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Received 30 May 2007; received in revised form 10 October 2007
Abstract

Integrating information is essential to measure the physical 2D motion of a surface from both ambiguous local 1D motion of its elon-
gated edges and non-ambiguous 2D motion of its features such as corners or texture elements. The dynamics of this motion integration
shows a complex time course as read from tracking eye movements: first, local 1D motion signals are extracted and pooled to initiate
ocular responses, then 2D motion signals are integrated to adjust the tracking direction until it matches the surface motion direction.
The nature of these 1D and 2D motion computations are still unclear. One hypothesis is that their different dynamics may be explained
from different contrast sensitivities. To test this, we measured contrast–response functions of early, 1D-driven and late, 2D-driven com-
ponents of ocular following responses to different motion stimuli: gratings, plaids and barberpoles. We found that contrast dynamics of
1D-driven responses are nearly identical across the different stimuli. On the contrary, late 2D-driven components with either plaids or
barberpoles have similar latencies but different contrast dynamics. Temporal dynamics of both 1D- and 2D-driven responses demon-
strates that the different contrast gains are set very early during the response time course. Running a Bayesian model of motion integra-
tion, we show that a large family of contrast–response functions can be predicted from the probability distributions of 1D and 2D motion
signals for each stimulus and by the shape of the prior distribution. However, the pure delay (i.e. largely independent upon contrast)
observed between 1D- and 2D-motion supports the fact that 1D and 2D probability distributions are computed independently. This
two-pathway Bayesian model supports the idea that 1D and 2D mechanisms represent edges and features motion in parallel.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Motion processing is an essential piece of the complex
visual machinery involved in the control of our actions.
For instance, a brief and unexpected translation of a large
visual scene elicits machine-like ocular following responses
at ultra-short latencies in both humans (�85 ms) and mon-
keys (�55 ms). The initial, open-loop part of these reflexive
eye movements demonstrates many of the properties attrib-
uted to low-level motion processing (see Masson, 2004;
Miles, 1998 for reviews). Noteworthy, the earliest phase of
the ocular following shows direction reversal with
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reversed-phi motion, a phenomenon usually attributed to
linear motion computation from local spatio-temporal
changes in luminance (Masson, Yang, & Miles, 2002; She-
liga, Chen, FitzGibbon, & Miles, 2005). Tracking initiation
is also driven by the vector average of luminance compo-
nent motions in Type I plaids or patterns made of multiple
Gabor patches with different carrier drifting directions
(Masson, 2004; Masson & Castet, 2002). Altogether, these
results suggest that the very earliest phase of reflexive track-
ing initiation relies on a linear motion detection mechanism
followed by a rapid linear integration stage that pools lumi-
nance-based motion signals over a large, central part of the
visual field (Barthélemy, Vanzetta, & Masson, 2006).

However, human ocular following responses to 2D
motion stimuli such as barberpoles (Masson, Rybarzyck,
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Castet, & Mestre, 2000) or unikinetic plaids (Masson &
Castet, 2002) have a more complex behavior where two
independent components having different temporal dynam-
ics have been identified: the early component (latency
�85 ms) drives the gaze in the direction of the component
grating (1D) motion while, a later component with a
latency �105 ms rotates the tracking direction towards
the global, 2D motion direction of the pattern. This late
component seems to depend on 2D local motion cues such
as line-endings in barberpoles and blobs in unikinetic
plaids: affecting one or the other specifically changes the
late component but leaves intact the early component
(Masson & Castet, 2002; Masson et al., 2000). This com-
plex dynamics of tracking eye movements is reminiscent
of earlier psychophysical findings that, at short stimulus
duration, 2D motion direction perception is strongly biased
towards component motions (or a linear combinations of
them) while with long stimulus durations, subjects report
accurately the global 2D pattern motion direction (e.g.
Lorenceau, Shiffrar, Wells, & Castet, 1993; Yo & Wilson,
1992).

Several recent studies have found similar neuronal
dynamics at the level of macaque medio-temporal (MT)
area. With barberpole motions, direction selectivity of
MT neurons evolves over time from grating- to global
motion-driven responses (Pack, Gartland, & Born, 2004).
Similarly, characteristics of pattern selective cells gradually
emerge over �150 ms after plaid motion onset (Pack &
Born, 2001; Smith, Majaj, & Movshon, 2005). The mecha-
nism underlying this neural dynamics is still unclear. A key
point is the role of the specific 2D features present in the
images and whose motion in unambiguous. Several authors
have suggested that localized 2D features may be extracted
by some specific and delayed detectors such as end-stopped
cells (Lorenceau et al., 1993; Pack, Livingstone, Duffy, &
Born, 2003; Power & Moulden, 1992). Others have stressed
the fact that 2D features contain high spatial frequencies
that are processed by a different subpopulation of neurons
(Majaj, Smith, Kohn, Bair, & Movshon, 2002). Both mech-
anisms postulate a specific reduction of 2D features contri-
bution at very low contrast because both end-stopping and
high spatial frequency channels vanish in this range (Der-
rington & Lennie, 1984; Sceniak, Ringach, Hawken, &
Shapley, 1999).

Following this latter hypothesis, ones might conclude
that the observed latency differences between 1D- and
2D-driven responses would be explained by the different
contrast sensitivities of the neuronal mechanisms extracting
local 1D and 2D motion cues. Therefore, a critical question
is to understand the role of contrast gain control mecha-
nisms in 2D motion integration (Rust, Mante, Simoncelli,
& Movshon, 2006). In the context of tracking eye move-
ments, a first goal of this study was to record ocular follow-
ing in humans using single gratings, Type II plaids or
barberpoles at different total contrast levels in order to
probe both the contrast–response functions of early and
late tracking components and the relationships between
their latencies and contrast. We thus give a complete, func-
tional description of the gain control mechanisms underly-
ing the initiation of tracking eye movements (see also
Barthélemy et al., 2006; Masson & Castet, 2002; Sheliga
et al., 2005 for single 1D motions). Albrecht and coworkers
have brought a large bulk of evidence for a cortical gain
control mechanism that set both dynamical range and tem-
poral dynamics of monkeys’ V1 neurons (see Albrecht,
Geisler, & Crane, 2004, for a review). They found that a
single functional model (the Naka–Rushton equation, see
Naka & Rushton, 1966) could be used to fully describe
the relationships between both response amplitude or
latency and contrast (Albrecht & Hamilton, 1982; Albrecht
& Geisler, 1991; Albrecht, Geisler, Frazor, & Crane, 2002).
A similar formalism have been used to model neuronal
responses at different stages of the monkey geniculocortical
pathways (e.g. Kohn & Movshon, 2003; Sclar, Maunsell, &
Lennie, 1990) as well as for contrast–response functions
measured at both human psychophysical (Hood, Ilves,
Maurer, Wandell, & Buckingham, 1978) and behavioral
(Masson & Castet, 2002; Sheliga et al., 2005) levels. Herein,
we show that this functional description accounts for most
of the behavioral data (e.g. response latency and ampli-
tude) obtained for both 1D and 2D motion stimuli, so that
contrast gains of 1D and 2D mechanisms can be compared.
We demonstrate that such formalism is equivalent to the
quadratic approximation of the probabilistic representa-
tions of the different cue velocities, as computed in a Bayes-
ian model of motion integration (Weiss, Simocelli, &
Adelson, 2002). Still, the latency differences found between
1D and 2D signals remained fairly constant across contrast
range and types of 2D motion. We conclude that this
latency difference cannot be explained by differences in dis-
tributed velocity representations. We must therefore postu-
late the existence of a pure delay within the mechanism of
2D cues computation, such as found for end-stopping in
macaque area V1 (Pack et al., 2003).
2. Materials and methods

Most of the techniques have been described elsewhere (Masson & Cas-
tet, 2002) and will be only briefly summarized thereafter. Three subjects
(one author and two naives) participated to this study. They were all free
of neurological or eye diseases and had normal, or corrected to normal,
acuity.

Visual stimuli were generated on an Sgi Octane workstation using the
HIPS library (Landy, Cohen, & Sperling, 1984). All stimuli were 24 frames
movies loaded into memory before the beginning of a session and back-
projected on a translucent screen covering 80� · 80� of visual field of the
subject at a distance of 1 m using a video projector (resolution:
1280 · 1024 pixels at 76 Hz). In the first experiment, stimuli were type II
‘‘unikinetic’’ plaids made by adding two sine wave gratings of same spatial
frequency (0.27 cpd): a dynamic vertical grating (temporal frequency:
9.5 Hz) drifting either leftward or rightward, and a static oblique grating
(i.e. ±45� relative to horizontal). All stimuli were presented behind a cir-
cular window of 20� diameter. In the second experiment, stimuli used were
barber poles made with the same sine wave vertical grating moving left/
rightward but now presented behind an oblique (±45� relative to horizon-
tal) aperture with an aspect ratio of 3. To reduce the total number of con-
ditions, we restricted grating motion directions along the horizontal axis.
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Using two different orientations for both barber pole aperture and static
component of uniknetic plaids made that both 1D and 2D motion direc-
tions were unpredictable. It shall be noticed however that our previous
works have shown that similar temporal dynamics are observed when
rotating both grating and pattern motion directions by 90� (barber pole,
Masson et al., 2000; unikinetic plaids, Masson & Castet, 2002).

With both plaids and barberpoles, 1D (grating) motion directions were
purely horizontal while 2D (surface) motion directions were oblique and
could therefore be isolated from the vertical eye movements. In both
experiments pattern motion stimuli were interleaved with single vertical
gratings presented alone behind a 20� diameter circular aperture. Michel-
son contrast of the three different motion stimuli was systematically varied
from 2.5% to 100%. Mean luminance of both the motion stimulus and the
gray background was kept constant to �22 cd/m2. Display was gamma
calibrated by means of a lookup table.

The behavioral paradigm has been described previously (Gellman,
Carl, & Miles, 1990; Masson et al., 2000; Miles, Kawano, & Optican,
1986). Trials started with mean gray screen and a red target was back-pro-
jected at 10� to the right of the center using a laser diode. Once subject has
fixated this target for 500 ± 200 ms, it was turned off and replaced by a
central target that the subject was instructed to capture with an accurate
and brisk saccade. During the saccadic flight, central fixation point was
extinguished. Motion stimulus was presented shortly (�50 ms) after the
end of the saccade, with total stimulus duration of 200 ms, after which
the screen was blanked, ending the trial. Stimuli presentation order was
randomized and interleaved with a catch-trial where motion stimulus
was replaced by a grey screen. For each subject, we collected �150 trials
Fig. 1. Contrast–response function for single grating motion. (a) Mean (n P 12
motion, presented at different contrasts, as indicated by numbers at the right-en
used to compute the earliest change in eye position. (b) Mean (±SD) latency of
best-fit inverted Naka–Rushton function. (c) Mean (±SD) amplitude of the ea
plots the best-fit Naka–Rushton function. (d) Best-fit contrast–response functio
the time course of mean half-saturation contrast.
per condition, in several (�30) daily recording sessions. Horizontal and
vertical positions of the right eye were recorded using the scleral search
coil technique (Collewijn, van der Mark, & Jansen, 1985; Robinson,
1963). Online control of behavior, stimulus control and data acquisition
(sampling rate: 1 KHz) was done using the REX package (Hays, Rich-
mond, & Optican, 1982).

Eye position data were linearised, filtered using a spline procedure
(Busettini, Miles, & Schwartz, 2001) to remove high frequency noise and
differentiated to compute horizontal and vertical eye velocity profiles.
We report the effects of stimulus contrast upon ocular responses in two
different ways. By plotting the mean (across trial) eye velocity profiles
we illustrate the full dynamics of ocular tracking responses (e.g.
Fig. 1a). To give quantitative estimates of the input-output transfer func-
tion, we computed changes in both horizontal (Deh) and vertical (Dev) eye
position over four different time windows, lasting 20 ms and starting at 95,
115, 135 and 155 ms after stimulus onset. Thus, the latest time window
(155–175 ms) was still in the open-loop period of both late and early
response components. We plotted the mean (±SE across trials) amplitude
against contrast, for each subject and 1D/2D motion direction (e.g.
Fig. 1c). Mean (±SD) changes in horizontal and (corrected) vertical posi-
tions were computed across the different motion direction conditions after
proper rotation.

To isolate the relationship between contrast and either 1D or 2D
response components, we had to correct eye movement recordings from
two potential artifacts. First, horizontal and/or vertical ocular responses
to motion stimuli might have been contaminated by residual eye velocity
drift due to the centering saccades. We applied the same procedure as
0) horizontal eye velocity profiles of ocular responses to a leftward grating
d of the curves. The gray bar illustrates the first time window (95–115 ms)
ocular responses, as a function of grating contrast. Continuous line is the
rliest ocular responses, as a function of grating contrast. Continuous line
ns obtained for each temporal window. The inset shows, for each subject,
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developed by Miles and colleagues (see Busettini et al., 2001) to remove
this component from the stimulus-driven responses. For each condition,
we subtracted the mean eye velocity profiles and mean Deh or Dev obtained
with the catch-trial condition from those obtained with moving stimuli.
Second, we corrected for any misalignment between eye coil and visual
screen coordinate systems or other caveats that can result in a small but
significant cross-talk between horizontal and vertical eye movements, at
least in some subjects. Our strategy to disentangle grating- and pattern-
related response components is to project them onto horizontal and verti-
cal axis of eye movements. Therefore the vertical eye movements must be
free of any slow drifts due to some unspecific vertical responses that could
be observed even when presented with pure horizontal motions of a single
grating. To eliminate these spurious responses, we processed both mean
vertical eye velocity profiles and mean Dev in the following way. The mean
Fig. 2. Contrast–response functions for unikinetic plaids. (a) Vertical and ho
different contrast. Grating motion direction is leftward and plaid motion direct
(95–115 and 115–135 ms) over which changes in horizontal and vertical eye posi
(open symbols) and vertical (closed symbols) ocular responses to plaid moti
Rushton functions. Subject G.M.

Fig. 3. Temporal dynamics of contrast–response functions for unikinetic plai
(open symbols) and vertical (closed symbols) change in eye position and plaid
slice, the time windows for measuring vertical response component are shifted
similar response time epoch of the late and early component, respectively.
vertical responses obtained for a given contrast value of the single grating
motion conditions were subtracted from the corresponding mean vertical
responses obtained with a moving barberpole or plaid motion at the same
contrast level. Therefore, vertical eye velocity profiles illustrated in Figs. 2
and 4 are corrected responses. Mean vertical response amplitudes plotted
in Figs. 2b, 3, 4b and 5 are corrected responses that reflect the pure rela-
tionship between contrast and 2D-driven responses. All subsequent anal-
yses (i.e. fitting curves or computing mean and normalized response
amplitudes) were done using these corrected vertical responses.

Relationships between ocular response amplitude and contrast were
measured for each subject and for both grating (i.e. early component)
and global (i.e. late component) motion direction. Individual and mean
data across conditions where fitted with a Naka–Rushton function (Naka
& Rushton, 1966) of the following formula:
rizontal mean velocity profiles of ocular responses to unikinetic plaids of
ion is leftward and upward. The gray bars illustrate the two time windows
tions are computed, respectively. (b) Mean (±SD) amplitudes of horizontal
ons, plotted against plaid contrast. Continuous lines are best-fit Naka–

ds. From left to right are presented the relationships between horizontal
contrast, for each subject and for three pairs of time slices. For each time
by 20 ms relative to those for horizontal response component to illustrate



Fig. 4. Contrast–response functions for barberpole motions. (a) Vertical and horizontal mean velocity profiles of ocular responses to barberpoles of
different contrast. Grating motion direction is leftward and barberpole motion direction is leftward and upward. Grey bars illustrate the two time
windows, as in Fig. 2a. (b) Mean (±SD across directions) amplitude of horizontal (open symbols) and vertical (closed symbols) ocular responses, plotted
against barberpole contrast. Continuous lines are best-fit Naka–Rushton functions. Subject G.M.

Fig. 5. Temporal dynamics of contrast–response functions for unikinetic plaids. Same plots as in Fig. 3, for barberpole motion. Open and closed symbols
represent changes in horizontal and vertical positions, respectively. The same pairs of time windows are used as in Fig. 3.
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Rc ¼ Rmax
cn

cn þ Cn
50

� �

From this fit, we can estimate the contrast at the half-maximum response
amplitude (C50) and the exponent (n) of the contrast–response functions of
both 1D- and 2D-driven tracking components. Quality of each fit was as-
sessed by computing its normalized v2 value. Fits were computed for each
set of mean changes in eye positions obtained for a given motion direction.
The statistical significance of the difference between 1D and 2D fitted
parameters was tested with a Friedman’s nonparametric two-way ANO-
VA with two factors (motion direction and 1D/2D cues) (Hollander &
Wolfe, 1973). We found no significant effects of motion direction for all
parameters. Therefore, we computed mean amplitude across motion direc-
tions and fit these results with the same function. Fittings contrast–re-
sponse functions from changes in position averaged either across trials
or direction gave identical results, so this is the best-fit curve obtained
by using the mean changes in amplitude across motion directions, which
are illustrated in Figs. 1–5 and 7.

Differences in response amplitude do not necessarily reflect only the
differences in the visual processing for different contrasts, because of aniso-
tropies within the oculomotor system. Therefore, we performed the same
analysis after normalizing changes in position data between 0 and 1, across
the whole contrast range of a given condition, by mean of the following
formula:

Rnorm ¼ 1� Rmax � Rc

Rmax � Rmin

where Rc, Rmax, and Rmin are mean changes in position of responses ob-
served for a given contrast, for the largest and for the smallest responses
over the full range of contrast, respectively. Objective estimates of the
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latencies for early and late responses components were computed for each
subject and for each grating and pattern direction conditions by mean of
an objective method, which has been described earlier (Krauzlis & Miles,
1996; Masson & Castet, 2002). The relationship between mean latency
(across motion directions) and contrast were fitted with an inverted
Naka–Rushton equation, which has the following formula:

scðcÞ ¼ smax þ sshift �
cn

cn þ Sn
50

� �

where smax and sshift are the minimum latency observed at the highest con-
trast and the maximum decrease in latency, respectively. n is the latency
shift exponent, S50 is the latency shift half-saturation and c is contrast.
Both Naka–Rushton and inverted Naka–Rushton functions were fit using
the Nelder–Mead simplex algorithm (Matlab�).We used a similar proce-
dure to fit our model to the experimental data and compare the quality
of fits with those produced by applying the model of Weiss et al. (2002).
The v2 value was minimized by the fitting procedure
3. Results

We ran two successive experiments. In the first experi-
ment, plaids and single gratings were interleaved. In the
second experiment, we presented the same drifting gratings
behind either a circular window or an elongated rectangu-
lar aperture, the later forming a barberpole motion stimu-
lus with an aspect ratio of 3. Because grating motion
conditions from each experiment gave identical ocular fol-
lowing responses, we will first report the contrast depen-
dency of earliest ocular following to grating motion alone
by averaging the two data sets.
3.1. Ocular responses to single grating motion

Fig. 1a illustrates the horizontal eye velocity profiles for
one subject in response to a leftward drifting grating pre-
sented at different contrast levels. Increasing contrast
resulted in a shortening of response latency and a brisk
increase in initial eye velocity. Latency reduction rapidly
saturated as shown by the overlapping eye velocity onsets
for contrast above 20%. Fig. 1b plots response latency
Table 1
Contrast–response functions for grating, plaid and barberpole motions

Horizontal position (95–115 ms)

Rmax n C50

Single grating
G.M. 0.058 1.35 14.14
J.W. 0.045 1.58 6.14
S.J. 0.013 1.72 8.96

Unikinetic plaids
G.M. 0.038 1.89 19.14
J.W. 0.027 2.03 10.03
S.J. 0.008 2.30 15.46

Barberpoles
G.M. 0.061 1.75 13.28
J.W. 0.078 1.77 5
S.J. 0.017 2.10 11.03

Individual best-fit parameters for mean changes in horizontal or vertical posit
(means ± SD across motion directions and experiments)
against grating contrast for the same subject. Similar rela-
tionships between contrast and latency were found for all
three subjects. With the lowest grating contrast (2.5%),
latency was of 108 ± 2, 100 ± 4 and 110 ± 3 ms for sub-
jects G.M., J.W. and S.J., respectively. It decreased rapidly
as contrast increased, reaching the shortest values for mid
and high contrast levels (e.g. 100% contrast: 85 ± 1,
85 ± 2 and 88 ± 3 ms, same three subjects). The relation-
ship between latency and grating contrast was best fit with
an inverted Naka–Rushton function. The results will be
described below, together with the latencies of responses
to either barberpoles or plaids.

A sharp increase in response amplitude was observed
when grating contrast increased from 2.5% to 20%, reach-
ing saturation level with higher contrasts. This is evident
from the family of velocity profiles, showing a rapid
increase in initial eye velocity as contrast increases up to
20%. For grating contrast above 20%, initial eye velocity
profiles overlapped altogether, indicating saturation in
the initial eye acceleration. This non-linear relationship is
illustrated in Fig. 1c where mean (across grating directions)
changes in position over a (95–115 ms) time window are
plotted against contrast, for subject GM. Continuous line
plots the best-fit Naka–Rushton function. Similar data
were observed for all three subjects and Table 1 summa-
rizes best-fit parameters for each of them. Mean exponent
and C50 values were of 1.6 ± 0.2% and 9.81 ± 4%, respec-
tively. These values were very consistent across subjects
whereas the actual amplitude of the response (estimated
by Rmax) varied greatly. We performed a similar analysis
using mean normalized data to evaluate the reliability of
estimated parameters, irrespective of the absolute ampli-
tude of ocular following responses. We found similar
results: mean (±SD across conditions) C50 ranged between
17.4 ± 4.8% and 8.63 ± 3.6% (mean across subjects:
12.6 ± 5%), which is not different from the C50 estimated
from the mean raw (i.e. not normalized) changes in ampli-
Vertical position (115–135 ms)

Rmax n C50

0.032 2.78 53.15
0.031 1.80 51.91
0.013 2.56 45.79

0.038 2.03 22.47
0.072 3.17 4.55
0.020 2.11 15.55

ion over the (95–115 ms) or (115–135 ms) time windows, respectively.
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tude. Thus, idiosyncratic differences in response amplitude
have no impact on the estimate of the main parameter of
contrast gain control, its half-saturation contrast value.

Time-course of best-fit parameters illustrates the tempo-
ral dynamics of contrast gain control. Fig. 1d plots the
best-fit curves obtained for each 20 ms temporal window,
starting from 95 to 155 ms. We found a significant effect
of the time windows on C50 values, for all grating
directions (p = .0016). The inset plots the time-course of
half-saturation contrast for all three subjects. Between
the earliest and the latest time windows, mean C50 was
halved (9.8 ± 4% and 4.02 ± 1.5%, respectively). A signifi-
cant leftward shift (i.e. smaller C50) of the contrast–
response function was observed between the first and sec-
ond time windows (p = .008), but no further changes were
evident with later time windows, except for a regular
increase in the maximum response amplitude (i.e. Rmax)
due to eye acceleration. Thus, 135 ms after grating motion
onset, there is no further enhancement of contrast gain.
3.2. 1D- and 2D-driven responses to unikinetic plaids

Fig. 2 illustrates the results obtained with unikinetic
plaids when the total contrast of the pattern was varied
from 2.5% to 100%. Fig. 2a plots, for one subject, the mean
vertical and horizontal eye velocity profiles obtained when
the plaid was the sum of a leftward drifting grating and a
static oblique (+45�) grating. At high contrast, we observed
the two response components previously reported by Mas-
son and Castet (2002): an early component (latency
�85 ms) was initiated in the grating motion direction (i.e.
1D-driven component) and was followed by a late compo-
nent (latency �105 ms) that rotated the ocular tracking
toward the pattern motion direction (i.e. 2D-driven com-
ponent). At very low contrast (<10%), this late component
was absent and the 1D-driven component was delayed.
Increasing plaid contrast induced both a reduction in verti-
cal and horizontal latencies and an increase in both vertical
and horizontal initial eye velocities. Fig. 2b plots the mean
changes in horizontal (open symbols) and vertical (closed
symbols) eye position, as a function of plaid total contrast.
To take into account the �20 ms latency difference found
between early and late components, changes in horizontal
and vertical eye positions were measured over two different
time windows, (95–115 ms) and (115–135 ms), respectively.
1D-driven and 2D-driven components show different
dependencies upon plaid contrast. The early component
exhibits a steep contrast–response function, similar to that
seen with single grating (Fig. 1c). C50 values ranged
between 19.1% and 10% (see Table 1) and mean (across
subjects) C50 and exponent were of 14.87 ± 4.6% and
2.1 ± 0.2, respectively. When half-saturation contrast val-
ues for the 1D-driven responses were halved to illustrate
the relationship between 1D-driven OFR and moving grat-
ing contrast (i.e. half of total plaid contrast), the mean val-
ues obtained (7.5 ± 2.3) were not significantly different
from those found above in the single grating motion condi-
tion (p = .13).

On the contrary, there was a large difference between the
contrast–response functions of 1D- and 2D-driven eye
movements. Late, 2D-driven component showed a more
linear dependency on plaid contrast with reduced expo-
nents and very little saturation. Moreover, best-fit function
was shifted to the right. Estimated half-saturation values
ranged between 45% and 53% across subjects (mean C50:
50.4 ± 3.2%). Thus, there was a threefold increase in half-
saturation contrast values between the 1D- and 2D-driven
response components (p = .0008). Again, to check that this
difference was not due to some idiosyncratic changes in the
eye acceleration, we performed the same analysis using
normalized changes in amplitude of horizontal and vertical
positions. We found similar mean (±SD across subjects
and conditions) C50 values for both 1D- and 2D-driven
responses (15.9 ± 6% and 52.9 ± 14%, respectively). No
significant effect of motion direction was found (p = .416).

Fig. 3 illustrates the temporal dynamics of the contrast–
response functions of 1D- and 2D-driven eye movements.
For all pairs of time windows, higher contrast gains were
observed for the early, 1D-driven component (open sym-
bols). These differences remained fairly constant over the
whole open-loop period of tracking initiation, despite large
variations in the response amplitudes. Thus, difference in
contrast gain did not depend on which particular time win-
dow was chosen, as illustrated by the largely significant dif-
ference between C50 values for 1D- and 2D-driven
components with the latest time slice: 8 ± 3% and
37.7 ± 10.6%, respectively (p < .001). Moreover, ones can
see with subject S.J. that the difference in shape between
contrast–response functions cannot be explained on the
basis of the relative amplitude of 1D and 2D-driven
responses. Finally, mean C50 values were halved for 1D-
driven component between the earliest (95–115 ms) and
the latest (135–155 ms) time windows (14.9% and 7.9%,
respectively, p < .05). For 2D-driven eye movements, mean
C50 was reduced by �25% but this difference was not
significant.

3.3. 1D- and 2D-driven responses to barberpoles

Both early and late response components are elicited by
barberpole motion where a drifting grating is presented
behind a +45� tilted rectangular aperture. Earliest phase
of ocular following is driven by 1D grating motion while
later component is triggered by 2D line-endings motion
with a 20-ms time delay (Masson et al., 2000). Fig. 4a illus-
trates the velocity profiles of horizontal and vertical
responses to a barberpole motion, for the same subject as
in Fig. 2. At very low contrast (2.5%), both components
were delayed and vertical responses were almost negligible.
Increasing contrast from 2.5% to 20% resulted in a shorten-
ing of response latency and an increase in initial eye veloc-
ity of horizontal responses. No further changes were
observed for contrast above 30%. Nearly identical changes
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were observed for 2D-driven, vertical responses: a rapid
increase followed by saturation for values above 30%.
Response latencies decreased down to the values reported
earlier for this late component (�105 ms). Relationships
between latency and contrast will be further described
below.

Amplitudes of each component have been measured
over the two time windows illustrated by shaded gray bars
in Fig. 4a, and are plotted in Fig. 4b. Contrast–response
functions of early and late components were very similar,
with a steep increase followed by an asymptote for contrast
above 40%. Table 1 summarizes best-fit parameters for
both responses components and for each subject. C50 val-
ues ranged between 13.3% and 5.01% for the 1D-driven
response component and between 22.5% and 4.6% for the
2D-driven response components. There was no significant
difference between half-saturation for 1D and 2D con-
trast–response function (p = .27). Across subjects, the
mean C50 values were of 9.8 ± 4.3% and 14.19 ± 9.5%,
respectively. Moreover, half-saturation contrast for 1D-
driven component were not significantly different from
those obtained with a single moving grating presented with
a circular aperture as in the first experiment (p = .66). In
brief, 1D- and 2D-driven responses to barberpole motion
exhibit similar, steep contrast–response functions with sat-
uration for middle contrast values. This result was clearly
opposite to that found for the same time windows with
unikinetic plaids. A similar analysis was again performed
using the normalized data for each subject and condition.
Mean (±SD) C50 values were of 12 ± 5.4 and 15.6 ± 9.5,
and were not significantly different.

Fig. 5 shows the temporal dynamics of contrast–
response functions for both 1D- (open symbols) and 2D-
driven (closed symbols) phase of ocular following. Despite
Fig. 6. Temporal dynamics of contrast gain control for different 2D motions
(open symbols) and 2D-driven (closed symbols) response components to eithe
large differences in response amplitude (see Rmax, Table 1),
all contrast–response functions exhibit similar shapes, irre-
spective of time windows. For later time bins, the responses
were scaled up but the fundamental characteristics of the
relationships between amplitude and contrast remained
constant. There was a significant effect of the time window
over which C50 was estimated for the 1D-driven compo-
nents p = .031) but not for 2D-driven responses (p = .11).
For 1D-driven responses, C50 were roughly halved between
the first (95–115 ms) and the last (135–155 ms) time win-
dow (mean C50: 9.8 ± 4.3 and 4.06 ± 3.2, respectively).

3.4. Comparison of contrast dynamics between plaid and

barberpole motions

Fig. 6 plots the half-saturation contrast values (C50) of
the earliest contrast–response functions for both 1D- (open
symbols) and 2D-driven (closed symbols) ocular following,
for each subject and each type of motion stimulus. All 1D-
driven responses show a similar contrast dynamics,
irrespective of the context in which the drifting grating is
presented. When C50 was computed over the first time
bin (95–115 ms) from the grating contrast alone (and not
the total pattern contrast), we found mean (across subjects
and directions) values of 7.5 ± 2.3%, 11.9 ± 5.4% and
12.6 ± 5.2% for plaid, barberpole and grating motions,
respectively (p = .11). For 2D-driven ocular following com-
ponents, plaid and barberpole motions clearly resulted in
different contrast–response functions. For all subjects,
half-saturation contrast of responses to plaids were two
or threefold higher than for gratings and barberpoles.
Mean C50 (±SD across subjects and motion directions)
for plaids and barberpoles were of 52.9 ± 13.98% and
15.61 ± 9.61% for the first (115–135 ms) time bin, corre-
. Temporal evolution of the mean half-saturation contrasts (C50) for 1D-
r plaids (a) or barberpoles (b) for each subject.
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sponding to a threefold difference (p = .0002). We found no
difference between motion directions (p = .77). This differ-
ence in contrast gain remained significant for the two other
time windows (for instance, 155–175 ms, C50 = 37.7 ±
10.6% and 6.8 ± 3.2%, respectively, p = .0001).

To allow for a more direct comparison between the con-
trast–response functions of 1D- or 2D-driven ocular fol-
lowing obtained with either plaids or barberpoles, we
normalized the changes in position and computed the mean
across different 2D motion directions. In Fig. 7a–c, we plot
these results, together with their best-fit functions, on the
same graph for each subject. Open and closed symbols
illustrate the 1D- and 2D-driven ocular following compo-
nent, respectively, for barberpole (green) and plaid (red)
and with the earliest time bins. All 1D-driven components
were identically affected by moving grating contrast. On
the contrary, contrast–response relationships for 2D-driven
components were very different: a sluggish contrast–
response curve linked stimulus contrast and ocular
responses to plaids whereas a very brisk contrast–response
function was found for barberpoles. The difference between
half-saturation contrast values are further illustrated in
Fig. 7d, where mean C50 values are plotted together to
show the 3–5 times difference observed between barberpole
and plaid motions.
Fig. 7. Contrast–response functions for normalized changes in position. (a–c
symbols) and vertical (closed symbols) eye positions are plotted against total
subjects. Continuous lines are best-fit estimate of Naka–Rushton functions.
conditions, and each subject. Black bars, plaids; grey bars, barberpoles.
3.5. Comparison of temporal dynamics for plaid and

barberpole motions

We measured relationships between horizontal and ver-
tical latencies and stimulus contrast. We first report the
results obtained with plaid motion. Fig. 8a plots the mean
latencies (±SD, across plaid motion directions) of both
horizontal (open symbols) and vertical (closed symbols)
responses against total plaid contrast, for each subject.
At the lowest plaid contrast, latency of vertical eye move-
ments cannot be measured. At 5% contrast, mean latency
difference between horizontal and vertical responses ranged
from 29 ± 6 to 22 ± 3 ms across subjects. At the other end
of the contrast range (between 80% and 100%) this mean
difference ranged from 21.5 ± 2 and 12 ± 7 ms. Latencies
of 1D- and 2D-driven responses decayed towards different
asymptotic values, illustrating the 15–20 ms delay found
between initiations of early and late phases of ocular fol-
lowing (Masson & Castet, 2002). Mean (±SD across sub-
jects and directions) latency for horizontal and vertical
responses were of 87 ± 4 and 103 ± 5 ms, respectively
(p = .0001). This difference was not affected by motion
direction (p = .46). Similar results were observed with bar-
berpole motion (Fig. 8b). Early and late component laten-
cies exhibited a similar decay with increasing contrast. At
) Mean (±SD across directions) normalized changes in horizontal (open
stimulus contrast for barberpoles (green) and plaids (red), for the three
(d) Mean (±SD across directions) best-fit C50 are plotted for the two



Fig. 8. Contrast dynamics of ocular following latencies. For each subject, mean (±SD across directions) latencies of 1D- (horizontal) and 2D- (vertical)
driven responses are plotted against contrast, for plaid (a) and barberpole motions (b). Continuous lines are best-fit inverted Naka–Rushton functions.

510 F.V. Barthélemy et al. / Vision Research 48 (2008) 501–522
very low contrast (5%), mean (across directions) latency
difference between horizontal and vertical responses ranged
from 36 ± 13 (G.M.) and 25 ± 6 ms (J.W.). At high con-
trast (between 80% and 100%), the difference ranged
between 20 ± 1 (G.M.) and 14 ± 4 ms (S.J.). Thus, rela-
tionships between response latency and contrast converged
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towards a significant difference between asymptotic values
of �20 ms (mean across subjects and directions, 86 ± 2
and 102 ± 2 ms, for early and late, respectively,
p = .0001), confirming the previous study by Masson
et al. (2000). No significant effect of motion direction was
found on latency difference (p = .98). Moreover, no signif-
icant difference was found between latencies of late compo-
nents elicited by either plaid or barberpole motion
(p = .435).

To illustrate that both types of 2D motion stimuli pro-
duced similar temporal dynamics, we plotted 2D latencies
against 1D latencies, for all contrast values (Fig. 9) and
for plaid (closed symbols) and barberpole (open symbols)
motions. Diagonal dashed lines illustrate the unity relation-
ship. One parallel line is also plotted for each graph, with a
vertical offset computed from the individual mean latency
difference across contrast and motion types, as indicated
by numbers. For the three subjects, these mean (±SD
across directions and contrasts) latency differences were
of 26 ± 5 (G.M.), 21 ± 6 (J.W.) and 18 ± 8 ms (S.J.) with
plaids and of 24 ± 9 (G.M.), 19 ± 5 (J.W.) and 19 ± 7 ms
Fig. 9. Timing difference between 1D- and 2D-driven ocular following. For ea
for each stimulus contrast. Open and closed symbols are results for barberpo
relationship without or with a constant latency difference shift, as indicated b
(S.J.) wit barberpoles. The fact that all pairs were scattered
along these lines indicates that early and late response have
similar dependencies on contrast but are delayed by a fixed
amount. Nevertheless, the latency difference was somewhat
larger (but also more variable) with low-contrast motions
(right-end of the curves).

To fully describe the contrast dynamics, we fitted
inverted Naka–Rushton functions (continuous lines in
Fig. 8) to the latency-contrast data and estimated several
parameters (see Table 2): the overall changes in latency
(sshift), the exponent of the latency decay (n) and the latency
shift half-saturation (S50). Again, we obtained similar
parameters for either single grating, plaid or barberpole
motion when considering the earliest component of ocular
following. Average (±SD) S50 were of 8 ± 1.5%,
6.4 ± 0.8% and 7.5 ± 0.3%, respectively. Average sshift were
of 20.2 ± 4.8, 34.2 ± 7.6 and 22 ± 4.6 ms, for the same con-
ditions, indicating a similar decay of latency with increas-
ing contrast, irrespective of type of motion stimulus.
Lastly, exponents of the inverted Naka–Rushton functions
were also very similar (see Table 2).
ch subject, horizontal and vertical latency are plotted one against another,
le and plaid motions, respectively. Oblique dotted lines indicate the unity
y numbers.



Table 2
Best-fit parameters for mean changes in horizontal or vertical latencies of ocular following responses to grating, plaid and barberpole motion stimuli

Horizontal latency Vertical latency

smax sshift e S50 smax sshift e S50

Single grating
G.M. 110 24 1.66 7.7
J.W. 101 16 1.57 9.6
S.J. 111 22 1.96 6.7

Unikinetic plaids
G.M. 122 36 1.80 6.92 141 42 1.20 27.21
J.W. 110 26 2.37 6.73 125 23 3.03 19.50
S.J. 132 41 2.41 5.50 144 49 1.19 21.56

Barberpoles
G.M. 111 27 2.04 7.9 165 36 1.80 6.92
J.W. 102 18 1.70 7.4 136 35 1.44 7.88
S.J. 109 21 1.93 7.3 157 21 1.53 7.26
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As illustrated by continuous lines and closed symbols in
Fig. 8a and b, relationships between latencies of 2D-driven
responses and contrast were different between plaids and
barberpoles. With barberpole stimuli, the latency were
reduced by �31 ms over the 2.5–100% contrast range
(mean sshift: 30.7 ± 8 ms) and mean half-reduction contrast
(S50) was of 7.3 ± 0.5% which is not significantly different
from the values observed for the 1D-driven component.
With plaids, however, mean (±SD across subjects) estimate
of S50 were threefold higher for 2D- than for 1D-driven
responses (22.8 ± 4% and 6.4 ± 0.8% respectively,
p = .005). The comparison between best-fit parameters
obtained for either response latency (S50 and exponent)
or amplitude (C50 and exponent) shows that the two func-
tions have similar slopes and half-saturation contrast. This
result indicates that both latency and amplitude followed
the same dependency upon contrast, albeit with a different
gain factor. This is also supported by the comparison
between half-saturation contrast values obtained with
either 1D- or 2D-driven responses with plaids: contrast–
response functions for latency and amplitude exhibited a
threefold increases in either S50 or C50, respectively.

3.6. Factoring out latency from amplitude effects

Estimating response amplitudes from changes in eye
position may confound changes in latency with changes
in initial eye velocity due to contrast level. Eye velocity pro-
files displayed in Figs. 2a and 4a show that increasing con-
trast both lowered response latency and increased initial
eye velocity as indicated by the different slopes of eye veloc-
ity profiles. We computed eye acceleration from mean eye
velocity profiles, for each stimulus condition. Fig. 10 illus-
trates these acceleration profiles, for two subjects with
either unikinetic plaids (Fig. 10a) or barberpoles
(Fig. 10b). Left-side plots are horizontal eye acceleration.
Increasing contrast from 2.5% to 10% resulted in a sharp
increase of initial horizontal acceleration. Higher contrast
(range displayed 10–40%) did not further boost the initial
eye acceleration. Right-hand plots show eye acceleration
profiles along the vertical direction, i.e. the acceleration
of 2D-driven components. With unikinetic plaids, increas-
ing contrast from 2.5% to 40% resulted in regularly spaced
profiles, indicating slowly increasing initial eye accelera-
tion. On the contrary, a similar contrast increase resulted
in a sharp increase in eye acceleration (contrast range:
2.5–10%) followed by saturating ocular responses for con-
trast higher than 20%. Thus, increasing total contrast of
either a plaid or a barberpole resulted in different changes
in initial eye acceleration.

We quantified this difference by plotting the mean peak
of acceleration against contrast for both horizontal and
vertical components (Fig. 11) and fitting the results with
Naka–Rushton functions for each subject (Table 3). We
found that, for plaids, C50 values were much larger for ver-
tical (i.e. 2D-driven) than for horizontal (i.e. 1D-driven)
eye acceleration (means ± SD: 25.3 ± 13 and 4.8 ± 0.7,
respectively). No significant differences were found between
best-fit exponents. On the contrary, with barberpoles, C50

values were only marginally larger for vertical (i.e. 2D-dri-
ven) than for horizontal (i.e. 1D-driven) response compo-
nents (means ± SD: 4.8 ± 1.3 and 3.1 ± 0.4, respectively).
Again, exponents were not significantly different between
conditions. Overall, best-fit parameters obtained for hori-
zontal eye accelerations were not significantly different
between single grating, unikinetic plaid and barberpole
motions. Thus, results obtained with initial peak accelera-
tion were very similar to those reported above with
response amplitude over fixed time windows. Lastly, we
analyzed the time of occurrence of the acceleration peak,
across the whole range of contrast. Time-to-peaks, for each
condition and observer, are plotted against contrast in
Fig. 11a and b and were well fitted with the inverted
Naka–Rushton function. We found a mean difference
between times of occurrence for horizontal and vertical
acceleration peaks of 22 ± 6 (plaid patterns) and
21 ± 6 ms (barberpoles), confirming the latency analysis
reported above. Such difference remained largely constant
across the contrast range investigated as shown by the lar-
gely parallel best-fit functions.



Fig. 10. Acceleration profiles for horizontal and vertical eye movements. For two subjects (G.M., J.W.), eye acceleration profiles are plotted for six total
contrast values for both horizontal and vertical directions. Calibration bars indicate an acceleration of 50�/s/s for all plots. Ocular following responses to
either plaids (a) or barberpoles (b) with both pattern motions along the rightward-upward directions.
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3.7. A two-pathway Bayesian model of motion integration

To summarize, we have shown that 1D- and 2D-driven
ocular following responses can have very different contrast
dependencies but exhibit a remarkable latency pattern:
both 1D- and 2D-response latencies decay with increasing
contrast but 2D-driven responses are delayed by �20 ms
relative to 1D-driven responses, irrespective of the shape



Fig. 11. Relationships between either acceleration peak or time-to-peak and total contrast. (a) Ocular following responses to plaids (a) or barberpoles (b).
Continuous lines are best-fit Naka–Rushton function (acceleration peak) or exponential decay function (time-to-peak). For relationships between time-to-
peak and contrast, data from each subject are overlapped to illustrate variability across subjects.

Table 3
Individual best-fit parameters for mean acceleration peak in horizontal or vertical directions, respectively, for each type of motion stimulus

Horizontal acceleration peak Vertical acceleration peak

Rmax n C50 Rmax n C50

Single grating
G.M. 160 2.32 2.58
J.W. 103 3.23 2.41
S.J. 34 1.72 2.86

Unikinetic plaids
G.M. 141 2.14 5.64 109 2.03 12.44
J.W. 101 1.97 4.81 93 1.33 39.27
S.J. 41 1.61 4.13 33 1.27 24.05

Barberpoles
G.M. 160 1.23 3.52 105 1.83 6.21
J.W. 132 1.84 2.90 132 2.54 3.52
S.J. 64 1.56 2.72 53 1.67 4.70
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of their contrast–response functions. In particular, 1D- and
2D-driven responses to barberpole motion have identical
contrast–response relationships for either amplitude or
latencies but still a constant difference of �20 ms was
found between their latencies. A two-pathway model of
motion integration (e.g. Löffler & Orbach, 1999; Wilson,
Ferrera, & Yo, 1992) could easily explain the latency differ-
ence by having a fixed additional delay within the 2D path-
way. The parallel latency–contrast relationships found for
both 1D and 2D responses argue for a single mechanism
that sets response latency independently of response ampli-
tude (Miles et al., 1986). Moreover, the fact that 1D and
2D contrast–response functions were very similar for bar-
berpole motions support a single contrast gain control
for 1D- and 2D-driven responses. However, we still need
to explain the flatter contrast–response function of 2D-
responses to plaids when compared to barberpoles,
although total contrast of 2D features (blobs and line-end-
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ings) was similar. Assuming a single 2D extraction mecha-
nism we propose that a flatter contrast–response function
reflect a less reliable 2D velocity estimates in the former
case (see Hürlimann, Kiper, & Carandini, 2002, for a sim-
ilar approach with the perceived speed of grating motion).
To test such hypothesis, we designed a modified version of
the Bayesian model of motion integration proposed by
Weiss et al. (2002).

3.7.1. Modeling the oculomotor response

The oculomotor response was modeled as the response
of an ideal observer using a probabilistic representation
of motion information, which is computed using Bayes’
Theorem. Such a model of motion integration assumes that
the different motion cues present in the flow of images are
independently represented by different probability distribu-
tions in the velocity space (velocity likelihoods). The uncer-
tainty about the velocity of a given cue is reflected by the
variances of the distribution along the different directions
(Simoncelli, Adelson, & Heeger, 1991; Simoncelli & Hee-
ger, 1998). The stimulus velocity is then inferred by multi-
plying these velocity likelihoods with an a priori knowledge
known as a prior distribution in the same velocity space.
This product is a posteriori distribution. Weiss et al.
(2002) proposed that such prior distribution takes the form
of a Gaussian distribution centered onto the null velocities.
The best estimate of target velocity is then given by the
maximum of the a posteriori probability distribution
(MAP). Their model renders many of the misperceptions
(i.e. biases in direction or speed perception) observed with
plaid or line motions and how they vary with contrast.
Similarly, applying such a Bayesian model to ocular fol-
lowing assumes that initial amplitude of oculomotor
responses is proportional to the target velocity as read
out from the a posteriori distribution. Response dynamics
(i.e. relationships between amplitude and latency and con-
trast) can then be explained by the dynamics of this distrib-
uted representation when using a linear population
decoding mechanism such as a vector average (Priebe &
Lisberger, 2004; Takemura, Inoue, Kawano, Quaia, &
Miles, 2001).

3.7.2. Extracting 1D and 2D motion cues

A major change with the model of Weiss et al. (2002) is
the assumption that 1D and 2D features are extracted inde-
pendently through two simple mechanisms with different
delays. This architecture is consistent with our findings that
there is a nearly constant 20 ms timing difference between
1D- and 2D-driven response components and that both
latencies follow similar dependency upon contrast. Extract-
ing 2D motion through some non-linear operators is also
needed to reconstruct barberpole and unikinetic pattern
motion as only one single 1D motion was present in all
stimuli and therefore that the IOC rule cannot be applied
(Löffler & Orbach, 1999). As in Weiss et al. (2002), the
motion extraction stage was based on a generative model
of the full-field translation of the visual scene, which may
be related to classical image processing technique (see Fleet
& Weiss, 2005, Chapter 15). One-dimensional motion input
was computed after low-pass filtering in space and a two-
point differentiation in time. Two-dimensional motion cues
were extracted by selecting local maxima through a non-
linear operation (see Appendix A). Such operation is
similar to the filter–rectify–filter scheme proposed for
extracting texture cues and computing their motion
(Wilson et al., 1992). More important, characteristics of
1D and 2D motion extraction stage were kept fixed when
processing all images so that likelihoods were computed
in exactly the same way for all motion stimuli. Another
key point here is that no specific contrast gain control
mechanism was implemented. Likelihoods for 1D and 2D
cues are illustrated in Fig. 12b in a polar plot with log-scale
for the probability value.

3.7.3. Contrast–response functions and parallel, distributed

representations

Increasing the contrast was modeled by proportionally
decreasing the noise’s standard deviation. High contrast
values thus resulted in a sharper a posteriori probability
distribution (Fig. 12c) for both 1D and 2D pathway.
Clearly, the a posteriori 2D distributions were centered
onto the actual 2D velocity of the moving patterns. Such
a direction cannot be extracted from 1D distributions since
patterns were made with only one edge motion. At low
contrast, very different distributions were observed between
plaid and barberpole motions. Line-endings motion still
produced a narrow distribution centered near the actual
velocity (vx = vy = 1) of the motion input. On the contrary,
for the same total contrast (10%), an unikinetic plaid
resulted in a very broad distribution whose mean value
was centered onto a much slower velocity. We fitted our
model to the average normalized data to estimate the val-
ues of the two model parameters that would best render
the various relationships between ocular response ampli-
tude and contrast.

Results are illustrated in Fig. 13a and c where mean nor-
malized amplitude of the horizontal and vertical responses
are plotted against contrast, for each type of motion stim-
ulus. Continuous lines are best-fit contrast–response func-
tions computed with our model. Fig. 13a illustrates both
data and model for the 1D-driven component. The best
v2 values were obtained for r values between 5.8 and 7.4
for grating motion and of 18.3 and 5.3 for 2D motion with
either plaids or barberpoles, respectively. Best-fit C50 were
of 9% (grating), 13.9% (plaids) and 9.3% (barberpole),
which are not significantly different from the estimates
obtained with the Naka–Rushton function (see Table 1).
In the same vein, for 2D-driven responses, best-fit C50 val-
ues were of 53.2% and 11.6%, for plaids and barberpoles,
respectively. Again, these estimates were very similar to
both those given in Table 1. Of particular interest, it must
be noticed that using identical a priori hypothesis (i.e. iden-
tical 1D and 2D filtering and Prior distributions), we
obtained a similar ratio between C50 of either pathways



Fig. 12. A two-pathway Bayesian model. The three computational steps to extract parallel, distributed representations of 1D and 2D motion cues are
illustrated for a plaid (left-hand panels) and a barberpole (right-hand panels). (a) Outputs of the initial filtering stage extracting 1D and 2D motion
features. (b) Likelihood distributions in the velocity space (vx,vy) are plotted for each pathway, together with a common prior distribution centered at
(0,0). (c) A posteriori probability distributions of 1D and 2D motion signals at both low (10%, top row) and high (40%, bottom row) contrast.
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for both unikinetic plaids (best-fit ratio: 3.8; mean observed
ratio: 3.6) and barberpoles (best-fit ratio: 1.2; mean
observed ratio: 1.3).

Although our algorithm is very simple and performed
quite well to fit experimental data (Fig. 13), it is analytically
intractable. As in Weiss et al. (2002), we may assume that
the log-likelihood is quadratic. Assuming Gaussian distri-
bution for likelihoods, we can analytically demonstrate
that a Naka–Rushton function with exponent of 2 will nec-
essarily fit our contrast–response functions. In fact, the a

posteriori log-probability distribution function may then
be written as:

log P ð~vjiÞ ¼ � log Z � 1

2
C2 � ~v�~vok k
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þ ~vk k2

r2
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ð1Þ
where Z is a normalization constant which does not depend
on target velocity,~vo and r are, respectively, the mean and
standard deviation of the likelihood distributions and rp is
the Prior’s standard deviation. One should note that the
Maximum A Posteriori (MAP) is strictly equal to the mean
for Gaussian distribution. This is therefore equivalent to
compute the vector average of the different motion signals
present in the image. The solution of the Ideal observer
satisfies:
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Hürlimann et al. (2002) suggested a similar formulation.
The quadratic approximation involves necessarily that all
contrast–response functions follow a Naka–Rushton func-
tion with exponent of 2. It should be noted that these func-
tions are ideal to model contrast–ocular response
relationships because they are monotonous functions (in-
crease contrast should give an increase in response), give
no response for 0 contrast (a zero contrast stimulus should
give a null ocular response) and saturate to the actual max-
imal response amplitude (Masson & Castet, 2002; Sheliga
et al., 2005). With an exponent of 2, they have only one free
parameter: the contrast at half saturation C50. In a Bayes-
ian framework, the value of this parameter corresponds to
the point where a priori and likelihood information are bal-



Fig. 13. Model fitting of contrast–response functions. The mean normalized change in horizontal (a) and vertical (c) position are plotted as a function of
contrast of 1D and 2D motion signals, respectively. Continuous lines plot the best-fit model output. Broken lines plot the best-fits obtained when
constraining a Naka–Rushton function with an exponent of 2. Each motion stimuli are presented with different colors. The best-fit estimates of half-
saturation contrast (C50) are plotted against the parameter K to illustrate the time course of contrast dynamics for both 1D- (b) and 2D-driven (d) ocular
response components.
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anced. Moreover, the tangent of this function at the C50 va-
lue (where the ocular response approaches the linear re-
gime) crosses the abscissa at the origin (or at a contrast
value of 1� 2

n

� �
C50 for an exponent of n). The same dataset

was fitted with a constrained Naka–Ruston model (with
n = 2). Best-fits are illustrated in Fig. 13a and b as broken
lines. No significant difference was found between the com-
plete and reduced model even for the 2D cues with the bar-
ber pole stimulus, which is characterized by a bimodal
velocity likelihood. This suggests that more important than
the actual shape of the velocity likelihood, it is its first two
moments that are crucial for motion integration.

3.7.4. Temporal dynamics

A single non-linear threshold mechanism cannot explain
the 20-ms time difference between 1D and 2D components
since it is independent upon contrast and similar for bar-
berpoles and plaids despite the different contrast–response
functions. However, we found that the relationship
between latency and contrast can be best fitted with an
inverted Naka–Rushton function. This model, relating
the noise in the 1D and 2D likelihoods and the latency is
similar to the trigger mechanism originally proposed by
Miles et al. (1986) for ocular following in monkeys. Lastly,
when integrating in a longer time window Dt and assuming
that noise is independent over time, we found that under
the quadratic approximation, C50 is inversely proportional
to Dt (see also Weiss et al., 2002). With rp being fixed, we
can estimate the effects of temporal integration on both
1D- and 2D-contrast–response functions as found for eye
movements (Figs. 1 and 6). Fig. 13b and d plots the best-
fit C50 values obtained with our model when varying the
width of the integration window (K) following the formula:
C2

50 ¼ C2
50;i=K where C50;i is the initial half-saturation values

obtained for a small, arbitrary integration window (Dt) and
K is an increasing number of (Dt). We obtained a hyper-
bolic decay of C50, similar to the effects of temporal inte-
gration upon contrast dynamics as observed with both
single gratings (Fig. 1), plaids and barberpoles (Fig. 6).
Thus, our model accounts for the temporal dynamics of
contrast–response functions by varying only one parameter
that reflects the time scale of motion integration.
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4. Discussion

The present study further demonstrates that the initia-
tion of short-latency ocular following reflects the dynamics
of motion integration. First, we show that early and late
tracking components have similar temporal dynamics with
different 2D motion stimuli such as plaids and barberpoles.
This suggests that the temporal dynamics of late ocular
tracking, and therefore of, presumably, the neural solution
for 2D motion integration is independent on the type of 2D
cues present in the motion stimulus. Second, we demon-
strate that this delayed dynamics cannot be explained on
the sole basis of different contrast sensitivities: different
contrast–response functions yield to nearly identical tem-
poral dynamics. Third, we show that a two-pathway Bayesian
model of motion integration render most of these results
with a very small set of parameters. In particular, having
different contrast–response functions reflect the dynamics
of independent distributed motion representations fed by
1D and 2D motion inputs and their evolution with time.
A single 2D features motion processing was used for
all motion stimuli. Assuming a fixed timing difference
between 1D and 2D-driven responses, the model could also
take into account the temporal dynamics of motion
integration.
4.1. Temporal dynamics of 2D ocular tracking

When presented with either unikinetic plaids or barber-
poles at full contrast, ocular responses can always be
decomposed into an early component which is driven by
grating motion at latency �85 ms and a late component
which is elicited �20 ms later and deviates tracking
towards the 2D global motion direction. We call them
1D- and 2D-driven ocular following components. This
temporal dynamics is independent on how global motion
is computed since latencies of the 2D-driven component
in both conditions are strictly similar over a large contrast
range. Moreover, the latencies of 1D- and 2D-driven com-
ponents vary similarly with contrast. The latency of the
earliest, 1D-driven component rapidly decreases in a non-
linear way from �110 to �85 ms when grating contrast
increases only from 2.5% to �40–50%. To our knowledge,
this is the first description of such a very steep latency–con-
trast relationship for ocular following in humans. Miles
et al. (1986) reported similar results in macaques, albeit
on a different range of latencies (80–55 ms) as ocular fol-
lowing responses are faster in monkeys. The 2D-driven
component is delayed by �20 ms at high contrast, for both
barberpoles and plaids. Lowering the contrast increases the
latency of this 2D-driven component, for both types of
motion. In fact, the latencies of responses to either barber-
poles or plaids are very similar over a large range of con-
trasts, further demonstrating the similar temporal
dynamics of ocular following responses to both types of
motion stimuli. Except at the lowest contrast values
(<10%), where late components are nearly absent, this
delayed latency is inversely related to stimuli contrast.

It shall be noticed that previous work on ocular follow-
ing responses to either barberpole or unikinetic plaid
motion have shown that similar temporal dynamics was
observed when rotating grating motion by 90� (Masson
& Castet, 2002; Masson et al., 2000). In the latter condi-
tion, 1D motion direction is now along the vertical axis
while contribution of 2D motion signals can be seen, after
a 20 ms time delay, in the horizontal eye velocity profiles.
Moreover, the differences found in the modulation of 1D-
and 2D-driven responses when varying the relative contrast
between drifting and static components of an unikinetic
plaid were similar for both vertical and horizontal grating
motion directions (Masson & Castet, 2002). These results
strongly suggest that both the temporal dynamics and the
contrast dynamics of early and late components of ocular
following cannot be attributed to some anisotropies in
the oculomotor plant. Instead, we propose that the behav-
ioral differences reported herein reflect the different con-
trast dynamics of 1D and 2D biological visual motion
computations.

4.2. Contrast dynamics of 1D-driven tracking

The amplitude of these two tracking components varies
with contrast in a very robust, non-linear way. The 1D-dri-
ven component always exhibit a very steep contrast–
response function where half-saturation is reached at con-
trast �10% and that saturates for contrast above 30–40%.
In a recent study, Sheliga et al. (2005) found very similar
contrast–response functions in human using square-wave
gratings. This very steep, non-linear relationship mimics
many of the properties of the Magnocellular pathway:
LGN M-cells exhibit a steep dynamics with median C50

�10% and exponent �1.2 (Sclar et al., 1990). Lower C50

(range: 5–20%) and steeper exponents (�3) were found
for area MT neurons (Heuer & Britten, 2002; Kohn &
Movshon, 2003; Movshon & Newsome, 1996; Sclar et al.,
1990). Thus, there is a strong consistency between these
physiological properties and our behavioral results, sug-
gesting that the main driving input of the earliest phase
of ocular following originates from the Magnocellular
input to area MT. This idea is consistent with both the crit-
ical role of the MT/MST complex for ocular following ini-
tiation (Kawano, 1999; Takemura, Inoue, & Kawano,
2002) and the fact that Magnocellular-driven V1 neurons
are the main direct input to area MT (Movshon & New-
some, 1996; Yabuta, Sawatari, & Callaway, 2001). It is also
consistent with the fact that earliest phase of ocular follow-
ing is driven by linear, luminance-based 1D motion detec-
tion (Masson & Castet, 2002; Masson et al., 2002; Sheliga
et al., 2005). Finally, we found very little change of the 1D
contrast–response function when measured at different
epochs during the open-loop phase of tracking initiation.
This indicates that grating-driven ocular following exhibits
very little temporal integration and relies on a neural pro-
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cessing which sets very early and quickly its response
dynamic range. This observation is consistent with a recent
study by Albrecht et al. (2002) who showed that V1 neu-
rons of macaques exhibit a very brisk temporal dynamics
where a single—but scaled—Naka–Rushton function
could be used to fit the response characteristics measured
either very early or very late from the neuronal discharge
pattern. No similar data are yet available for monkeys
MT neurons.

4.3. Contrast dynamics of 2D-driven ocular following

The initial phase of the 2D-driven responses to unikinet-
ic plaids show a more sluggish, quasi-linear contrast–
response function with mean C50 �53%, mean exponent
�1.8 and an absence of clear saturation. At very low con-
trast, pattern-motion is almost invisible to the tracking sys-
tem and responses are dominated by grating motion.
Above 10% contrast, a significant late component begins
to be seen and increases linearly with plaid contrast. These
properties are very similar to those reported for LGN Par-
vocellular neurons, with median C50 �50% and exponent
�1.6 (Sclar et al., 1990) and this led us to suggest earlier
that late component might be primarily dependant upon
Parvocellular-like inputs to the 2D motion computation
stage (Masson & Castet, 2002). However, if 2D motion
directions were computed from a single mechanism, similar
contrast–response functions for the late phase of tracking
responses to either plaids or barberpoles should be
observed. Clearly, we found the opposite result. With bar-
berpoles, mean C50 and exponent are of �16% and �4,
respectively and responses saturate for contrast above
30–40%. The shape of these functions is very similar to that
observed for grating-driven responses. Therefore, our
results show that different contrast–response functions of
2D-driven tracking component can lead to very similar
temporal dynamics. This, together with the fixed lag
observed between 1D- and 2D-driven components over a
very large contrast range, argues against the idea that the
delayed latency of 2D-driven component can be explained
by a poorer contrast sensitivity of the underlying
mechanism.

4.4. A distributed representation of 1D and 2D motion

integration

Different computational rules have been proposed for
2D motion integration. For some 2D moving patterns,
such as Type I plaids, the vector average (VA) of the differ-
ent 1D motions can indicate the actual pattern motion
direction (Ferrera & Wilson, 1990). Within a two stages
motion computation, a detection stage extracts motion
orthogonal to each 1D edge and feeds an integration stage,
which computes the VA solution. Contrast gain control is
set at the earliest stage and therefore component- and pat-
tern-driven responses exhibit the same dependency upon
contrast. When the VA solution fails to reconstruct the true
pattern motion, the Intersection of Constraint (IOC)
(Adelson & Movshon, 1982; Movshon, Adelson, Gizzi, &
Newsome, 1985) and the 2D feature tracking (2DFT) rules
(e.g. Alais, Wenderoth, & Burke, 1997; Gorea & Loren-
ceau, 1991; Mingolla, Todd, & Norman, 1992) can always
be used to recover the true 2D pattern motion. The IOC
rule postulates similar (but scaled) contrast–response func-
tions for plaid and grating motion perception (Stone, Wat-
son, & Mulligan, 1990). This is clearly not the case herein.
Wilson et al. (1992) have suggested an intermediate model
where periodical first- and second-order motions are
extracted separately and then combined. Löffler and
Orbach (1999) subsequently demonstrated that this two-
pathway model computes the global direction of tilted lines
and barberpoles. However, although this model could
explain the temporal dynamics of motion integration, it
cannot explain why different contrast–response functions
are observed herein with either plaids or barberpoles as a
single contrast gain control is arbitrarily set early for all
motion computation (Löffler & Orbach, 1999; Wilson
et al., 1992). Finally, the 2DFT scheme proposes that local-
ized, 2D elements are extracted before that their unambig-
uous motion is computed and integrated with ambiguous
1D motion signals in order to recover surface motion
(e.g. Gorea & Lorenceau, 1991; Lorenceau et al., 1993;
Mingolla et al., 1992; Power & Moulden, 1992). In princi-
ple, the 2DFT rule postulates that 1D and 2D motion com-
putations have different gain control elements but no direct
physiological evidence is yet available to support this
assumption. In fact, we show herein that different contrast
responses are found with different 2D features, arguing
against a single gain control mechanism.

In brief, there is no unified computational framework
that could account for our behavioral results and resolves
the following apparent contradiction: the 2D-driven
tracking component to different motion stimuli can exhi-
bit both similar temporal dynamics and different con-
trast–response functions. Our computational study
shows that within a single framework one can builds inde-
pendent, distributed representations of 1D and 2D motion
and scales the ocular response differently for each type of
motion stimulus. Our model can be seen as a probabilistic
version of the two-pathway motion model. However, it
does not assume any early contrast gain control mecha-
nism (see Wilson et al., 1992). Moreover, it uses a unique
filtering and motion computation scheme for the 2D-
motion pathway, based on features extraction (see Del
Viva & Morrone, 1998; Wilson et al., 1992) and uses
one single set of parameters for all types of motion stim-
uli. This is sufficient to render the dynamics of motion
integration: the different contrast–response functions
reflect the different dispersion of motion signals within a
single distributed representation. To scale the response
amplitude with contrast, we implemented a Bayesian
model with a prior centered at the origin of the velocity
space (Weiss et al., 2002). Within this probabilistic frame-
work, parameters of the contrast–response function can
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be seen as a ratio of the variance of the Prior and Likeli-
hood distributions (see also Hürlimann et al., 2002). Such
a simple Bayesian model renders the main characteristics
of our results and opens the door for a time-dependent
model incorporating different latencies for each distrib-
uted representation. It provides a first direct evidence
for linking different computational approaches of contrast
gain control through the same set of behavioral data and
will enable further quantitative investigation of motion
integration using tracking eye movements.

Our approach differed from the model of Weiss et al.
(2002) in several ways. First, the two-pathway architecture
provides an explicit implementation of the different visual
motion mechanisms that extract either 1D or 2D motion
cues. We used a general framework for filtering images
and extracting 1D and 2D cues, using a luminance conser-
vation constraint (Perrinet, Barthélemy, Castet, & Masson,
2005). On the contrary, the model by Weiss et al. (2002)
implement the IOC rule and therefore postulates only
one pathway. This single motion pathway cannot account
for the timing difference between 1D- and 2D-driven
responses. Second, our model does not make any assump-
tion regarding both the shape of the constraint function
and the resulting contrast–response function is in general
analytically intractable. Thus, depending on the sharpness
of the likelihood probability distribution, we can obtain a
rich family of different curves. In particular, an higher kur-
tosis enables to render contrast–response functions that
would be otherwise fitted with Naka–Rushton functions
with exponents higher than 2. On the contrary, under the
assumption that log-likelihood probability follows a
Gaussian distribution (Weiss et al., 2002), contrast–
response functions would be only modeled by Naka–Rush-
ton functions with an exponent of 2 (see also Hürlimann
et al., 2002). Such assumption is obviously inappropriate
for a large family of results, in particular the ocular follow-
ing responses to barberpoles. Thus, our model was very
efficient to render individual and average behavioral data
and consequently forms a promising framework for model-
ing ocular following responses to more complex stimuli
such as center–surround interactions (Barthélemy et al.,
2006).

5. Conclusions

Using ocular following responses in humans, we have
shown that the delay between 1D- and 2D-driven responses
cannot be explained from different contrast gain controls
such as found between high and low spatial frequency
channels. On the contrary, similar temporal dynamics of
late ocular tracking can be found with different contrast–
response functions. This suggests that there is indeed an
additional delay for extracting 2D motion cues and there-
fore computing the 2D global motion of a visual surface.
Moreover, using a Bayesian model of motion integration,
we show that initial eye acceleration reflects the dynamics
of the distributed representations of local 1D and 2D sig-
nals in the motion pathway. Thus a single motion mecha-
nism can be responsible for extracting 2D signals and
driving the eye movement responses towards surface
motion direction.
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Appendix A

We describe herein the image processing steps that were
applied for each pathway (also called 1D and 2D path-
ways) before computing the velocity likelihoods for 1D
and 2D motion cues. We also give the algorithms applied
to our stimuli, as Matlab source code.

A.1. Image whitening

We first applied a linear filtering to ensure that every
spatio-temporal frequency was given the same weight.
This step is crucial for handling natural images where
different frequencies coexist and is used in general in
our models of the primary steps in the visual processing
stream (e.g. Olshausen & Field, 1998; Perrinet, 2007). It
corresponds to convoluting the signal with a spatio-tem-
poral kernel whose Fourier spectrum linearly increases
with the frequency up to a cut-off frequency to avoid
noise amplification. It is also called a de-correlation filter
because natural images have a mean Fourier spectrum
inversely proportional to the frequency, and the output
of this process is therefore whitened in average. Tempo-
ral de-correlation was approached by a simple ARMA
process.

The Matlab code for our implementation of this step is
given below:

% Spatial de-correlation
for i_frame=1:n_frame,

I_m_K(:,:,i_frame)=conv2(I_m(:,:,i_frame),K,’same’);

end;

% temporal decorrelation
I_m_K(:,:,3:n_frame)=-.1*I_m_K(:,:,3:n_frame)-

.5*I_m_K(:,:,2:n_frame-1)+ I_m_K(:,:,1:(n_frame-2));

A.2. Image motion computation

More importantly, the two-pathway motion computa-
tion was implemented as two different image processing
flows, one linear (1D or grating motion), one non-linear
(2D or features motion). The 1D flow is simply the frame
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by frame derivative of the image flow. For the unikinetic
plaid, the static grating will therefore vanish and the corre-
sponding 1D cues are the same as for the grating. The 2D
flow is obtained by first computing motion energy of the
different cues (similar to Weiss et al., 2002), and then apply-
ing a mask to remove all information without enough sal-
iency and hence selecting high spatial frequency cues. With
the barber pole stimulus, the mask removed most of the
motion energy not located along the four edges. With
unikinetic plaids, the mask selected the blobs at the inter-
section between the two gratings. Below, we briefly
describe the computational steps and its algorithm. It shall
be noticed that we have tried several other implementation
of 2D features tracking and obtained similar qualitative
and quantitative results in terms of final velocity likeli-
hoods. The key point here is that a single motion computa-
tion algorithm was applied to both barber poles and
unikinetic plaids.

The 1D flow was computed with a simple derivative ker-
nel in discrete time Kt = [�1,1] such as I1D ¼ hIm;K jKti
where Im,K is the preprocessed image flow input of n

frames. The 2D flow was defined first by the energy of high
frequencies cues as computed by a kernel Kx similar to a
Laplacian operator Ienergy ¼ hIm;K jKxi2. This operation
defines a mask image flow for energies larger than a thresh-
old H and which was point-wise multiplied with the square-
root of the energy to obtain a 2D flow: I2D ¼
Ienergy > h
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Ienergy

p
.

The Matlab code for our implementation of this step is
given below:

%%%%%%%%%%%1D features%%%%%%%%%%%

% transient in t (time derivative) / sustained in space

for i_frame=2:n_frame-1,
I_1d(:,:,2:n_frame)=.5*(I_m_K(:,:,2:n_frame) -

I_m_K(:,:,1:(n_frame-1)));

end

%%%%%%%%%%% 2D features%%%%%%%%%%%
% transient in space / sustained in time: spatial derivation

kernel

% Compute spatial derivative and normalize it

deriv=-[1 3 1; 3 –16 3; 1 3 1];%

deriv=deriv/sum(deriv(:).^2);

% spatial blurring

blur=ones(3);

blur=conv2(blur,blur);blur=conv2(blur,blur);
blur=blur/sum(blur(:).^2);

for i_frame=2:n_frame-1,

% motion energy on high frequencies

I_energy=conv2(I_m(:,:,i_frame),deriv,’same’).^2;

% selection process similar to Weiss et al. (2002)

I_mask=double((I_energy>6*std(I_energy(:))));

I_mask=conv2(I_mask,blur,’same’);

% combining both
I_2d(:,:,i_frame)=(I_energy).^(1/2).*I_mask;

end;
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522 F.V. Barthélemy et al. / Vision Research 48 (2008) 501–522
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