.

Additionally, classification performance was assessed
across time sub-windows (0.1s sub-windows with 50%
temporal overlap) and cross-validation folds (20 splits with
80% used for training). We obtain a mean inter-subject
(N=14) accuracy over the sub-windows of 0.83 with a
standard deviation of 0.01.

B. Temporal decoding results

For the temporal decoding results, we first analysed the
classification scores obtained using the same temporal sub-
window across all epochs for training and testing (Fig. 1). The
mean accuracy on participants (N=14) and cross-validation
splits (20 folds, 80% for training) over time reach a
classification score of 0.83 (£ 0.01). In addition to the average
value, we also plot the standard deviation (SD) of the



classification scores obtained through the folds. The temporal
analysis reveals a significant decoding regardless the selected
time interval and in particular for pre-stimulus periods. We
also notice a small increase of accuracy around +0.20s post-
stimulus (maximal accuracy= 0.85).

C. Temporal Generalization results

The Fig. 2 (A) gives the mean temporal generalization
matrix on all the participants (N=14) and folds (20 splits with
80% used for training), obtained when mixing the selected
sub-intervals for training and testing. This matrix is a sub-
window by sub-window matrix (25 x 25), the x-axis are the
tested windows and the y-axis is representing the time of
trained windows. The vertical and horizontal black lines
represent the stimulus onset (0s).

The results of the main diagonal are reported in the
previous sub-section (Fig. 1). The off-diagonal results
indicate a sustained and generalized effect on all sub-windows
times, with high accuracy scores (maximal accuracy= 0.85;
minimal accuracy= 0.80).

D. Statistics on Temporal Generalization results

This analysis aim is to determine whether the differences
observed between the pixels of the generalization matrix are
statistically significant, in order to assess whether specific
train—test intervals yield optimal performance or whether
classification accuracy remains relatively uniform across the
matrix. We extracted the maximum and minimum value (min
mean matrix = 0.80 and argmin= [+0.80, +0.35]s, max mean
matrix = 0.85 and argmax= [+0.20, +0.20]s) of the mean
matrix across-subjects.

The differences distribution was tested for normality
(Shapiro-Wilk: W = 0.834, p = 0.0138). In the absence of
normality, we applied a Wilcoxon signed-rank test: V =
[11.0], p = 0.015, r = [0.64] (Fig. 3). The 95% confidence
intervals for the mean difference were [0.017; 0.110].
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Fig. 1. Temporal decoding curve. Mean curve of accuracy classification on
all the participants (N=14) and folds (20 split and 80% for train) over time,
blue line (mean) and band + SD.

V. DISCUSSION

Application of Riemannian geometry framework to EEG
covariance matrices yielded high classification performance
(0.95 £ 0.03) on our dataset. Previous work [21] reported an
accuracy of 0.64 for binary mental workload classification
using a Support Vector Machine (SVM) classifier trained on
a single feature. This result is consistent with accumulating
reference demonstrating the superiority of Riemannian
method for the classification of physiological and cognitive
states [6, 8].

Temporal decoding analyses (Fig. 1) revealed
unexpectedly strong classification performance during the
baseline interval, reaching levels comparable to those
observed after stimulus presentation. Moreover, decoding
accuracy remained relatively stable across different time
windows, with a maximum score located around +0.20s. In
light with previous ERPs analyses on this dataset [11], this
peak could be plausibly attributed to a transient increase in of
Signal-to-Noise Ratio (SNR) at that latency. Those findings
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Fig. 2. Temporal generalization matrice of MWL decoding. (A) Mean inter-subject and folds TGM ; (B) Standard Deviation inter-subject and folds TGM.
Each cell (i,j) represent the accuracy when the model is trained on the window i (y axis) and tested on the j window (x axis). Black lines = stimulus onset
at 0s. The diagonal pixels of the matrix are the specific “temporal decoding”. The Off-diagonal pixels of the matrix are the temporal generalisation.
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demonstrate that the spatial signature of the workload effect
in the brain manifests itself over the epoch domain.

The temporal generalization matrix (Fig. 2A) further
supports this interpretation. A coherent region of high
temporal  generalization emerged between  roughly
[0s, +0.25s], for both training and testing time points. The
diagonal—together with sustained off-diagonal
performance—suggests the presence of temporally stable
neural representations that support generalization across
distinct timescales.

Inter-participant variability analyses (Fig. 2B) further
demonstrate that this temporal interval (around 0s, +0.25s) is
associated with the smaller across-subject variability.
Standard deviation values were minimal within the [Os,
+0.25s] range, indicating that the neural dynamics
underpinning the decodable information are robust but also
reliably conserved across individuals.

Statistical comparison analysis between the highest and
lowest values of the TGM has shown significant differences
(p < 0.0159) with a high effect size (r = 0.64) (Fig. 3). These
results suggest a significant difference, indicating that certain
train—test combinations (maximum value = 0.85) achieve
substantially higher performance than others (minimum value
= 0.80), rather than reflecting a uniformly distributed
classifier’s accuracy across the entire matrix. Further statistics
analysis such as permutation-cluster-based test [22] could be
applied to the mean of TGM to ensure this statistical
significance.

The methodological framework introduced here is not
restricted to MWL estimation. It generalizes naturally to
transient cognitive or affective states such as acute stress or
surprise, and can accommodate diverse physiological
modalities (e.g., electro-ocular, or electro-cardiac activity). It
also lends itself to multimodal integration within hybrid
passive BCls, for which the combination of complementary
metrics has been shown to enhance classification performance
[23].

Finally, we followed analysis by applying this
approach in a multitasking context— by training the model on
two tasks data (e.g., Simon, N-Back) and evaluating it on a
third task (e.g., MTAS) —yielded strong cross-task
generalization, with a mean accuracy of 0.78 +0.1.

This study demonstrates that, even within ERP data,
cognitive states can be assessed without confining the analysis
to specific components such as the P300. Instead, the relevant
information appears to be distributed across the entire epoch
domain. Within this framework, such approach offers
promising perspective for detection and tracking of cognitive
states (e.g., stress, overload, surprise), that may be
implemented in real-time devices to provide early alerts and
decision-support clues to enhance safety and performance in
operational settings such as aviation.
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Fig. 3. Distribution of minimum and maximum accuracy scores among
participants. The inner box indicates the median and quartiles. The Wilcoxon
test shows that maximum accuracy is significantly higher than minimum
accuracy (W =11, p = 0.016, r = 0.64).
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