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Accuracy in estimating an object’s global motion over time is not only affected by the noise in visual
motion information but also by the spatial limitation of the local motion analyzers (aperture problem).
Perceptual and oculomotor data demonstrate that during the initial stages of the motion information pro-
cessing, 1D motion cues related to the object’s edges have a dominating influence over the estimate of the
object’s global motion. However, during the later stages, 2D motion cues related to terminators (edge-
endings) progressively take over, leading to a final correct estimate of the object’s global motion. Here,
we propose a recursive extension to the Bayesian framework for motion processing (Weiss, Simoncelli,
& Adelson, 2002) cascaded with a model oculomotor plant to describe the dynamic integration of 1D
and 2D motion information in the context of smooth pursuit eye movements. In the recurrent Bayesian
framework, the prior defined in the velocity space is combined with the two independent measurement
likelihood functions, representing edge-related and terminator-related information, respectively to
obtain the posterior. The prior is updated with the posterior at the end of each iteration step. The max-
imume-a posteriori (MAP) of the posterior distribution at every time step is fed into the oculomotor plant
to produce eye velocity responses that are compared to the human smooth pursuit data. The recurrent
model was tuned with the variance of pursuit responses to either “pure” 1D or “pure” 2D motion. The
oculomotor plant was tuned with an independent set of oculomotor data, including the effects of line
length (i.e. stimulus energy) and directional anisotropies in the smooth pursuit responses. The model
not only provides an accurate qualitative account of dynamic motion integration but also a quantitative
account that is close to the smooth pursuit response across several conditions (three contrasts and three
speeds) for two human subjects.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider two frames of a tilted line translating horizontally but
seen through three small, circular apertures (locations 1-3). The

Motion illusions help us to better understand how motion infor-
mation is processed by the visual system. In particular, they illumi-
nate how the brain processes ambiguous information to infer the
most probable source from the external world (Kersten, Mamassian,
& Yuille, 2004). The aperture problem, and its perceptual conse-
quences, is one of the most investigated cases of motion illusions
since it can be investigated at both perceptual, motor and neuronal
levels (see Masson and Ilg (2010) for a collection of reviews). Mo-
tion sensitive cells in early visual stages have small receptive fields
and, therefore, a limited access to the motion information present
in the images. Neurons with receptive fields located at different
positions along a simple moving stimulus such as a bar will pro-
vide different velocity measurements as illustrated in Fig. 1a.
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translation vector in the 1st and 3rd apertures is unique as there
is only one possible way to recover the translation of the line be-
tween the two frames, thanks to the two-dimensional (2D) profile
of luminance information. Thus, motion recovered from the trans-
lation of these line-endings (also called features, terminators, or lo-
cal 2D motion) is unambiguous, as illustrated by the small
gaussian-like distribution of the most probable velocities in the
(vx 1) space, for a high signal-to-noise ratio (Lorenceau & Shiffrar,
1992; Pack, Hunter & Born, 2005). On the contrary, analyzing the
translation of a one-dimensional luminance profile as seen in the
2nd aperture yields to an infinite number of possible velocity vec-
tors. Such 1D motion is highly ambiguous (Movshon, Adelson, Giz-
zi, & Newsome, 1986) leading to the aperture problem. One can
compute the 1D velocity likelihoods in the same (z, 7,) space,
which under some assumptions about noise properties, would cor-
respond to an elongated Gaussian distribution crossing an entire
quadrant (Simoncelli, Adelson, & Heeger, 1991; Weiss et al.,
2002). Understanding how purely horizontal motion of the entire
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Fig. 1. Aperture problem and dynamics of motion integration. (a) Upper row illustrate the aperture problem during translation of a single tilted line. From left to right: two
successive frames of a pure horizontal translation; velocity vectors extracted through three different apertures; the correct solution of the aperture problem is reached when
global motion consistent with translation of a rigid object is obtained. Shown are three different instances during pursuit of a tilted line. Lower row illustrates the velocity
likelihoods computed at the three locations (ambiguous (2) and unambiguous (1, 3)). (b) Mean smooth pursuit eye velocity traces (horizontal (é,) and vertical (é,)) for a tilted
line translating to right at 7°/s. (c) Pursuit direction error plotted against time for human (black dots) and monkey (gray dots) pursuit of a 45¢ tilted line. Open circles plot the
time course of direction estimate from a population of MT neurons presented with a set of small tilted lines translating in the classical receptive field. (d) Block model of the
model for motion inference and pursuit. The front-end infers optimal motion estimation using a Bayesian model. Such estimate is dynamical due to prior updating,
implementing a recurrent Bayesian network. The decision rule extracts the optimal image velocity at a given point in time and feeds two independent oculomotor plants,

driving horizontal and vertical eye velocity.

visual pattern is recovered has been the goal of dozens of psycho-
physical and physiological studies (see Bradley & Goyal, 2008;
Masson and Ilg (2010) for reviews) but several key aspects remain
unclear such as the role of feature motion (Lorenceau & Shiffrar,
1992; Pack, Gartland, & Born, 2004), the rule governing the integra-
tion of 1D and 2D local motion (Weiss et al., 2002) or the exact
physiological mechanisms used to reconstruct global motion (see
Rust, Mante, Simoncelli, & Movshon, 2006; Tlapale, Masson, &
Kornprobst, 2010; Tsui, Hunter, Born, & Pack, 2010, for recent com-
putational studies).

A key observation with the aperture problem is that perceived
direction of a single tilted bar translating horizontally is biased to-
wards the oblique direction, corresponding to the velocity vector
orthogonal to the bar orientation (Castet, Lorenceau, Shiffrar, &
Bonnet, 1993; Wallach, 1935), at least for short stimulus durations
and low contrast. Such observations also hold for motor actions
such as voluntary pursuit. Example of smooth pursuit eye move-
ments driven by a rightward motion of a 45¢° tilted line is shown
in Fig. 1b. At pursuit onset, there is always a transient vertical com-
ponent, reflecting the directional bias induced by the aperture
problem. Once that 2D motion information begins to be integrated
along with 1D motion, there is a slow reduction in the directional
bias. Such observation was made both in humans (Masson & Stone,
2002; Montagnini, Spering, & Masson, 2006; Wallace, Stone, &

Masson, 2005) and monkeys (Born, Pack, Ponce, & Yi, 2006).
Fig. 1c plots the time course of the tracking direction error (i.e.
the difference between the instantaneous 2D eye movement direc-
tion and the 2D translation of the bar) observed in either monkeys
(closed symbols) or humans (open symbols). At high contrast,
tracking error decays with a time constant ~90 ms so that, after
200 ms of pursuit both eye and target motions almost perfectly
matched. Gray symbols plot the time course of the population vec-
tor of direction-selective cells recorded from macaque area MT
using a somewhat similar stimulus. MT neurons initially respond
primarily to the component of motion perpendicular to a contour’s
orientation, but over a short period of time (time constant:
~60 ms) their responses gradually shift to encode the true stimu-
lus direction 100-150 ms after stimulus onset (Pack & Born, 2001).

Numerous mechanisms such as vector averaging (VA), Intersec-
tion of Constraints (IOC) and 2D features (2DFT) (see Bradley &
Goyal, 2008, for a review) have been proposed as solutions to the
aperture problem. The Bayesian framework, based on the idea that
the visual system makes inferences from noisy signals offers a sim-
ple explanation for two-dimensional motion illusions observed
with a large pool of stimuli (Weiss et al., 2002). Their seminal sug-
gestion was that primate visual system prefers slow and smooth
motions. In the Bayesian framework of probabilistic inference, such
preference can be instantiated as a Prior distribution centered at
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v = v, = 0. When presented with 1D motion of single bars, yielding
to elongated likelihood distributions, the posterior distribution
that is the product of prior and likelihood distributions is centered
along the 45° oblique axis, corresponding to the perceived direc-
tion along the orthogonal direction. This model was extended to
plaid pattern motion direction (Weiss & Adelson, 1998) to demon-
strate that it can easily implement the I0C rule by combining dif-
ferent 1D likelihoods. In their model, no specific role was
attributed to 2D motion features, thus ignoring some of the infor-
mation present in the images. However, such framework can be
easily extended to combine likelihoods of various local motion
cues (1D and 2D) with the slow motion prior into a single path.
To account for the different dynamics that are observed for 1D
and 2D motion cues respectively (e.g. Masson & Castet, 2002;
Masson, Rybarzcyk, Castet, & Mestre, 2000), such two pathways
model was proposed, taking into account both the different
variances in 1D and 2D likelihoods and their different timing
(Barthélemy, Perrinet, Castet, & Masson, 2008).

Although the Bayesian framework gives an accurate account of
perception and psychophysical data (e.g. Hurlimann, Kiper, &
Carandini, 2002; Stocker & Simoncelli, 2006), this type of models
is essentially static. They cannot explain the time course of 2D mo-
tion perception as illustrated in Fig. 1c. However, there have been a
few attempts to use dynamical inference to solve the aperture
problem (e.g. Dimova & Denham, 2010; Montagnini, Mamassian,
Perrinet, Castet, & Masson, 2007). A recurrent Bayesian model,
where the prior is iteratively updated using the full posterior dis-
tribution was proposed by Montagnini et al. (2007) to model such
dynamics, using smooth pursuit responses as a hallmark. The vari-
ances of the likelihoods and prior in this model were estimated on
the basis of an independent set of eye movement data, unlike the
other models where these variances were free parameters. In the
Bayesian framework, the model output is a posterior distribution
that is interpreted as the information used for an optimal percep-
tual estimate of motion. Different decoding rules can be used such
as taking the mean or the maximum a posteriori (MAP) of the dis-
tribution, but such value can hardly be compared to the eye move-
ment data. There is thus the need for a realistic oculomotor back
end to the Bayesian framework to explain smooth pursuit eye
movement data and in particular to render their exact time course.
Moreover, our original article stressed the need for additional data
in order to better constraint the recurrent model. The present
study was conducted to answer these two limitations of the model.

Here, we propose an open loop two-stage model (see Fig. 1d) to
explain the dynamics of motion integration in the context of
smooth pursuit eye movements. The first step of the model is a
sensory information processing stage where likelihoods of all dif-
ferent motion information (as shown in Fig. 1a for different loca-
tions) are combined with a prior favoring slow speeds (Weiss
et al,, 2002). We implemented the different latencies of 1D and
2D likelihoods computation as well as the time constant of the
recurrent Bayesian network, assuming that such sensory informa-
tion stage corresponds to motion processing done in area MT for
smooth pursuit (see Lisberger (2010) for a review). The likelihood
functions for 1D and 2D and prior are assumed to be Gaussian. The
next stage implements the sensorimotor transformation generat-
ing the smooth pursuit response as output by taking the maximum
a posteriori (MAP) as a decision rule applied to the Bayesian Pos-
terior and using it as input. For simplicity, we model the dynamics
of motion integration in an open-loop phase mode, ignoring the
oculomotor feedback (dotted line). A main objective of the study
was to determine the model parameters from a set of “pure” 1D
and 2D stimuli and test it against a full set of tilted bars, presented
at different contrast and speed values. In addition, our implemen-
tation of the oculomotor plant attempts to take into account the
directional anisotropies affecting smooth pursuit as well as the

possible non-linearities due to the use of extended line drawings
instead of the classical moving dots. Our two-stage model could
reproduce in considerable detail the individual mean eye velocity
traces for subjects tracking tilted lines. In particular, we could mi-
mic the transient directional bias due to the aperture problem and
the dynamic motion integration as its solution as well as its sensi-
tivity to different low-level image attributes.

2. Methods
2.1. Experimental methods

To estimate both likelihood and prior variances for the recur-
rent Bayesian model, as well as to tune the parameters of the ocu-
lomotor plant, we performed a new set of experiments. Eye
movements were recorded from two observers, both authors (AM
and GM) and naive subjects (JD (experiment 2) & AR (experiment
3 - varying contrast)) using the ReX software package running on
a PC with the QNX Momentics operating system. The ReX PC con-
trolled both stimulus presentation and data acquisition (see details
in Masson, Rybarzcyk, Castet, & Mestre, 2000). Stimuli were gener-
ated with an Sgi Octane workstation and back-projected along
with the red fixation point onto a large translucent screen
(80 x 60°) using a 3 CRT video-projector (1280 x 1024 pixels at
76 Hz). The peak luminance of the stimuli for all experiments
was of 45 cd/m?. We have divided the conditions into: (i) a contrast
set, with stimuli moving at a steady velocity of 7°/s for three differ-
ent contrast conditions (10%, 30% and 90%) against a gray back-
ground and (ii) a velocity set, described as stimulus moving at
100% contrast for three different speeds (5°/s, 10°/s and 15°/s)
against a dark background.

For all experiments, observers had their head stabilized by chin
and forehead rests. Each trial started with the presentation of a fix-
ation point for a random duration of 600 + 100 ms. Observers were
required to fixate within a 1° x 1° window. The fixation point was
then extinguished and the motion stimulus was presented after a
350 ms blank. The object moved for 500 ms. Observers were in-
structed to track the object center and trials were aborted if eye
position did not remain within a square window of 5° width, lo-
cated at the object center. All conditions were randomly inter-
leaved to minimize cognitive expectations and anticipatory
pursuit. We collected a minimum of 80 and a maximum of 100 tri-
als per condition for each observer over several days.

Vertical and horizontal position of the right eye was recorded at
a sampling rate of 1 kHz by means of the scleral eye coil technique
and low-pass filtered (Collewijn, van der Mark, & Jansen, 1975).
Eye-position data were linearized, smoothed with a spline interpo-
lation (Busettini, Miles, & Schwarz, 1991) and then differentiated
to obtain vertical and horizontal eye-velocity profiles. After visual
inspection using MATLAB, we used a conjoint velocity and acceler-
ation threshold to detect and remove saccades (Krauzlis & Miles,
1996). Latency of each trial was computed for both horizontal
and vertical eye-velocity profiles using an objective method
(Krauzlis & Miles, 1996; Masson & Castet, 2002). Oculomotor traces
were aligned to the stimulus onset. An offline inspection was done
to eliminate outlier trials (less than 5%). The outlier trials are those
in which saccades could not be eliminated without excluding the
majority of the trial or in which high levels of noise exist during
fixation and persist during pursuit.

2.2. Experiment 1: pursuing pure 1D and pure 2D stimuli

In order to estimate the initial prior and likelihood variances of
the Bayesian inference from the smooth pursuit responses of pure
1D and pure 2D stimuli, subjects were asked to pursue “pure 1D”
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(48° long line) and “pure 2D” (blob) stimulus. The “pure 2D”
stimulus is a central blob with Gaussian luminosity profile
(standard deviation ~0.2° of visual angle). The 48° long vertical
has terminators far in the peripheral visual field and thus their
influence was assumed to be limited. Therefore this stimulus can
be approximated to a “pure 1D” stimulus. The target was moving
horizontally to the right or left, for both contrast and velocity sets
of conditions.

2.3. Experiment 2: effect of line length on smooth pursuit

We investigated the effect of line length on different properties
of smooth pursuit. Latency and eye velocity during either initial
acceleration or steady-state time windows provide an account of
the oculomotor dynamics in the smooth pursuit response. Keeping
the edge motion direction and orientation constant, we varied line
length to tune the oculomotor gain parameters in the model. The
stimuli were a blob (control condition) and vertical lines of lengths
5°, 10°, 20° and 48° moving horizontally rightward or leftward,
with three different contrast values.

2.4. Experiment 3: directional anisotropies in initial and steady-state
velocities

To define horizontal and vertical oculomotor plants of the model,
we needed to evaluate any directional anisotropies and consider
them while tuning plant parameters. This is particularly important
for a model where several parameters are estimated from the vari-
ance of the motor responses. To do so, we used a line of length of
17°, moving orthogonal to its orientation in four cardinal and four
diagonal directions. These eight motion directions were presented
interleaved, at three contrast (10%, 30% and 90%, fixed speed: 7°/s)
values and three speeds (5, 10 and 15°/s, 100% contrast).

2.5. Experiment 4: pursuing a tilted line

We compared the model eye velocity traces with human smooth
pursuit responses obtained with a tilted line for which initial per-
ceived directionis biased towards the orthogonal axis. Subjects were
instructed to track a 45° tilted line (length: 17°) translating horizon-
tally, either rightward or leftward. Such 45° tilted line was presented
at three different speeds (5, 10 and 15°/s) and contrast (10%, 30% and
90%). All conditions were presented interleaved.

2.6. Mathematical methods: tuning the Bayesian recurrent model

The variances of the likelihood functions were estimated from
smooth pursuit data. Assuming that variance in smooth pursuit
response almost entirely comes from the sensory source (Osborne,
Lisberger, & Bialek, 2005), the variance of the smooth pursuit
responses to a reference stimulus (i.e. either “pure 1D” or “pure
2D”) was considered as the posterior variance and used to estimate
respective likelihood variance and prior variance. The prior was
assumed to favoring slow speeds. This estimation of likelihood
variance was done for different speeds since we know that speed is
not homogeneously represented in MT (DeAngelis & Uka, 2003) as
well as for different contrasts since their parameters are known to
influence both perceived direction (Lorenceau, Shiffrar, Wells, & Cas-
tet, 1993) and pursuit initiation (Spering, Kerzel, Braun, Hawken, &
Gegenfurtner, 2005) . We used the mean eye velocity measured in
a 40 ms time interval centered at the peak acceleration time as an
approximate estimate of the posterior distribution variance consid-
ering that the open loop dynamics might better reflect the initial
posterior function (Montagnini et al., 2007).

As noted in the introduction, the visual stimulus has 1D (edge
related) and 2D (terminator related) motion information. We as-

sume both of them to be independent and Gaussian distributions.
If vg is velocity of the stimulus, the likelihood function L; for the
edge-related information (1D) in velocity space (z, ) is given by

1 ((vx — vo) cOS 0 + vy sin6)? .
L =7 exp < 202 (See Fig. 6) (1)

where Z is the partition function (used in this section, for all distri-
butions), 0 is the orientation of the line relative to the vertical, taken
as positive in anti-clockwise direction and o, is the standard devi-
ation of the speed in the orthogonal direction to the line. The like-
lihood function L, for the terminator-related information in velocity
space (1, v) is given by

1 (vx — vo)* + 02
L =7 exp (— 20 (2)

where ¢, is the standard deviation of the speed. The overall likeli-
hood function is the product of the two likelihoods 1D and 2D
(since, both are assumed to be independent):

L(vy, vy) = Li(vx, vy)La(0x, vy) 3)

Assuming a prior favoring slow speeds (mean centered at ori-
gin) and directionally unbiased (normally distributed with a vari-
ance oy), the initial prior Py can be written in velocity space
(v vy) @s

2 2
P, :% exp ( vy + vy) @

2
20

The likelihood function (L) is combined with the initial prior (Py)
using bayes rule to obtain the initial posterior distribution (Qo)

Qo(vy, vy) = L(vy, vy)Po(vx, vy) (5)

To obtain a read out of the distribution that is used for the later
stages a decision rule called maximum-a posteriori (MAP), in this
case equivalent to the mean of the distribution is implemented as:

(7/;7 7};) = argmax(y)h ”y)QO(Vm Uy) (6)

The posterior distribution at every instant t is used to dynami-
cally update the prior (recurrent Bayesian framework) that is used
for the next iteration which is expressed as:

Pi(vx, vy) = Qe_1(0x, ¥y) (7)
This recurrent Bayesian framework can be summarized as:
Qi(vy, vy) = L(vy, )P (05, 1y) 8)

The variance terms 63, 67 and o3 are estimated applying Bayes
rule to pure 1D and pure 2D motion stimuli (experiment 1):

Qoi(vx, vy) = Li(vy, vy)Po(vy, vy) 9)

with i=1 and 2 for 1D and 2D stimulus respectively. Given that
both the likelihoods and prior are normal distributions, their prod-
uct is also a normal distribution. Thus it is possible to write two
simple equations relating the means and variances of the three dis-
tributions involved in Eq. (9), yielding:

{MQO.%E., = 10;* + Ho0” (10)
O =01 + 0y

The values uQo; and Gégi are estimated from the oculomotor
recordings for the 1D and 2D stimulus respectively. The likelihood
mean value y; assumed to be stimulus speed 7, and prior mean Lo
is assumed to be zero, initially. The above set of equations provide
us with two values for the variance of prior one each for i=1 and
i =2 conditions. The final prior variance is taken as the average of
the two.



A.R. Bogadhi et al./Vision Research 51 (2011) 867-880 871

The evolution of the posterior across time is evaluated numeri-
cally, by means of an iterative algorithm. However, note that ana-
lytical derivations are possible given the assumption of normal
distribution (see Montagnini et al., 2007).

3. Results

3.1. Experiment 1: tuning the recurrent Bayesian model with variances
of pursuit responses to a blob or a line of varying contrast

To estimate the prior and likelihood variances of the Bayesian
inference from the smooth pursuit responses to pure 1D and pure
2D stimuli, subjects were asked to pursue 1D (48° long vertical
line) and 2D (blob) stimulus. In Fig. 2, mean velocity profiles of
pursuit responses to either a “pure” 2D (Fig. 2a) or a “pure” 1D
stimulus (Fig. 2b) of three different contrasts are shown for subject
GM. The shaded area around the smooth pursuit traces represents
the standard deviation across all trials for all times during the pur-
suit. Standard deviation of mean eye velocity computed in the peak
acceleration time window (shown in Fig 2a and b) is plotted
against contrast for the two subjects and each stimulus type in
Fig. 2C. Overall, variance of pursuit responses decreased with high-
er contrast values. In particular, with the “pure 2D” stimulus stan-
dard deviation of responses in the peak acceleration time window
regularly decreased with increasing contrast. With upright moving

lines, at very low contrast, we found a decrease in eye velocity var-
iance, which could be related to a large reduction in initial eye
velocity. A stronger variance was observed at 30% contrast for both
the subjects. The variance of the pursuit response in the peak accel-
eration time is used to estimate the prior and likelihood variances
as described in the mathematical methods. The latency for 1D
stimulus for three contrasts spans in the interval 90-110 ms,
which is lower compared to the latency for 2D stimulus (110-
160 ms). For both stimuli, we found a decrease in latency with
an increase in the contrast of the stimuli. The mean response to
the 2D stimulus is much slower compared to the 1D stimulus,
accounting for the difference in the energy of the stimuli.

3.2. Experiment 2: using effects of line length to tune the 2D
oculomotor plant

Next, we considered the effect of line length while tuning the
parameters of the oculomotor plant. We recorded smooth pursuit
responses to stimuli consisting of blob, and vertical line of varying
lengths (5°, 10°, 20°, 48°). The blob is considered to be a limiting
case and is excluded from the statistical repeated measures 2-
way ANOVA test. Fig. 3a plots mean eye-velocity profiles for blob
motion (black curve) and lines of increasing lengths. Fig. 3b-d
illustrates the changes in different parameters. Latency exhibited
a consistent dependence upon line length, in particular at low
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Fig. 2. Pursuing pure 1D and pure 2D stimulus. Mean eye-velocity profiles of pursuit responses to a blob (a) or a 48° long line (b), presented at three different contrasts.
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contrast. The statistical repeated measures 2-way ANOVA test
done indicated a significant effect of contrast (F(2,1015)=154.4;
p <0.0001) and line length (F(3,1014)=19.92; p <0.0001). There
is no interaction between the two factors (F(6,1006)=1.22 and
p <0.2923). For any given line length, higher contrast resulted in
shorter latency. The mean latency difference between blob and line
conditions was of ~75 ms for a length of 5° and a contrast of 10%
and was reduced to less than 20 ms by increasing contrast to 30%
and 90%. At high contrast (30% and 90%), line lengths above 20° af-
fected only little pursuit latency. There was a small decay to pur-
suit latency with line length in the range 5-20°. This seems to
indicate to a fast decaying type of dependence of latency on the
amount of 1D information in the stimulus.

The mean of the initial pursuit velocity in the [120, 180 ms]
time window is plotted for different contrast conditions against
line length in Fig. 3c. The ANOVA test indicated a significant effect
of contrast (F(2,1015)=113.63; p<0.0001) and line length
(F(3,1014)=41.12; p<0.0001) upon initial eye velocity. There is
no interaction between the two factors (F(6,1006)=0.9;
p <0.4946). The relationship between initial eye velocity and line
length was inverted when compared to the modulation found for
latency. Across all line lengths, higher contrast resulted in higher
eye acceleration. The difference between mean velocities for blob
and 5° long line at 90% contrast was of ~1.2°/s and increased grad-
ually when lowering contrast, from 1.32°/s at 30% contrast to 2.3°/s
at 10% contrast. Initial eye velocity increased with longer lines in
the range 5-20° and then saturated with longer bars, irrespective
of contrast.

Lastly, we analyzed steady-state tracking by measuring eye
velocity in the [320, 380 ms] time window. Steady-state eye veloc-
ity (mean + SD across trials) is plotted against line length, for the

three different contrast values in Fig. 3d. The ANOVA conducted
on steady-state eye velocity showed significant effect of line length
(F(3,1014)=7.73; p<0.0001) and an effect of contrast
(F(2,1015)=4.86; p<0.0079) at least for smaller line lengths
(=<10°) and a non-significant interaction between the two param-
eters (F(6,1006)=1.87; p<0.0823). For line lengths 5° and 10°,
higher the contrast, higher is the velocity in the steady-state. The
difference between the velocities of blob to that of 5° long line at
10% contrast (1.6°/s) decreases to (0.7°/s) at 90%. With increasing
line length above 10°, the differences in the steady-state velocity
for different contrasts cease to exist.

These results clearly indicate an effect of line length at least for
line lengths less than 20° on latency, velocities in peak acceleration
time window for any given contrast. This effect is coherent with
the size of spatial integration for human pursuit (Heinen &
Watamaniuk, 1998). These results indicate that we need to con-
sider low-level properties of the moving target such as line length
and contrast when tuning parameters of the oculomotor model.

3.3. Experiment 3: using directional anisotropies to tune a 2D
oculomotor model

We recorded pursuit responses to a single line of length (17°)
moving in different directions in order to probe directional aniso-
tropies to be considered when tuning an oculomotor model for
simulating two-dimensional pursuit responses as those obtained
with tilted lines (see Fig. 1). In the third experiment, we presented
a line (length: 17°) moving orthogonal to its orientation along four
cardinal and four diagonal directions. We collected data at differ-
ent speeds (5, 10 and 15°/s, fixed contrast: 100%) and contrasts
(10%, 30% and 90%, fixed speed: 5°/s).
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Horizontal (é,) and vertical (é,) components of smooth pursuit
responses to a line moving along the directions in the first quadrant
(0°, 45° and 90°) at two different speeds are shown in Fig. 4a.
Clearly, responses to motion along different directions exhibited
different dynamics, which were scaled with target speed. For each
motion direction, we measured latency, initial and steady-state
eye velocities of both horizontal and vertical components of two-
dimensional pursuit. The horizontal and vertical component laten-
cies of the responses along all eight directions for different speeds
are shown in Fig. 4b. We observed differences between h-latency
and v-latency for target motion along diagonal directions that were
highly idiosyncratic, as reported by Soechting, Mrotek, and Flanders
(2005). The mean initial velocity computed in the early time win-
dow [120, 180 ms] is shown in Fig. 4c. An ANOVA test revealed a
significant main effect of motion direction (Subject GM:
F(7,1888)=23.21; p<0.0001; Subject AM: F7,1769)=55.88;
p <0.0001), indicating that some directions yielded stronger eye
accelerations. However, the characteristics of directional anisotro-
pies were again highly idiosyncratic. Main effect of speed indicated
that higher speeds resulted in stronger eye accelerations (Subject
GM: F(2,1893)=42.48; p<0.0001; Subject AM: F(2,1774)=
41.61; p<0.0001). We found significant interactions between
direction and speed (Subject GM: F(14, 1872)=2.06; p < 0.01; Sub-
ject AM: F(14,1753)=8.87; p<0.0001), indicating that anisotro-
pies changed with target speed. The mean steady-state eye
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velocity was measured over the [320, 380 ms] time window and
is plotted in Fig. 4d. Again, there was a significant effect of target
motion direction (Subject GM: F(7, 1888) = 32.34; p < 0.0001; Sub-
ject AM: F(7,1769) = 89.04; p < 0.0001), indicating that pursuit had
higher gain for some directions. Interestingly, for both subjects,
such directional anisotropy disappeared at very low speed. The
interactions between direction and speed were significant. (Subject
GM: F(14,1872)=17.31; p<0.0001; Subject AM: F(14,1753)=
39.59; p <0.0001), again indicating that anisotropies in measured
eye velocity are speed-dependent.

We performed a similar analysis for smooth pursuit responses
to different motion directions, presented at three different con-
trasts. Fig. 5a plots both horizontal (continuous lines) and vertical
(broken lines) latency, for eight motion directions and three con-
trasts, for subjects GM (first column), AM (second column) and
AR (third column). Consistent with the previous experiment, both
horizontal and vertical latencies were shorter across all directions
for higher contrast values. Again, there are subject-specific differ-
ences between x-latency and y-latency for some diagonal direc-
tions (Soechting et al., 2005).

The mean initial eye velocity in the time window (120,
180 ms) is shown in Fig. 5b. There are clearly some subject-
specific anisotropies, indicating stronger eye acceleration for
some motion directions than for others. An ANOVA revealed a
significant main effect of motion direction (Subject GM:

Latency [ms]

Initial eye velocity (°/s)

— 15°%s
— 10°/s
— 5°s

Steady-state eye velocity (°/s)

300
270

Subject GM

270
Subject AM

Fig. 4. Directional anisotropies of speed. (a) Mean velocity profiles of pursuit responses to a 17° long line, moving orthogonally to its orientation along three directions (0°, 45°
and 90° shown at the top of the figure with red arrows), for two different speeds (left panel: 15°/s, right panel: 5°/s (horizontal component (é;,) - top; vertical component (é,)
- bottom)). (b) Mean horizontal (shown by solid line) and vertical (shown by dotted line) latencies, for all eight motion directions and 3 speeds. (c and d) Directional
anisotropies for initial and steady-state eye velocity, respectively. Colors indicate different target velocities. Left and right panels are for subject GM and AM, respectively.
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Latency [msec]

— 90%
— 30%
— 10%

0

Subject GM

Subject AM

270

Initial eye velocity [°/s]

Steady-state eye velocity [/s]

90 90

Subject AR

Fig. 5. Directional anisotropies of contrast. Directional anisotropies for pursuit latencies (a), initial eye velocity (b) and steady-state eye velocity (c), for three different target

contrasts. Three columns are for subject GM, AM and AR respectively.

F(7,1887)=17.38; p<0.0001; Subject AM: F(7,2137)=177.35;
p <0.0001; Subject AR: F(7960)=49.05; p<0.0001) and, again,
of contrast (Subject GM: F(2,1892)=288.66; p <0.0001; Subject
AM: F(2,2142)=40.08; p<0.0001; Subject AR: F(2965)=16.46;
p<0.0001). The main direction effect indicates that initial eye
velocity is strongly directionally anisotropic and idiosyncratic.
For example, the initial eye velocity (subject: AM) along 180° is
1.6°/s which is significantly lower when compared to the initial
eye velocity (3.63°/s) reached at the same point in time when
pursuing in the upward direction (90°). On the contrary, the effect
of contrast was directionally isotropic: across all motion direc-
tions, initial eye velocity increased with contrast. For the three
subjects, varying contrast did not change the idiosyncratic direc-
tional anisotropies. Similar results were observed with steady-
state eye velocity, as computed in the [320-380 ms] time window
(Fig. 5¢). A main effect of direction was found when performing

an ANOVA test (Subject GM: F(7,1887)=77.06; p<0.0001;
Subject AM: F(7,2137)=56.91; p <0.0001; Subject AR: F(7960) =
27.2; p<0.0001). Interestingly, the main directions for steady-
state eye velocity were different from those observed with initial
eye velocity. Again, contrast only marginally modulated steady-
state eye velocity (Subject GM: F(2,1892)=4.68; p<0.009;
Subject AM: F(2,2142)=8.24; p<0.0003) and the interaction
between direction and contrast factors was marginally signifi-
cant (Subject GM: F(14,1871)=1.99; p<0.01; Subject AM:
F(14,2121) = 2.99; p < 0.0001). However, one can notice that stea-
dy-state eye velocity was almost identical across all eight motion
directions with very low contrast (red curves). These results sug-
gest that subject specific directional anisotropies indeed exist for
different conditions (Tanaka & Lisberger, 2001) and should be
taken into consideration when tuning the parameters of the
oculomotor plant.
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3.4. A recurrent Bayesian model for dynamic motion integration

We propose a recursive extension to the Bayesian framework
(Weiss et al., 2002) to describe the dynamic integration of 1D
and 2D motion information. In the recurrent Bayesian framework
(Montagnini et al., 2007), the prior defined in the velocity space
is combined with the two independent measurement likelihood
functions (likelihood functions representing edge-related (1D)
and terminator-related information (2D)) to obtain the posterior,
which updates the prior at the end of the iteration.

3.5. Model description

The block diagram of the model is illustrated in Fig. 6. The mod-
el consists of three blocks, from left to right. The first block
describes the sensory information processing as a recurrent Bayes-
ian network and incorporates some fixed delays. The output is read
out using Maximum-A-Posteriori (MAP) rule to extract desired
horizontal and vertical eye velocity. These dynamical signals are
then converted into eye velocity by two independent oculomotor
plants.

2D likelihood

yx
1D likelihood

Recurrent bayesian network

The 1D and 2D motion information likelihoods are delayed by
ot1q4, a fixed sensory delay of 20 ms. In addition to that, the 2D
information is delayed (6to4) by a fixed lag of 50 ms. This lag results
in (50-70 ms) time delay for the initiation of encoding the true glo-
bal velocity of the stimulus which is in agreement with the dynam-
ics of motion signaling by neurons in MT (Smith, Majaj, &
Movshon, 2005). The consequence of this delay is that 1D informa-
tion is dominant in the initial stages of motion integration. It was
long enough to allow a sufficient response from the filter imple-
menting the oculomotor plant. The prior is updated with the pos-
terior at the end of each iteration step with a delay (6tg,). This delay
accounts for the transient in the MAP of the recurrent Bayesian
network. The horizontal and vertical MAP transient is also shown
in Fig. 6 as inputs to the respective oculomotor plants. The time
constant of the vertical component of the Bayesian MAP is fixed
around 65 ms with dtg, in agreement with the time constant of
the change in preferred direction as observed with a population
of MT neurons (Pack & Born, 2001; see Fig. 1c).

The recurrent Bayesian network is cascaded with a
Proportional-Derivative (PD) control model (Goldreich, Krauzlis,
& Lisberger, 1992) to mimic the oculomotor dynamics and produce
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Fig. 6. Model of recurrent inference for pursuit eye movements. The 1D and 2D motion information likelihoods are delayed by é,p and (J1p + J1p) respectively, and combined
with the prior in a recurrent Bayesian framework. The prior is updated by the posterior for every g ms. The readout of the posterior is obtained using the maximum-a
posteriori (MAP) decision rule. The transient of the horizontal and vertical components of the MAP (shown at the top and bottom in gray plots respectively for three different
contrasts 10 % (red), 30 % (blue) and 90 % (black)) are fed as inputs to the horizontal (H) and vertical (V) oculomotor plants to produce pursuit velocity traces é, and é,

respectively.
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velocity traces comparable to the smooth pursuit eye velocity
traces. The PD control essentially is a first order control system
consisting of a delay 7, along with a proportional gain k;, and deriv-
ative gain kq. The proportional gain kj, is directly proportional to
the speed error signal whereas the differential gain kq is propor-
tional to the change in error. The latency of pursuit onset for the
model is the sum of the fixed sensory delay dt14 and the variable
oculomotor delay 7.

3.6. Tuning the model parameters

Since the timing parameters in the recurrent Bayesian model
are fixed delays, the parameters that remained to be tuned were
kq, kp, 7. The delay 7 is a free parameter and its value is equal to
the latency of pursuit onset as measured in the above mentioned
experiments. Knowing both the effects of line length (Fig. 3) and
directional anisotropy (Figs. 4 and 5), we choose to tune the hori-
zontal and vertical oculomotor plant gain parameters across all
conditions (different speeds and different contrasts) with the
smooth pursuit horizontal and vertical components respectively
for a line of same length as the tilted line and moving orthogonal
to its orientation along the 45° diagonal since the initial dynamics
of the smooth pursuit response for a 45° tilted line is biased toward
the 45° direction because of the aperture problem. The fixed delay
values in the recurrent Bayesian block for the two subjects are
shown in the Table 1. The parameters of horizontal and vertical
oculomotor plants obtained for both the subjects (AM and GM)
across the different conditions are shown in Table 2. The parame-
ters are estimated using a least square error fit.

3.7. Experiment 4: model and Smooth pursuit responses to translating
tilted lines

We compared human pursuit and model using a different set of
stimuli, tilted lines, where the aperture problem results in different
initial and steady-state perceived directions, as show in Fig. 1. The
velocity traces of the model and smooth pursuit responses ob-
tained with such as 45¢ tilted line are presented for three different
contrast values in Fig. 7. After pursuit onset, there was a transient
vertical component observed for both model and the data, reflect-
ing the directional bias in the initial pursuit direction as previously
observed (Masson & Stone, 2002; Born et al., 2006; Montagnini
et al., 2006). Such bias corresponds to the shift in perceived direc-
tion due to the aperture problem. As expected, lower contrast re-
sulted in stronger vertical eye acceleration and thus stronger
pursuit bias towards the direction orthogonal to the bar orienta-
tion. Once the 2D motion information was integrated into target
motion estimation, a rapid reduction in the vertical response com-
ponent was observed, corresponding to a gradual rotation of pur-
suit direction towards the true translation direction. In the
recording time window, such steady-state bias was remarkably re-
duced when target contrast increased. The model reproduced all of
these observations. In particular, lower contrast resulted in de-
layed pursuit onset and stronger vertical responses. Interestingly,
even for higher contrasts the steady-state vertical bias didn’t can-
cel out over the time scale under investigation. The steady-state
vertical bias for the model completely disappeared at high contrast
for much longer pursuit duration (~1000 ms). The horizontal

Table 1

Timing parameter values for the recurrent Bayesian model.
Subject St1q (Ms) Stag (MS) Sty (MS)
GM 20 50 65
AM 20 50 92

component of the model response was slower as compared to that
in data, particularly during the initial 50 ms (20-70 ms of MAP
dynamics in Fig. 6) where the model responded to 1D information
alone, delaying the steady-state phase. Lastly, steady-state eye
velocity (horizontal component) of smooth pursuit responses in-
creased with contrast, in agreement with Spering et al. (2005). Root
mean square deviation (RMSD) values for the model and mean
smooth pursuit traces for a moving tilted line are shown in Table 3.
Since the model is for the open loop, we have evaluated RMSD for
duration of 250 ms, starting from 20 ms before pursuit initiation to
230 ms after pursuit initiation. The RMSD values indicate that the
model provides a quantitative description of the motion integra-
tion which is close to what is observed in smooth pursuit data,
especially in the open loop.

The horizontal and vertical components of the model responses
for different speeds are shown in Fig. 8, in comparison with human
pursuit. At pursuit onset, a transient vertical component was ob-
served for all speeds. Maximum velocity of such transient vertical
component increased with target speed, for both human data and
model, as found by Wallace et al. (2005). A slow reduction in the
vertical component leads to a steady-state bias, which again scaled
with target velocity. Model output resulted in a gradual increase in
both horizontal and vertical eye velocity with increasing target
speed, indicating that inference is further biased at high speed.
The steady-state velocity (horizontal component) of the smooth
pursuit response was accurate for lower speeds but overestimated
target speed, in particular for higher speed (15°/s).

The dynamics of the direction bias is better illustrated when
plotting initial tracking error against time (Fig. 9) for both the
smooth pursuit and the model across three contrasts. Notice that
direction biases are estimated from time 100 ms after pursuit on-
set for human tracking and time 140 ms for model output, to take
into account the 40-50 ms lag introduced in the horizontal compo-
nent of the model. The initial direction bias in the smooth pursuit
responses was highest for low contrast (10%), reaching the oblique
direction (45°, dotted horizontal line). It then decayed over time.
Such initial bias was reduced with increasing contrast, as found
previously with multiple edges objects (Wallace et al., 2005)
(Fig. 9a and b). Model output successfully reproduced these effects
about time course and contrast-dependency. However, when the
initial directional error for the model was compared with that of
the data obtained with subject AM, the initial directional bias val-
ues for the model was slightly higher for 30% and 90% contrast val-
ues and low directional bias for low contrast unlike what is
observed with the data and the model performance for subject
GM. This result was the only difference between observed and pre-
dicted values. This could be due to the significant directional aniso-
tropies found for this particular subject (Fig. 5b) that are used to
tune the model as well as the lower variances observed with blob
and upright target (Fig. 2c) that are used as inputs to the model.

4. Discussion

In the present study, we attempted to explain the dynamics of
motion integration in the context of smooth pursuit responses
using a recurrent Bayesian model. Our model has two stages. The
first stage is a sensory integration stage, implemented as a recur-
rent Bayesian loop and the second stage is an oculomotor plant.
The model takes the initial independent likelihoods of ambiguous
1D information and unambiguous 2D information as input (for
all times) and combines them with an updating prior thereby opti-
mally integrating the motion information to obtain a coherent per-
cept of object’s global motion. The dynamic MAP of the first stage is
fed into the oculomotor plant to produce the final output of the
model.
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Table 2
Best-fit parameters of the oculomotor plant model.
Oculomotor plant (X) Oculomotor plant (Y)
kp kd kp kd T
Condition (contrast and speed) AM GM AM GM AM GM AM GM AM GM
10% & 7°[s 10.66 13.74 0.22 0.07 6.56 9.88 0.26 0.05 82 80
30% & 7°[s 10.43 12.22 0.26 0.12 9.23 7.87 0.1 0.32 72 70
90% & 7°[s 9.93 13.22 0.30 0.09 8.35 9.66 0.23 0.07 62 60
100% & 5°[s 11.05 8.1 0.26 0.38 8.59 6.54 0.41 0.36 100 70
100% & 10°/s 10.12 7.89 0.31 0.42 8.22 6.51 0.40 0.37 100 70
100% & 15°/s 12.06 7.32 0.15 0.47 8.27 7.31 0.45 0.35 100 70

0 50 100 150 200 250 300 350 400 450 500 0 5:0 160 150 2b0 2;50 3|00 3I50 4:30 450 SIOO

A
M \’\f\/\/\

Subject GM
0 50 100 150 200 250 300 350 400 450 500 O 50 100 150 200 250 300 350 400 450 500

Time [ms] Time [ms]

Fig. 7. Pursuit eye velocity traces for data and the model (varying contrast). Human (right column) and model (left column) responses to a tilted line (+45°) moving at 7°/s and
presented at three different contrast (10%, 30% and 90%: red, blue and black curves, respectively). Curves are mean horizontal (horizontal é,) and vertical (é;) eye velocities.

Table 3
Root mean square deviation (deg/s) for the model output and mean smooth pursuit traces for a moving tilted line.
Subject: AM Subject: GM
Contrast (%) Horizontal component (éy,) Vertical component (é,) Horizontal component (ép,) Vertical component (é,)
10 0.87 0.27 0.57 0.12
30 1.09 0.22 0.61 0.18
90 0.81 0.21 0.60 0.12

Such Bayesian framework has been successfully applied to dynamics of motion integration. Third, they did not consider all
model perceived motion direction and speed perception (Stocker different motion information available from the images and thus
& Simoncelli, 2006; Weiss et al.,, 2002). However, these earlier ignored the role of 2D feature motions in the actual implementa-
models depart from ours in three important aspects. First, they tion of the model. Here, we extended this theoretical approach to
did not predict any significant bias at full contrast. Second, they a dynamic implementation, by recurrently updating the Prior
were static models and did not try to account for the temporal knowledge with the Posterior at the end of each iteration. A model
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Fig. 8. Pursuit eye velocity traces for data and the model (varying speed). Human (right column) and model (left column) responses to a tilted line (+45°) moving at 7°/s and
presented at three different speeds (5, 10 and 15°/s: red, blue and black curves, respectively). Curves are mean horizontal (horizontal é,) and vertical (é,) eye velocities.

describing the dynamic solution to the aperture problem is needed
to explain the characteristic time course of eye movement velocity
profiles while tracking, for instance a horizontally-moving tilted
line. Our first attempt to implement a recurrent Bayesian model
of motion integration (Montagnini et al., 2007) could not provide
a complete account of the dynamic motion integration as observed
in the oculomotor traces. The previous version of the model was
limited to a qualitative description of the tracking direction error
with arbitrary time scales, similar to a subsequent study by
Dimova & Denham, 2009, reproducing our results. Here, we
improved the Recurrent Bayesian model with an extension of
oculomotor plant as a back end in order to produce realistic eye-
velocity profiles reflecting the characteristic dynamics of motion
integration. This model not only gives an accurate qualitative ac-
count of the motion integration dynamics but also a quantitative
account that is closely comparable to the smooth pursuit responses
for different speeds and contrasts.

The final output mimics the open-loop phase of smooth pursuit
response to a horizontally-moving tilted line-stimulus. The choice
to limit the model to the open-loop phase, allows us to avoid the
computational complexity involved in updating the measurement
likelihood functions (1D and 2D) during the closed loop phase
when the oculomotor feedback is integrated in the smooth pursuit
control. This recurrent Bayesian model is equivalent to a simple
Kalman filter with a gain equal to 1 for the initial measurement

that is the same for all iterations. Further work is needed to extend
the current model to the closed-loop mode. This will need to in-
clude the effect of the positive feedback loop involved in maintain-
ing steady-state pursuit (Goldreich et al.,, 1992; Miles & Fuller,
1975). One difficulty will then be to estimate the variance of such
internal signal, building eye velocity likelihood or combining im-
age motion or pursued target estimates (Freeman, Champion, &
Warren, 2010) in head-centered coordinates.

A strong point of our approach is that the free parameters of the
Bayesian distributions (the Prior, 1D- and 2D-likelihood’s variance)
are estimated from an independent set of oculomotor data. We as-
sumed that smooth pursuit variance at the peak acceleration time
for pure 1D and pure 2D stimulus was closely related to the 1D and
2D likelihoods. The results obtained with subject AM (Fig. 9) sug-
gest that this method is not always accurate when rendering the
effects of very low contrasts. Further work is needed to compare
model outputs when estimating velocity likelihoods at different
point in time since contrast is known to affect the intrinsic dynam-
ics of motion processing, including latency and temporal dynamics
of early visual neurons (Albrecht, Geisler, Frazor, & Crane, 2002).
This would improve the model to give a better quantitative ac-
count of the dynamic motion integration that is closer to the
smooth pursuit responses.

In the sensory integration stage, appropriate internal delays
were introduced, independently for the 1D and 2D information
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Fig. 9. Direction bias in data and the model (varying contrast). Tracking direction errors for two human subjects (left columns) plotted against time. Model responses
obtained with parameters fitted for each subject with the data presented in Figs. 2-5 are plotted in the right columns. Model has been run for three different contrast values:
10% (red), 30% (blue) and 90% (black). Data are direction biases (i.e. atan (é,/é,)) measured from 100 and 140 ms after pursuit onset for human and model data, respectively, to
account for the time lag of 40-50 ms introduced in the horizontal component of the model.

processing pathways, and they were chosen in such a way that the
dynamics of the recurrent Bayesian MAP is comparable to the
dynamics of MT neurons (Pack & Born, 2001). The time for the ini-
tiation of encoding the true global velocity of the stimulus
(~70 ms) for the model is in agreement with the dynamics of mo-
tion signaling by neurons in MT (Smith et al., 2005; Pack et al.,
2004). However, such additional delay introduced in 2D velocity
likelihood computation slightly over-estimates the values obtained
in human subjects with ocular following responses. Earlier work
from our group showed that 2D-driven responses were delayed
by about 20-30 ms relative to tracking onset driven by the 1D
edges (Masson & Castet, 2002; Masson et al., 2000). Such delay in-
creased to 40-50 ms with low contrast values. Moreover, the
changes in both 1D- and 2D-driven responses observed with ocular
following when lowering contrast is highly non-linear (Barthélemy
et al., 2008). Further work will implement such non-linear effects
to make the system dynamics more realistic across a large range
of contrast or noise levels. The decay time constant (~65 ms) of

the vertical component of MAP, for a horizontally-moving tilted
line, was set in agreement with the time constant of the change
in preferred direction as observed with a population of MT neurons
(Pack & Born, 2001; see Fig. 1c¢) and results obtained at high con-
trast with tilted lines (Fig. 9) show that such values are in fact con-
sistent with pursuit dynamics.

Finally, the gain parameters of the oculomotor plant were tuned
with an independent set of data to incorporate both anisotropies
and non-linearities that can be seen in human smooth pursuit ocu-
lomotor recordings. This is unlike previous oculomotor models that
adopted a free parameter tuning strategy that would give a best fit
of the model to the data, mostly along one direction only. Clearly,
we need to better document the properties of smooth pursuit
along oblique direction and more complex trajectories (e.g.
DeSperati & Viviani, 1997; Soechting et al., 2005) in order to sim-
ulate pursuit to 2D motion trajectories. Another difficulty we
encountered is the ability of the oculomotor plant model to re-
spond to transient input such as the vertical component of the
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MAP estimate with tilted lines. Transient changes in direction often
occur in natural scenes. Moreover, as in the aperture problem, sen-
sory estimate can quickly vary over time. MT neurons can follow
these dynamics (e.g. Osborne, Bialek, & Lisberger, 2004; Pack &
Born, 2001) and primate pursuit can cope with these (Osborne,
Hold, Bialek, & Lisberger, 2007). However, we need to better model
pursuit responses to these transient changes such as illustrated in
MAP signals in Fig. 6.

To conclude, our two-stage model provides a novel approach to
bridge the gap between a well-established theoretical framework
like the Bayesian theory and the eye movement data, in modeling
the transient behavioral dynamics. Importantly, this two stage
framework can be extended to implement an independent percep-
tual mechanism operating on the posterior distribution of the
recurrent Bayesian stage. In addition, decision rules other than
MAP might be considered, possibly allowing us to take into ac-
count the posterior variance, instead of the mere maximum. Lastly,
how different decision rules can better describe different data from
the posterior distribution need to be investigated.
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