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Abstract
Horizontal connections in the primary visual cortex of carnivores, ungulates and primates organize on a near-regular lat-
tice. Given the similar length scale for the regularity found in cortical orientation maps, the currently accepted theoretical 
standpoint is that these maps are underpinned by a like-to-like connectivity rule: horizontal axons connect preferentially to 
neurons with similar preferred orientation. However, there is reason to doubt the rule’s explanatory power, since a growing 
number of quantitative studies show that the like-to-like connectivity preference and bias mostly observed at short-range 
scale, are highly variable on a neuron-to-neuron level and depend on the origin of the presynaptic neuron. Despite the wide 
availability of published data, the accepted model of visual processing has never been revised. Here, we review three lines 
of independent evidence supporting a much-needed revision of the like-to-like connectivity rule, ranging from anatomy to 
population functional measures, computational models and to theoretical approaches. We advocate an alternative, distance-
dependent connectivity rule that is consistent with new structural and functional evidence: from like-to-like bias at short 
horizontal distance to like-to-all at long horizontal distance. This generic rule accounts for the observed high heterogeneity 
in interactions between the orientation and retinotopic domains, that we argue is necessary to process non-trivial stimuli in 
a task-dependent manner.

Keywords Primary visual cortex · Horizontal intra-cortical axons · Orientation and retinotopic maps · Structural 
advanced anatomy · Functional optical imaging · Computational and theoretical neuroscience · Connectivity rules

Introduction

Retinotopy and orientation are two of the main features pro-
cessed and topographically organized into maps in primary 
visual cortex (V1) of carnivores, ungulates and primates. 
Anatomical connections between neurons separated on the 
cortical sheet, through the so-called intrinsic, intra-cortical 
or horizontal axons, have a crucial theoretical importance for 
understanding the computational operations that V1 can per-
form. Indeed, these axons connect different points in the reti-
notopic and orientation maps and thereby generate a set of 

possible topological interactions within a multidimensional 
representation of space, orientation and time. It is therefore 
critical to characterize structural horizontal interactions in 
order to understand their functional relevance. A vast major-
ity of presynaptic contacts in cortex originate from neurons 
located in the same area as the postsynaptic target (> 80% in 
macaque V1, Markov et al. 2011), thus forming an impor-
tant intra-cortical network. In the primary visual cortex, the 
feedforward thalamocortical inputs drive the cortical net-
work, which in turn strongly shapes the evoked response 
through excitatory and inhibitory recurrent circuits within 
the column (Douglas et al. 1991), a canonical circuit that 
constitutes nearly 2/3 of intra-cortical connectivity (Markov 
et al. 2011). The rest of the intra-cortical network connects 
neurons in adjacent columns separated laterally over dis-
tances up to several millimeters, the horizontal network. 
Early anatomical observations reported that the horizontal 
connectivity of carnivores, ungulates and primates is spa-
tially distributed into regular clusters (Fig. 1A; Braitenberg 
1962; Fisken et al. 1975; Creutzfeldt et al. 1977; Gilbert and 
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Wiesel 1979; Rockland et al. 1982) forming a radially pro-
jecting pattern that resembles a daisy’s petals (Douglas and 
Martin 2004). Since orientation maps are also regular with 

comparable spatial frequency, the currently accepted theoret-
ical standpoint is that these maps are underpinned by a like-
to-like connectivity rule: cortical columns are connected by 

Fig. 1  Illustration of different connectivity rules from literature and 
possible outcomes for functional activation. In A–E the local neu-
ron (large on left) connects to neighbours in a radially approximated 
schema spanning outwards over three hypercolumns (where the same 
preference is encountered, as indicated by the vertical red  arrows). 
Colours indicate the orientation preference of neurons. A Strict like-
to-like connectivity (extends to long distances). B Modulated like-to-
like bias (extends to long distances). C Like-to-unlike bias as exhib-
ited by inhibitory interneuron. D Like-to-all as exhibited by neurons 
in layers 4 and 6. E Like-to-like bias that reduces with distance 

resulting in like-to-all at distances beyond adjacent hypercolumns. F, 
G Two extreme hypotheses for the net outcome of functionally driven 
connectivity rule at long-range distance. In response to a local ori-
ented stimulus, all neurons that have a receptive field in overlap with 
the stimulus will be activated, for excitatory and inhibitory neurons, 
different lamina and positions in the orientation map. Such func-
tional activation can lead either to a strict iso-orientation activation 
of neighbouring neurons through the horizontal network (like-to-like 
rule, F) or omni-orientation activation (like-to-all rule, G)
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horizontal connections only if they share similar orientation 
preference (Fig. 1A), a hypothesis originally put forward by 
Mitchison and Crick (1982). Correlative studies, comparing 
bouton labelling with autoradiography, or with optical imag-
ing maps, qualitatively supported the like-to-like rule (Gil-
bert and Wiesel 1989). Later combined quantitative anatomy 
with optical imaging studies confirmed the existence of an 
orientation preference bias (Fig. 1B, in the range of 1.5–2 
times greater than chance, Bosking et al. 1997, Kisvarday 
1997; Schmidt et al. 1997; Malach et al. 1993; Rochefort 
et al. 2009), with high cell-to-cell variability. Probably due 
to its simplicity and its elegant topological implications, 
the highlighted iso-orientation biases have led to a general 
acceptation of the hypothesis of a simplified and unique like-
to-like connectivity. One consequence is that theoretical and 
computational models have implemented it as a strict rule, 
not as a bias (e.g. Bressloff et al. 2001; Raizada and Gross-
berg 2003; Rangan et al. 2005; Sarti et al. 2008; Baker and 
Cowan 2009; Kaschube et al. 2010; Rubin et al. 2015; Car-
roll and Bressloff 2016). However, we believe such an over-
simplified schema may impair the development of our theo-
retical understanding of the primary visual cortex function.

Actually, there are reasons to doubt the explanatory 
power of a global and strict like-to-like connectivity rule. 
First, a growing number of quantitative studies show that 
there is a wide variety of connectivity biases (like-to-like 
bias, no bias, like-to-unlike bias) depending on cell type 
(Fig. 1C, excitatory vs inhibitory neurons, see Kisvárday 
et al. 1994; Buzás et al. 2001), layer origin (Fig. 1D, no 
bias in layer 4 or layer 6, see Yousef et al. 1999; Karube 
and Kisvarday 2010; Karube et al. 2017) and position in the 
orientation map (Yousef et al. 2001, iso-orientation domain 
vs pinwheels). Second, the effect is mostly observed at short 
range where most of the connectivity arises (< 1–1.5 mm), 
but connections can connect neurons over distances of a 
few millimeters. The rare analyses over larger cortical dis-
tances (more difficult because far fewer boutons are pre-
sent) showed a global tendency for the iso-orientation bias 
to reduce with distance (Fig. 1E) due to wider selectivity or 
deviation from the iso-orientation bias, as observed in Buzás 
et al. (2006, Fig. 8C), Kisvárday et al. (1997, Fig. 9—area 
17) and Bosking et al. (1997, Fig. 5); however, see a counter 
example for area 18 in Kisvárday et al. (1997, Fig. 10—area 
18). As a consequence, the effective functional selectivity of 
horizontal axons beyond the short-range distance is not very 
clear. Lastly, the functional impact of the structural organiza-
tion, as described by anatomy, is far from trivial to predict. 
Indeed, any visual stimulation will activate a neuronal mass 
encompassing all layers, both excitatory and inhibitory neu-
rons and at least a full hypercolumn composed of pinwheels 
and iso-orientation domains (see Fig. 1D in Chavane et al. 
2011). Furthermore, not only neurons with preferred ori-
entation matching the orientation of the stimulus will be 

significantly activated, but also a distribution of neurons 
with say, ± 15° around the stimulus orientation. The intra-
cortical horizontal network triggered by this functionally 
activated neuronal mass will forcibly contact a diversity of 
orientation tuned neurons (ranging from an iso-orientation, 
Fig. 1F, to an omni-orientation interaction, Fig. 1G) with an 
overall net effect beyond short-range distance that is particu-
larly difficult to predict without a computational approach.

In this review, we present a body of recent evidence from 
anatomy, physiology and computational modelling, leading 
to the conclusion that horizontal interactions do not forcibly 
conform with a like-to-like orientation preference. In the last 
decade, structural (Hunt et al. 2011; Martin et al. 2014, see 
Kisvárday 2016 for review) and functional (Chavane et al. 
2011; Huang et al. 2014) studies have shown that the rule 
is not valid for long-distance connections. Chavane et al. 
(2011) proposed revisiting the connectivity rule as a func-
tion of horizontal distance: from like-to-like at short distance 
towards like-to-all and long distances (Fig. 1E; see discus-
sion in Alonso and Kremkow 2014a, b). In their computa-
tional modelling study, Rankin and Chavane (2017) showed 
that this behaviour is in fact to be expected based on the 
anatomical observations made by Buzás et al. (2006). The 
functional implications of such evidence is further discussed 
in the framework of natural scenes analysis (Perrinet and 
Bednar 2015; Boutin et al. 2021). In light of converging 
evidence from a range of approaches, this review argues for a 
timely, in-depth revision of V1 horizontal connectivity rules. 
Revisiting this textbook mindset is an important prerequisite 
to better understand the relationship between structure and 
function in the visual cortex.

New physiological evidence

Neuronal population activity measures

Here, we review more recent evidence for versatile connec-
tivity rules reported in different species and with different 
recording techniques. Importantly, one should keep in mind 
that long-range horizontal axons only have a subthreshold 
influence on their postsynaptic targets (Bringuier et al. 
1999). In order to study the selectivity of the postsynaptic 
target of these axons, it is therefore important to use meth-
ods that are sensitive to subthreshold membrane potential 
changes. Indeed, methods that only record spiking activ-
ity necessitate experimental protocols that co-activate the 
presynaptic source and postsynaptic target of the horizontal 
network, for instance to study cross-correlation between neu-
rons (Michalski et al. 1983; Ts’o et al. 1986; Schwarz and 
Bolz 1991; Das and Gilbert 1999). Under these conditions, 
it is hard to tease apart the direct effects of the horizontal 
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axons from secondary activation of recurrent columnar 
circuits.

Chavane et al. (2011) used complementary recording 
tools that specifically record the subthreshold activity of 
a mesoscopic population (voltage-sensitive dye imaging, 
VSDI), and of individual neurons (intracellular recordings) 
in areas 17 and 18 of the anaesthetized cat. The first method 
allowed us to visualize and quantify the orientation selec-
tivity of the laterally spreading activity evoked by a local 
stimulus (Jancke et al. 2004). The second method enabled 
a precise measurement of the impact of this subthreshold 

spread of activity on individual neurons. Using VSDI in the 
cat areas 17 and 18, the authors showed that a local oriented 
stimulus evokes a spread of activity along the horizontal 
dimension, extending up to 3 mm laterally (see also Brin-
guier et al. 1999; Reynaud et al. 2012; Muller et al. 2014, 
2018). It is to be noted that the spread of activity did not 
show any patchiness, contrary to the anatomical observa-
tions. We believe that this is to be expected considering the 
large variability in the patches that will be activated from 
different neurons, varying as a function of a neuron’s type, 
layer and position in the orientation map. As a consequence, 
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and in sharp contrast to the extended horizontal activation, 
the orientation selective component of this spread remains 
confined to the cortical feedforward imprint of the stimulus 
(Fig. 2A). The feedforward imprint being defined in Chavane 
et al. (2011) as the population of neurons directly or par-
tially activated by the feedforward stream. This effect was 
systematically observed in both areas 17 and 18, and quan-
tified using complementary methods to quantify decrease 
of the orientation selectivity with horizontal distance. Both 
at the level of orientation preference and orientation selec-
tive response, the bias towards like-to-like activation (and 
therefore functional connectivity) decreases exponentially 

with horizontal distance with a similar characteristic corti-
cal space constant of about one mm or one hypercolumn 
(Fig. 2B). Importantly, this signifies, that, for a lateral radius 
of about 1.5 mm, the iso-orientation bias (Fig. 2B) was in the 
same range as that observed in the anatomy for similar lat-
eral distance (Bosking et al. 1997, Kisvarday 1997; Schmidt 
et al. 1997; Malach et al. 1993; Rochefort et al. 2009). How-
ever, VSDI is a population measure of the subthreshold acti-
vation that pools activity from all neurons (excitatory and 
inhibitory), all compartments (dendrite, soma and axons) 
and mostly the upper layer (see Chemla et al. 2017). VSDI 
offers a unique population view of the functional activation 
but it is less precise than anatomical studies: it is for instance 
possible that the lack of overall bias comes from the mix 
of tuned and untuned subpopulations (see Kisvárday 2016 
for further discussion). Chavane et al. (2011) therefore used 
intracellular recordings to confirm the VSDI observations 
and further showed that this loss of orientation selectivity 
actually arises from the diversity of converging synaptic 
inputs originating from outside the classical RF (Fig. 2C). 
The conclusion from this work is that the lateral spread of 
cortical activity gradually loses its orientation iso-preference 
at a distance of around one hypercolumn and that there exists 
a range of strategies for different postsynaptic neurons.

A more recent work, Huang et al. (2014) provided com-
plementary results in a different species, V1 of the tree 
shrew and using a different methodological approach. The 
authors used optical imaging of intrinsic signals to moni-
tor the impact of intra-cortical optogenetic stimulation 
under various stimulation configurations. In particular, 
their results show that the optogenetic stimulation of excit-
atory neurons within a set of orientation domains in the 
cortex generated the same response amplitude for either 
iso- or orthogonal domain stimulation (Fig. 2D, E). The 
responses actually depended primarily on intra-cortical 
distance (similar to the results obtained via cross-corre-
lation in Das and Gilbert (1999)). Using their innovative 
approach, the authors also tested stimulation along an axis 
in the retinotopic map, either collinear with the preferred 
orientation or orthogonal to it. The authors found no bias 
in either direction. Huang et al. (2014) therefore provides 
independent and complementary evidence that the hori-
zontal network, when probed at the population level with 
functional measures, does not show a bias for iso-orien-
tation preference in V1. It should be noted, however, that 
using optogenetic stimulation of excitatory neurons may 
drive complex dynamical activation of the cortex (Li et al. 
2019), mixing excitatory and inhibitory recruitment of the 
lateral network with different dynamics. Since the authors 
have used intrinsic optical imaging, they could not access 
to the dynamics of the lateral activation that would be 
averaged out in the observed activation maps (see Kisvár-
day 2016 for further discussion).

Fig. 2  Probing for the orientation selectivity of the horizontal net-
work with functional imaging. A–C: Adapted  from Chavane et  al. 
(2011)  with  CC-BY permission and D–E: modified  from Huang 
et al. (2014) with CC-BY permission. A Voltage-sensitive dye imag-
ing of the orientation-selective response evoked by local oriented 
gratings, example from area 17 of an anaesthetized cat. (Left) Polar 
orientation map averaged over the final 145 ms of the response (time 
stamps indicated above the frame). Colour hue and brightness code, 
respectively, for the preferred orientation and the strength of the ori-
entation tuning. Contours delineate the outer border of the cortical 
domain within which significant activation level (thin grey contour) 
or significant orientation selective response (thick white contour) 
are observed. (Right) Spatial extent of the activated area (grey) and 
of its orientation selective component (black) as a function of time. 
A  red line indicates the expected limit of the feedforward imprint, 
defined and estimated from Albus (2004) as the population of neu-
rons directly or partially activated by the feedforward stream. Dotted 
red line indicates the retinotopic area of the stimulus representation. 
Inset: the spatial extent of the activation spread (grey) and the orien-
tation-selective activation (black) are shown in comparison with the 
expected limit of the feedforward imprint (red). B Population analysis 
over nine hemispheres [three in area 17 (o) and six in area 18 (+)] 
of the horizontal distance-dependent decrease of orientation selectiv-
ity. (Top) Iso-orientation bias as a function of the spatial eccentric-
ity of the lateral spread. The first point corresponds to the area of the 
initial cortical activation. Exponential fit is shown in black. (Bottom) 
Decrease in condition-wise modulation depth with lateral propaga-
tion distance. C Visuotopic orientation polar map of an intracellular 
subthreshold response; colour hue and brightness code, respectively, 
for the preferred orientation and the strength of the membrane poten-
tial’s orientation tuning. The white contours delineate the significant 
responsive regions when combining both amplitude and orientation 
selectivity criteria. Middle: averaged subthreshold responses to four 
different orientations (same colour code) presented for particular 
locations (circle, triangle and square); scale bars: 50 ms and 1 mV; 
right: Normalized orientation tuning curves, integrated within a fixed 
temporal window (shaded area of middle panel). The black circle 
indicates the spontaneous level for the depolarizing integral measure. 
D Three orientation maps measured with optical imaging of intrin-
sic signals (Huang et  al. 2014) with the extracellular recording site 
(white “+”). Optogenetic layout stimulation sites that were centred 
over orientation domains with the same orientation preference (blue 
solid hexagons) as the recording site (+), and stimulation sites that 
were centred over domains with the orthogonal preference (light blue 
dashed hexagons). Scale bars: 500 μm. E Extracellular responses to 
optogenetic stimulation of preferred domains (dark blue) and orthog-
onal domains (light blue) in the three example cases shown in D, 
and the average responses to stimulation of preferred or orthogonal 
domains across all cases examined (n = 10)

◂
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Anatomical measures

In a recent anatomical study, Martin et al. (2014) carefully 
re-evaluated the orientation bias of horizontal boutons from 
upper layer pyramidal neurons in cat area 17 using single 
cell intracellular labelling, optical imaging to reveal the 
orientation map and advanced cluster-by-cluster analysis 
of synaptic boutons. In their analysis, Martin et al. (2014) 
compared the distribution of the preferred orientations 
spanned by the neuron’s dendritic arbors (used to estimate 
the neuron’s preferred orientation) and the preferred orienta-
tion covered by axonal clusters of the neuron (Fig. 3A). In 
the example of Fig. 3A, B, the preferred orientation of the 
dendrite (red) matched the one of the local cluster (green) 
but not of the distal cluster (blue). Over 33 neurons, their 
results revealed a very large variability in the orientation 
selectivity of their distal clusters (coloured in Fig. 3C), as 
estimated by their Similarity Index (1 corresponding to the 
same orientation preference distribution with respect to the 
neuron’s preferred orientation, 0 to an orthogonal orienta-
tion preference). Their results demonstrated the existence of 
a very large variance of SI (0.13–0.96) out of all 51 clusters 
they observed over the 25 neurons. To test whether the clus-
ters positions within the orientation maps occur by chance, 

the authors made a detailed bootstrap statistical analysis of 
all 51 clusters, taking into account the bias that is introduced 
by the orientation map layout, the cluster size and position 
relative to the soma. Using this analysis, they found that a 
quarter of their clusters (14/51 clusters recently updated to 
17/65, personal communication from Ruesch and Martin) 
were not positioned randomly in the map. Interestingly, only 
9% (6/65) of these clusters (see their suppl Fig. 10l) had a 
significantly high SI, above the upper bound (hence iso-ori-
ented), and 5% (3/65) below the lower bound (hence cross-
oriented). In contrast 12% (8/65) were located in position 
of the orientation map unlikely to occur by chance whilst 
being neither iso- nor cross-oriented with the labelled cell. 
As a conclusion, only a small minority of clusters (9%) are 
significantly tuned to iso-orientation from non-random posi-
tion in the orientation map. Furthermore, as shown by Buzás 
et al. (2006), this bias tends to decrease with lateral distance 
of the clusters, which is further in accordance with Chavane 
et al. (2011). Finally, as observed in Huang et al. (2014), 
Martin et al. (2014) did not find any specific alignment of the 
cluster distributions in the retinotopic map that could favour 
collinear vs orthogonal interactions with the cell’s preferred 
orientation. At a more macroscopic level, diversity was also 
shown from animal to animal in tree shrew V1, specifically 

Fig. 3  Probing for the orientation selectivity of individual horizon-
tal axons (modified  from Martin et  al. 2014  with  CC-BY permis-
sion). A Axon of an intracellular labelled neuron is displayed over 
the orientation map. Ellipses show clusters of boutons (not shown) 
for local and more distal positions. Dendritic tree (inset) was colour 
coded by the orientation value of their corresponding pixels (white 
dot  indicates the soma). Scale bar, 0.5  mm. B Radial plots of the 
normalized distribution of the  number of boutons counted within 
each local (green  line) and distal clusters (blue  line), but also the 

dendrite (red  line) over the preferred orientations. The individual 
vectors forming these hemispheric plots were summed up to gener-
ate one sum vector (bold vector). The length of this sum vector is 
termed as the “tuning” of the dendrite or cluster. C Similarity index 
(SI) values for individual clusters of 33 neurons sorted by normal-
ized depth of soma. (Top) Neurons (x axis) can have clusters (colour 
coded by rank) with different SI values (y axis). The histogram on the 
right summarizes the SI across clusters of all neurons (grey = distal, 
black = local). Note the large variance within and across neurons
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in the fine orientation/retinotopic arrangement of extracellu-
lar anatomical labelling (i.e. a population of neurons). Their 
detailed analysis of Hunt et al. 2011 showed that there is a 
diversity of co-circular connectivity rules across animals, 
some showing a significant bias towards co-circular rules, 
some towards anti-circular rules and others without biases. 
Thus, as stated by Martin et al. (2014), the horizontal axons 
thus cannot be treated as an homogeneous network with a net 
iso-oriented bias, but rather should be described as strongly 
heterogeneous, an heterogeneity that may be the core of its 
function (see also Kisvárday 2016).

Computational model linking structure 
to function

Population measures and anatomical data constrain connec-
tivity in cortical space; however, the link between known 
anatomical details and the resulting functional expression 
(in terms of neural activity) is not obvious. Computational 
models provide a means to explore this relationship directly. 
Modelling studies of V1 consider a range of connectivity 
rules, and these frequently allow for the shaping of connec-
tion strengths based on the difference of orientation prefer-
ence between connected sites. Abstracted models of single 
hypercolumns implement cross-orientation interactions 
in local circuits that further tune selectivity derived from 
weakly tuned LGN inputs (Ben-Yishai et al. 1995). Simi-
lar mechanisms for orientation selectivity in V1 have been 
explored in models with recurrent, lateral connections over 
short distances (between neighbouring hypercolumns in L4) 
(Somers et al. 1995; Kang et al. 2003; Chariker et al. 2016). 
Connections that extend over many mm of cortex (i.e. across 
multiple pinwheels) are considered in visual cortex model-
ling studies of contextual modulation (Rubin et al. 2015), 
motion illusions (Rangan et al. 2005), geometric visual pat-
terns (Bressloff et al. 2001; Baker and Cowan 2009; Carroll 
and Bressloff 2016), travelling waves (Bressloff and Car-
roll 2015), and in a general setting (Raizada and Grossberg 
2003). Whilst models do commonly feature a decay (e.g. 
exponential or Gaussian) in the strength of orientation-based 
connections with distance (Goldberg et al. 2004; Blumenfeld 
et al. 2006), the tuning strength is not distance dependent, 
is rarely systematically investigated and is not constrained by 
anatomical data. The function of patchy long-range connec-
tions has further been investigated in contexts not specific to 
orientation encoding (Voges et al. 2010; Voges and Perrinet 
2012). In general, long-range connections feature a strong 
iso-orientation bias motivated by long-held assumptions 
that do not take into account the more recent functional and 
anatomical studies that motivate a modification of this rule.

Furthermore, a common modelling choice for local exci-
tation-inhibition connectivity is the so-called Mexican hat 

with inhibition extending further than excitation (Marr and 
Hildreth 1980; Grossberg 1983; Somers et al. 1995; Bress-
loff et al. 2001). This choice is known to generate stable 
localized patterns of activity (rather than spatial unstable 
dynamics that spreads across cortex) (Laing and Troy 2003); 
however, excitatory connections in V1 can extend many 
mm further than the local inhibitory footprint. In general, 
models that also feature long-range excitation are used to 
study unbounded patterns of activity rather than localized 
responses to inputs (Bressloff et al. 2001; Blumenfeld et al. 
2006). Rankin et al. (2014) extended the results of Laing and 
Troy (2003) to demonstrate that localized inputs can gener-
ate stable localized activity patterns (rather than spreading 
activity) with a connectivity rule (as suggested in Buzás 
et al. 2001), and similar to Fig. 4A) that features long-range 
excitation, extending much further than the local inhibitory 
network.

Rankin and Chavane (2017) developed a planar spatial 
model of orientation selective activation in V1 L2/3 with the 
aim of bridging between known anatomical constraints on 
the tuning of long-range connections (Buzás et al. 2006) and 
the functional expression of laterally propagating activity 
driven by localized stimuli (Chavane et al. 2011). A neural 
field architecture with orientation-specific subpopulations 
provides a mesoscopic description of neural activity, ideal 
for comparison with the temporal and spatial resolution in 
VSDI imaging experiments. A novel connectivity function 
was flexibly parameterized to investigate clustering of con-
nections, their orientation bias and balance between excita-
tion and inhibition. We adopted the non-orientation-specific 
nature of local excitatory connections (Buzás et al. 2006) 
and inhibitory connections (Buzás et al. 2001); see also 
Koch et al. (2016) for a discussion of orientation specificity 
of excitatory and inhibitory connections. Taking motivation 
from Buzás et al. (2001), longer-range excitatory connec-
tions are proposed here to, although decaying with distance, 
form in rings at multiples of the hypercolumn separation L 
(Fig. 4A). This allows for the following important features to 
be captured: that excitatory connections (1) drop in number 
at a range of L/2, (2) have a peak at a range of L (and multi-
plies therefore) and (3) can extend several mm across cortex. 
Two parameters were tuned to agree with the available data 
from Buzás et al. (2006), the width of peaks in number of 
excitatory connections (RW; two values shown in Fig. 4A) 
and their orientation bias (BR; illustrated in Fig. 4B, C).

We found a significant overlap between the anatomi-
cally relevant parameter range and patterns of corti-
cal activation consistent with imaging experiments (see 
Fig. 4D-F, Chavane et al. 2011). Hence, this computational 
approach allowed us to reconcile the imaging results with 
the reported level of orientation bias from anatomical 
studies. Specifically, Chavane et al. (2011) found a sharp 
decay of orientation selective activation at the stimulus 
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retinotopic footprint border, resulting in peripheral activa-
tion that was not orientation selective (compare Fig. 2A 
with 3D-E). Our results demonstrate that this sharp decay 
is contingent on three factors: the diffuse clustering of 
long-range connections, the intermediate range (consistent 

with anatomy) of their orientation bias and sufficient bal-
ance between excitation and inhibition. It is worth not-
ing that orientation-biased long-range connections can 
recruit a local non-orientation-biased network at the tar-
get, resulting in non-orientation-specific activation (like 
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in Huang et  al. 2014). The modelling work illustrates 
that the observed levels of orientation bias in anatomi-
cal studies actually predict long-range activation beyond 
the retinotopic stimulus footprint with a sharply decaying 
orientation selectivity profile.

The model offers further insights into the mechanistic 
value of excitatory-inhibitory balance, and of intermediate 
levels of orientation bias in long-range connections. Long-
range excitatory connections (reaching much further than the 
lateral inhibitory profile) could easily lead to destabilization 
of activity generated by localized visual stimuli. Our model 
was used to show that if the orientation bias of lateral con-
nections is excessively strong, or if inhibition is particularly 
weak, the network operates close to an instability leading 
to unbounded cortical activation. This provides another 
line of evidence in favour of distance-decaying orientation 
bias in lateral connections. Diversity of long-range connec-
tions increasing with distance (i.e. decreasing orientation 
bias with distance) reflects a potential need to activate a 
broader range of orientations as we move further from a 
local stimulus with a specific orientation. Furthermore, the 
fact that, under particular circumstances, the preferred orien-
tation of the horizontal propagation may be at odds with the 
underlying orientation preference map could unravel some 
new unexpected computational capacities of the horizontal 
network, which may be present in visual areas beyond V1. 
For instance, the ability to link information across position 
and orientation for non-co-circular filters, which is important 

for processing objects with sharp angles. In line with this 
hypothesis, Chavane et al. (2011) showed that the spread of 
selective activity is not fixed but can increase with increas-
ing spatial summation generated by annular stimuli.

Functional advantages of such 
an organization

The insights we have reviewed at the physiological and 
modelling levels support a range of novel hypotheses for 
the organization of long-range lateral connectivity in the 
primary visual cortex. A functional approach, asking "why 
should neurons in V1 be connected laterally?" provides a 
complementary perspective. Indeed, a major argument is 
that the structure of V1 should fulfil its function and imple-
ment principles of perceptual organization, such as the prin-
ciple of good continuation to bring a countour’s constituent 
edges together into a unified global percept (Wertheimer 
1923). How might these principles connect knowledge 
across anatomy, physiology, theory and modelling?

Principles of perceptual organization in natural 
images

A major constraint for neurons in the primary visual cortex 
is that information is encoded locally and must be integrated 
globally across the visual field. Perceptual principles organ-
izing the different fragments of an image can be directly 
extracted by analysing a database of natural images. One 
such principle is that pairs of edges in natural images are 
most likely organized along aligned contours, and more gen-
erally on a common circle (Sigman et al. 2001); the authors 
extracted edges from natural images and estimated the ori-
entation of each edge. For each pair of active edges, they 
showed that the angle of maximum interaction corresponds 
to a configuration for which they are close to co-circularity. 
This long-range correlation is a marker of the structure of 
natural images and may provide strong prior knowledge for 
the perceptual organization of low-level features.

Such a structural prior can be described as a form of 
"association field" extending the concept of a neural recep-
tive field to long-range local interactions. The seminal paper 
by Field et al. (1993) defines the association field as the set 
of local oriented elements (edges) in the visual field that 
facilitates the detection of a central oriented target. They 
showed that the association field obeyed a co-circular rule. 
In other words, if a common circle can pass through the 
central target and the peripheral element, they will facilitate 
each other’s detection and generate suppression otherwise. 
This association field is invariant to translations or rotations. 
It extends the prior of collinearity (like-to-like) or co-circu-
larity (Sigman et al. 2001) to a more generic description of 

Fig. 4  Neural field model to reconcile structure with function in pri-
mary visual cortex. Definition of model connectivity with anatomical 
constraints (A–C) and illustration of model behaviour with operating 
region in agreement with functional characteristics (D–F). A Radial 
connectivity profile for inhibition (Gaussian decay) and excitation 
(locally Gaussian decay, longer-range connections peak in number 
at distance L and multiples thereof). Ring width (RW) of peaks in 
excitatory connections illustrated for two values. B Example of local 
preference map and resulting lateral connectivity for two values of the 
orientation bias of recurrent connections (BR). C Orientation tuning 
for each panel in B above (circles) with tuning parameter k from a 
best-fit von Mises distribution (solid lines). Orientations are evenly 
represented in the global map but strongly biased at around − 60° 
for the local excitatory component (local map). The orientation bias 
of lateral connections increases to around k = 1 for BR > 0.5 (simi-
lar values reported in Buzás et al. 2006). D Model simulation snap-
shot at 600  ms showing the orientation-selective component within 
a thin white contour, confined to the feedforward footprint FFF of 
the stimulus in red; the much broader non-orientation-specific activ-
ity falls within a grey contour extending beyond the plot limits. E 
Time history of the area within the non-orientation-specific contour 
and the orientation-selective contour. F Colour map across range of 
RW and BR values showing the selective area as in D normalized by 
FFF. Within the red contour the selective activation is constrained to 
the FFF. White contours show the anatomically constrained range for 
the connectivity parameters RW and BR where k = 0.7–1.2. In the 
green region other constraints on the correct orientation and the radial 
decay rate of orientation selectivity are also satisfied (modified from 
Rankin and Chavane 2017 with CC-BY permission)

◂
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all possible co-occurrences. In particular, by exploring the 
interactions of edge pairs, they showed that these association 
fields explain the detection of paths embedded within a field 
of randomly oriented edges. The association field can then 
be understood in light of the computer vision problem of 
curve tracing. Parent and Zucker (1989) described it as a dif-
fusion process over the tangent field of oriented edges, thus 
suggesting a principled and biologically realistic framework 
for association fields using long-range interactions.

This principle can be extended to explain psychophysical 
experiments in humans. Geisler et al. (2001) took a similar 
approach by reporting the full statistics of natural image 
edge co-occurrences. This yields a valuable model for the 
statistics of neighbouring edges. First, the edges are organ-
ized into parallel textures favouring parallel edges, and 
second, there is a bias for co-circular edges (see Fig. 5A). 
Using a Bayesian approach, the authors derived a cluster-
ing scheme for chaining edges into contours that was con-
firmed by psychophysical experiments. This approach was 
later extended to the high-level cognitive problem of image 
categorization (Perrinet and Bednar 2015). The authors 
showed that using supervised learning, one could derive 
a scheme using the association field in that image to cat-
egorize whether it contains an animal. This simple model 
achieved similar performance to humans and to a deep hier-
archical model (Serre et al. 2007). Surprisingly, the model 

made similar errors to humans. This illustrates first that 
association fields can be used to both group edges based on 
different tasks or to categorize images. This also shows that 
for the association field reflecting the statistics of edge co-
occurrences in natural images, different datasets may lead 
to different association field structures (see Fig. 5A). As 
a consequence, it seems relevant at behavioural and etho-
logical levels that mechanisms exist to tease apart the slight 
differences between the co-occurrence patterns present in 
different images, for instance, the surprising patterns of a 
perfect co-circularity, or that of a pair of rare but informa-
tive orthogonal edges forming a T-junction. This would then 
explain part of the variability in the association fields which 
can be involved in visual integration processes.

How do these principles translate to the cortical 
space?

As Geisler et al. (2001) states, "the obvious hypothesis for 
the local grouping is a neural population with the receptive 
field structure matched to the edge co-occurrence statistics". 
Yet, the emergence of receptive field properties is a combi-
nation of anatomy and the dynamics of individual neurons. 
Can we link the statistics of natural images to the structure 
of processing in the primary visual cortex?

Fig. 5  Function and diversity of association fields. A Following the 
work of Geisler et  al. (2001), one could derive the association field 
from the statistics of natural images. This involves extracting edges 
from images (red segments) and computing for each pair the differ-
ence of angle � and the relative azimuth � of one edge compared to 
the other. This allows one to quantify the association field as a histo-
gram, relative to a reference edge placed in the middle, for the most 
likely difference of angle—showing a prominent preference for paral-
lel textures (top) or the relative azimuth, showing a prior for co-circu-
lar co-occurrences (bottom). The association field may vary for dif-
ferent databases with an excess of co-circularity in images containing 
animals, illustrating the variety of statistics faced by the visual sys-
tem (Perrinet and Bednar 2015; modified with permission CC-BY). 

B Boutin et  al. (2021) described a biologically realistic multi-layer 
model of the visual cortex. The model is shown natural images and 
is optimized to represent images in the most efficient way. Edge-like 
filters emerge (see an example in the inset) and we show here the 
interaction of this edge with other edges outside the range of its clas-
sical receptive field. This pattern shows a large facilitatory (green) or 
inhibitory (purple) effect relative to a model without feedback. This 
functional modulation of the association field shows the importance 
of the activity in the whole network and we have further shown its 
shape could widely vary within the network and for different types 
of images, such as images of faces (Boutin et al. 2021; modified with 
permission CC-BY)
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Olshausen and Field (1996) set out to show how the 
structure of V1 microcolumns can optimize the efficiency 
of the neural representation for natural images. Hyvärinen 
and Hoyer (2001) extended this to include a regularization 
of the representation with cortical topography. Franciosini 
et al. (2021) recently developed a biologically realistic, 
two-layered V1 sparse predictive coding model, including 
pooling mechanisms to impose a neighbourhood prior in 
cortical space, which includes by construction the possibility 
of representing as channels in each layer a variety of inter-
action patterns. Similarly, complex cells and topographic 
maps emerge, demonstrating the transfer of cortical con-
nectivity in V1 to perceptual grouping principles. More 
surprisingly, depending on the density of neurons, different 
structures emerge to optimize cost efficiency: in addition to 
mammalian-specific features (such as topographical maps), 
a rodent-specific salt-and-pepper map emerges for models 
with a lower cell density. Interestingly, by focusing on this 
multi-channel convolutional architecture, the second layer 
showed a diversity of connectivities across channels, sug-
gesting that differing anatomical constraints may induce dif-
ferent patterns of long-range lateral interactions.

A multi-layer sparse predictive coding model (Boutin 
et al. 2021) allows for the influence of an extrastriate cortical 
area, such as V2 on to V1 to be modelled. The activity in the 
layers of this model emerge from the recurrent interactions 
between neurons within and across layers (rather than a feed-
forward pass as in convolutional networks). Convergence 
to an efficient representation of edge filters and interaction 
maps (resembling association fields) emerges after several 
processing iterations. However, training on different natural 
image datasets can produce different interaction maps, in 
accordance with Perrinet and Bednar (2015). For example, 
training on images of human faces generated features resem-
bling mouths or eyes, resulting in more sparse and longer-
range interactions. This suggests that instead of a simple 
similarity rule, lateral interactions between neurons reflect 
the variety of feature dependencies attached to the respec-
tive neurons. In addition, similarly to physiological observa-
tions (Gilbert and Li 2013), we observed that the interaction 
becomes sharper with stronger feedback (see Fig. 5B), which 
provides a synergy between the different pieces of infor-
mation encoded by the network, as illustrated by improved 
performance for denoising natural images.

Function and dynamics of long‑range lateral 
interactions

Overall, these theoretical models propose, as an alterna-
tive to the like-to-like structure, that there should be a wide 
variety of long-range lateral interaction patterns. It should 
be noted that most of the models described above deal with 

static natural images, whereas the visual world is character-
ized by a wealth of different dynamic scales, which raises 
the question of the role of neural dynamics in long-range 
lateral interactions.

If one imagines an edge moving in a direction parallel to 
its orientation, we can infer that we are following the tangent 
to a continuous contour. On the contrary, if the orientation 
of the edge is perpendicular to its direction, it is more likely 
that we are seeing a moving bar. This simple prototypical 
example shows that depending on the local intrinsic context, 
the optimal integration rule may change, as evidenced by 
intracellular recordings (Gerard-Mercier et al. 2016). If these 
interactions can be implemented via different contextual 
cues, such as recurrent or feedback connections, it is also 
possible that the multidimensional representation of infor-
mation on the cortical surface is much more than a simple 
topographical orientation map.

In addition, there is physiological evidence that associa-
tion maps can be dynamically influenced by the task at hand. 
In McManus et al. (2011), using a delayed-to-sample match-
ing task, the authors trained monkeys to detect different pat-
terns: a circle, a wiggle, or a line, which were embedded in 
a grid display of randomly oriented edges similar to that of 
Field et al. (1993). They found that depending on the pat-
tern being searched, the recorded association field adapted 
to preferentially exploit collinearities (for lines) or co-cir-
cularities (for circles). Such a differential processing raises 
an implementation problem for the unsupervised schemes 
described above. This problem could be solved in a super-
vised learning scheme (Perrinet and Bednar 2015) but raises 
the question of how this supervised credit is assigned in V1. 
A similar problem is inherent in the backpropagation rule 
in generic deep learning paradigms which can be solved in 
a predictive coding framework (Boutin et al. 2021).

Lastly, the anatomical connectivity may be patchy for dif-
ferent functions than just connecting like-to-like orientation 
patches. Indeed, patchy connections likely play an impor-
tant role in combining information from multiple visual cues 
beyond orientation, including context (Martin et al. 2017). 
Indeed, modelling work has shown that patch-based con-
nectivity increases the versatility of the dynamic repertoire 
of neural states (Voges et al. 2010). That work compared net-
works of realistic conductance-based neurons with a range 
of connectivity rules. These rules had different complexities, 
from a completely random connectivity, to a neighbourhood-
based local connectivity, and more interestingly, clustered 
networks, including a patch-based connectivity rule. This 
was extended in a further modelling study (Voges and Per-
rinet 2012) to include a comparison between a pure random 
patch-based connectivity and partially overlapping patches. 
As noted in Kisvárday (2016), these patch-based connectiv-
ity rules were sufficient to induce a large dynamic repertoire, 
such as rhythms or travelling waves, and were for instance 
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characterized by enhanced variety in the shape of the power 
spectrum of population activity. In particular, such a range of 
dynamic behaviours is much richer when compared to those 
obtained with a random or local connectivity rule. Patchy 
connectivity rules introduce a heterogeneity in the lateral 
connections, which seems essential for building up an effi-
cient population code (Martin et al. 2014). In particular, this 
would allow the propagation of combinations of contextual 
cues which would reflect the richness of visual information 
in natural scenes.

To conclude this section, the function studied in these 
theoretical models hints at a solution using a superposition 
of different long-range connectivity profiles. The diversity of 
patterns and their adaptability to the task or statistics should 
overall improve processing efficiency in the primary visual 
cortex. Yet there remain open questions regarding the rich-
ness of these like-to-all patterns. Theories suggest potential 
strategies for addressing these open questions explicitly in 
neurophysiology, for example, by synthesizing optimally 
responsive, model-driven dynamic stimuli (Walker et al. 
2019).

Discussion

In this review, we have documented convergent evidence 
from physiology, anatomy and computational models that 
the orientation selectivity of horizontal network connectiv-
ity in the primary visual cortex of carnivores, ungulates and 
primates is more versatile than initially proposed, which 
motivates the necessity to revisit the like-to-like connectivity 
rule (Mitchison and Crick 1982) still dominant today. At the 
anatomical level, there seems to be a diversity of connection 
rules between presynaptic source and postsynaptic target. 
At the individual cell level, anatomical studies have shown 
that the rule changes as a function of cell type (excitatory 
vs inhibitory) and layer/map locations (Yousef et al. 2001, 
1999; Kisvárday et al. 1994; Buzás et al. 2001; Karube and 
Kisvarday 2010; Karube et al. 2017). Within one presynaptic 
origin, a large diversity exists with only moderate bias in 
the range of 1.5–2 times greater than chance (Bosking et al. 
1997; Kisvarday 1997; Schmidt et al. 1997; Malach et al. 
1993; Rochefort et al. 2009). More recent work by Martin 
et al. (2014) on the upper layer pyramidal neurons of the cat 
V1, with a cluster-by-cluster analysis of horizontal boutons, 
has shown the existence of a very large diversity from like-
to-like, like-to-any, like-to-all and like-to-unlike connectiv-
ity rules. Altogether no net significative bias towards one of 
these rules could be observed in their bootstrap statistical 
analysis. Taken together, these anatomical results show that 
there is diversity in the connectivity rules both within and 
between neuronal types and locations (see Kisvárday 2016 
for an extensive review). At a more macroscopic level, it is 

interesting to note that Hunt et al. (2011) also observed that 
the co-circularity rule varies from animal to animal.

When probed with functional measures of neuronal activ-
ity in response to a local visual stimulus, using techniques 
sensitive to subthreshold membrane potential fluctuations 
(Chavane et al. 2011) or an optogenetic activation of spe-
cific orientation columns (Huang et al. 2014), the diversity 
revealed in anatomical studies leads not only to the absence 
of net bias towards like-to-like interactions along the hori-
zontal network (see Alonso and Kremkow 2014a, b), but 
also the absence of patchy activation of the horizontal spread 
of activation. Importantly, VSDI measures demonstrate a 
clear exponential decay of the like-to-like connectivity bias 
with horizontal distance, an effect also observed in anatomy 
(Buzás et al. 2006; Martin et al. 2014). At short-range dis-
tances, similar iso-orientation biases, as reported in anatomi-
cal studies, were observed. However, after the equivalent 
of one hypercolumn, no significant bias could be observed 
(Chavane et al. 2011).

All these papers therefore demonstrate the existence of 
a connectivity rule that links neurons in the primary visual 
cortex depending on their preferred orientation, neuronal 
type, position (layer and orientation map) and intra-cortical 
distance. This multidimensional connectivity rule is also 
subject to large diversity not just from neuron to neuron but 
also from animal to animal. Due to the difficulty in making 
predictions from this complex pattern, it is necessary to use 
computational approaches to probe for the expected func-
tional behaviour of such a network. In Rankin and Chavane 
(2017), we developed a neural field model and demonstrated 
that the functional results observed in Chavane et al. (2011) 
are indeed the expected mesoscopic behaviour of such a 
network when its connectivity is constrained to match the 
orientation bias of connections from anatomy (Buzás et al. 
2006), thus demonstrating that the functional observations 
are to be expected given our understanding of anatomical 
characteristics.

In this review, we wish to update the accepted like-to-like 
connectivity rule widely assumed as the building block for 
connecting a local neuronal network from one position in the 
visual field to its postsynaptic targets. The connectivity rule 
should be revised to a distance-dependent formulation: from 
like-to-like bias at short horizontal distance to like-to-all at 
long horizontal distance (Fig. 1E). The space constant of the 
decrease of the like-to-like bias is about one hypercolumn 
distance. Functionally we can speculate that this translates to 
an iso-orientation bias for neurons with overlapping recep-
tive fields and no net bias for neurons with non-overlapping 
receptive fields.

This may be at odds with the well-documented associa-
tion field schema and co-circularity rules observed in natural 
scenes (Sigman et al. 2001; Geisler et al. 2001). However, it 
is important to differentiate the basic connectivity building 
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block, that specifies unidirectional rules from a presynap-
tic region to a postsynaptic target, from lateral interactions, 
that are evoked by more complex stimuli that co-activate 
both presynaptic and postsynaptic regions (e.g. as in cross-
correlation studies). The like-to-all long-distance connectiv-
ity rule can be seen as generic and allows for a variety of 
interactions in the orientation and spatial domain. Impor-
tantly, this is possible if we take into account the large local 
diversity observed at the neuronal level (Chavane et al. 2011, 
Martin et al. 2014, see also Monier et al. 2003). Our propo-
sition here is that such a rule could account for a wealth 
of interaction rules depending on the stimulus and/or the 
task. For instance, this would allow one to account for the 
interactions necessary to process orientation discontinuities, 
such as junctions or corners. Neurons in V1 have indeed 
been reported to be sensitive to orientation discontinuities, 
independent of the absolute orientation of the stimulus set 
(Sillito et al. 1995; Jones et al. 2001). This result could not 
be explained solely by iso-oriented lateral interactions. Such 
diversity could also contribute to shaping the orientation 
tuning of neurons away from the primary orientation pref-
erence (i.e. horizontal and vertical orientations, Vidyasagar 
and Eysel 2015). More generally, using natural, stationary 
scenes and/or contour integration tasks may indeed favour 
association field interactions. However, depending on the 
type of natural images, Perrinet and Bednar (2015) have 
shown that these interactions may already differ significantly 
(see also Boutin et al. 2021). Moreover, dynamic non-sta-
tionary visual stimuli, such as a simple moving object, and 
tasks that rely on motion integration for instance could lead 
to different associative rules for motion (Gerard-Mercier 
et al. 2016). In the case of integrating information along 
a coherent path, for instance, visual information should be 
transported in a direction of motion that can be in the cross-
orientation dimension (Perrinet and Masson 2012).

Importantly, co-circularity rules that link orientation 
and position with respect to a central oriented feature are 
not found in the anatomy (Martin et al. 2014; Hunt et al. 
2011), nor were they found by Huang et al. (2014) using 
optogenetic stimulation pattern in the horizontal network. 
This further supports a dynamic, context-dependent emer-
gence of specific rules, such as co-circularity for contour 
integration in natural images, through higher-order network 
interactions. In that respect, Chavane et al. (2011) observed 
that increasing spatial summation of the stimulus increases 
the propagation of iso-orientation activity, even if the basic 
connectivity profile was shown to be not selective to ori-
entation at long range. This means that from a basic unse-
lective building block, selective interaction can occur (for 
a proposition of possible mechanisms see suppl FigA5 in 
Chavane et al. (2011)). This effect could result from the fact 
that inhibitory neurons tend to make more horizontal con-
nections with cross-orientation neurons  (Kisvárday et al. 

1994; Buzás et al. 2001). Increasing spatial summation could 
change the orientation dependence of excitatory/inhibitory 
balance and lead to the emergence of tuned activity at longer 
distance. More generally, the emergence of new selectivity 
depending on the stimulation pattern (or the task) is rendered 
possible by the existence of local diversity of orientation-
selective connections at neuronal level (Monier et al. 2003; 
Chavane et al. 2011; Martin et al. 2014). Therefore, differ-
ent stimulation patterns will lead to activation of different 
recurrent subnetworks and the emergence of a variety of 
selectivity characteristics. It is indeed now well documented 
that non-trivial, paradoxical effects can arise from recurrent 
balanced networks (Tsodyks et al. 1997; Ozeki et al. 2009; 
Pattadkal et al. 2018). In our model, we indeed observed that 
manipulating the balance between excitation and inhibition 
(i.e. reducing inhibition strength) predicts the emergence of 
spurious orientation selective activation through long-range 
lateral connections (Rankin and Chavane 2017).

Given the non-trivial effects that can arise with more 
complex stimuli, a number of avenues remain open to 
build on theoretical and modelling work. The model devel-
oped in Rankin and Chavane (2017) could also be used to 
investigate selective recruitment and spatial summation in 
regions between localized oriented stimuli (Chavane et al. 
2011; Huang et al. 2014). Indeed, increasing spatial sum-
mation increases the slope of selectivity decay at the stimu-
lus boundary, whilst selective propagation reaches further 
across cortex, a property easily explored in the model by 
a more diverse class of localized stimuli. More generally, 
the model could be used to make predictions to decipher 
the selective functional connectivity rules that link posi-
tion and orientation in cortical space. Importantly, it could 
also be extended to differentiate inhibitory cell subclasses 
as reported in Buzás et al. (2001). As such it could generate 
functional predictions on, e.g. the role of long-range basket 
cell connections that preferentially target cross-orientations. 
Extending the framework further, a feature space includ-
ing spatial frequency could be used to investigate lateral 
connections in light of recent work on interactions between 
orientation and spatial frequency maps (Romagnoni et al. 
2015; Ribot et al. 2016).

In this review, we mostly focus on revisiting the connec-
tivity rule of intra-cortical horizontal networks. However, 
it is important to consider that such connectivity patterns 
can also be influenced by feedback from higher cortical 
areas that provides a more diffuse and divergent input to 
the primary visual cortex (Salin et al. 1989, 1992). Ana-
tomical studies in the cat suggest that area 17 and area 18 
cells are preferentially connected when they share similar 
preferred orientations (Gilbert and Wiesel 1989). In the 
monkey, feedback from higher areas (V2 and V3) to V1 
show the variable level of patchiness (Stettler et al. 2002; 
Angelucci et al. 2002), unselective to orientation (Stettler 
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et al. 2002). In the cat, electrophysiological and inactiva-
tion studies of various downstream areas seem to influence 
only response amplitude or tuning width of neurons in area 
17 of the cat, but not orientation preference (Martinez-
Conde et al. 1999; Wang et al. 2000, 2007; Huang et al. 
2004, 2007; Liang et al. 2007; Shen et al. 2006, 2008, 
Galuske et al. 2002). However, it is important to consider 
that feedback will interact with the horizontal network as 
demonstrated in monkey visual cortex, with either spe-
cific interactions as suggested by Gilbert and Li (2013, 
for review), or contributing to centre-surround processing 
(Hupé et al. 1998; Roberts et al. 2007; Poort et al. 2012; 
Nurminen et al. 2018).

In conclusion, we believe that there are enough argu-
ments today to accept a change to the connectivity rules 
for horizontal axons in V1, that is consistent with both 
new structural and new functional evidence. It remains to 
be established how this complex multidimensional rule 
(orientation x distance x neuron type x neuron location) is 
expressed under different stimuli and task configurations. 
It would be important to understand what is the minimal 
stimulus design that can trigger particular tuned interac-
tions for various spatial positions and whether it involves 
precisely the same neurons in the large-scale neural net-
work. To test predictions that can arise from theoretical 
and computational approaches, new experimental tools to 
visualize large massive neural networks at neuronal level 
and sensitive to membrane potential fluctuations will be 
needed. Recent neuro-technological advances in awake 
animals, such as all-optical tools to measure and control 
a large set of neurons (Ju et al. 2018; Zhang et al. 2018), 
and the development of new genetically encoded voltage 
indicators that allow simultaneous two-photon micros-
copy of subthreshold activity recording from many cells 
(Villette et al. 2019); this provides the ideal experimental 
setting to probe the complex and dynamic network interac-
tions underlying stimulus and task-dependent processing.
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