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The growing complexity of systems 

in fields like aeronautics demands 
understanding operators’ cognitive 

states.  
 

Computing covariance matrices 
from EEG signals and analyzing 
them using Riemannian geometry 
provides a robust and state-of-the-
art method for their classification. 

 
 

Goal: Investigate frequential effect 

using Riemannian geometry on EEG 

covariance matrices to classify mental 

workload levels (low vs. high) in an 

aeronautical context. 

 

 

 

 
 
 
 

 
 
 
 
 

 
Power Spectral Density (PSD) 
•   Pα (8–12 Hz) &    Pβ (12-35 Hz) under high workload 

 

Classification Performance (RMDM) 
• Full spectral domain – mean accuracy: 76% ± 3 % 

• Spectral windows – mean accuracy :  79% ± 12% 

 

 

 

 

 
 
Within-subject EEG-based classification of mental workload using 

Riemannian geometry yields robust results. 
• Mean accuracy: 76%. 

 
Spatial covariance-based classification with sub-band 

decomposition suggest a workload-related effect across the 
whole frequency spectrum, especially in high-frequency range. 
 
Classification scores over sub-bands 

• Mean accuracy: 79% ± 12%  

• Higher mean classification on the high frequency bands, 
mainly ‘Medium Gamma’ (86% accuracy). 
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EEG (64 sensors) 
N = 16 subjects 

 
Workload Induction 
MATB-II task (NASA) 

• Low & High workload 
conditions  

 
Evaluation 
Simon task  

• Motor inhibition 

             

Power Spectral Density (PSD)  
• Notch filter (50 Hz, 60Hz) 

• Welch’s method (4-second time 
windows with 25% overlap)     

• [0.1–100 Hz] range 
 

Windowing  
• Usual bands without overlap  

(θ, α, β, γ)  

 
Model  
• pyRiemann & scikit-learn toolbox 
• Riemannian Minimum Distance to 

Mean (RMDM) classification of 
Spatial Covariance Matrices 

• 15 sensors  
• F1, Fz, F2, FC1, FCz, FC2, C1, Cz, 

C2, CP1, CPz, CP2, P1, Pz, P2 
• Shuffle-split cross-validation 

• 20 folds (80% train) 
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