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Abstract

This paper introduces a model of oculomotor control during the smooth pursuit of occluded visual targets. This model is
based upon active inference, in which subjects try to minimise their (proprioceptive) prediction error based upon posterior
beliefs about the hidden causes of their (exteroceptive) sensory input. Our model appeals to a single principle – the
minimisation of variational free energy – to provide Bayes optimal solutions to the smooth pursuit problem. However, it
tries to accommodate the cardinal features of smooth pursuit of partially occluded targets that have been observed
empirically in normal subjects and schizophrenia. Specifically, we account for the ability of normal subjects to anticipate
periodic target trajectories and emit pre-emptive smooth pursuit eye movements – prior to the emergence of a target from
behind an occluder. Furthermore, we show that a single deficit in the postsynaptic gain of prediction error units (encoding
the precision of posterior beliefs) can account for several features of smooth pursuit in schizophrenia: namely, a reduction in
motor gain and anticipatory eye movements during visual occlusion, a paradoxical improvement in tracking unpredicted
deviations from target trajectories and a failure to recognise and exploit regularities in the periodic motion of visual targets.
This model will form the basis of subsequent (dynamic causal) models of empirical eye tracking measurements, which we
hope to validate, using psychopharmacology and studies of schizophrenia.
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Introduction

This paper is about the optimality principles that underlie

oculomotor control and how one can account for particular

failures in optimal control in both computational and neurobio-

logical terms. Specifically, we consider the smooth pursuit of visual

targets with periodic motion and the effect of visual occlusion on

smooth pursuit eye movements. This provides a nice (a well

understood and empirically studied) paradigm to model eye

movements, using schemes that can be motivated from basic

(Bayes optimality) principles. Furthermore, by appealing to

neurobiologically plausible implementations of Bayes optimal

schemes – such as active inference – one can simulate the effect

of neuromodulatory deficits on optimal oculomotor behaviour and

understand these deficits in computational terms. In what follows,

we describe and demonstrate a model of smooth pursuit under

visual occlusion and try to reproduce some common deficits seen

in schizophrenia. This paper serves to introduce the model and its

phenomenology. In subsequent papers, we will use this model as

the basis of an observation or dynamic causal model to optimise its

parameters using empirically recorded eye movements. This

should allow us to test the model assumptions using psychophysical

and pharmacological interventions which, if successful, may

provide non-invasive measures of synaptic function mediating

smooth pursuit eye movements.

The model of smooth pursuit presented below is based upon the

notion of active inference. Active inference is a corollary of the

principle of free energy minimisation and says that we sample

sensory inputs to minimise prediction errors. Clearly, prediction

errors depend upon predictions and inference on hidden states of

the world causing sensory data. A crucial aspect of this inference is

the proper weighting of sensory evidence and prior beliefs – in the

context of uncertainty about hidden states. Operationally, this

rests upon weighting prediction errors in accord with their

precision. In neurobiologically plausible implementations of active

inference, precision is thought to be encoded by the postsynaptic

or neuromodulatory gain of neuronal populations encoding

prediction errors [1]. This is important, because many psychopa-

thologies implicate modulatory neurotransmitter systems and a

putative failure of postsynaptic gain control. We will exploit this

link to simulate the failures of active inference (during smooth

pursuit eye movements) that are typical of schizophrenia – whose

pathophysiology is thought to involve abnormalities of dopami-

nergic and NMDA receptor function [2].

The aim of this work was to produce a model of Bayes optimal

oculomotor control that could account for the cardinal features of

smooth pursuit in normal subjects and three characteristic deficits

seen in schizophrenia:

N When normal subjects track a predictable target, compelling

psychophysical and modelling studies suggest that they

anticipate the reappearance of the target from behind an

occluder. On target disappearance, eye velocity decreases to

zero unless the subject expects the target to reappear, in which
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case – after an initial deceleration – eye velocity increases

again [3]. This is taken as evidence that subjects have an

internal representation of target motion that is used to provide

top-down oculomotor control in the absence of visual input.

N Schizophrenics show a diminished gain in pursuit movements

– from about 85 to about 75% – especially when a target is

occluded: in normal subjects, at velocities of around 20deg/s,

the ratio of mean eye and target velocities falls to around 60 to

70% during occlusion, while in schizophrenia it drops to 45 to

55% [4]. In other words, schizophrenics produce slower (more

uncertain) pursuit movements when the target is occluded.

N Paradoxically, schizophrenics show better than normal

performance in the brief period after a target unexpectedly

changes direction: for around 30 ms – they change their eye

velocity to match the target velocity more accurately than

normal subjects [5].

N Schizophrenics fail to recognise or exploit regularities in

successive repetitions of target trajectories, during smooth

pursuit: normal performance on the first presentation of a

target trajectory is imperfect but – after repeated presentations

– normal subjects come to match it optimally, whereas

schizophrenics do not [6].

In brief, we were able to explain anticipatory smooth pursuit eye

movements using a hierarchical model of target motion that

provided top-down (extra-retinal) predictions about hidden motion

during visual occlusion. By reducing the precision of these top-

down (empirical prior) beliefs, we were able to simulate the three

abnormalities above; namely, a slowing of smooth pursuit during

visual occlusion, a paradoxical increase in the accuracy of tracking

unexpected motion and a failure to recognise regularities in target

motion. In short, with a single change in an otherwise optimal

scheme, we were able to explain three established signs of

schizophrenia – in a neurobiologically plausible fashion.

This paper comprises five sections. In the first, we represent a

brief review of empirical and theoretical studies of smooth pursuit

and visual occlusion; with a special focus on findings in

schizophrenia research. The second section reviews active

inference from basic principles and shows how it can be

implemented in the brain in terms of predictive coding. This is

particularly important here, because the predictive coding

formulation highlights the importance of precision weighted

prediction errors and the role of postsynaptic gain or neuromo-

dulation in optimising perceptual inference in cortical hierarchies.

The third section describes our generative or forward model that

produces smooth pursuit eye movements. The behaviour of this

generative model, when exposed to periodic motion, is illustrated

using simulations that highlight anticipatory movements during

periods of visual occlusion. The fourth section revisits the

simulations of normal (Bayes optimal) pursuit when the precision

of hierarchical prediction errors is reduced. In the final section, we

consider how subjects accumulate evidence about periodicity of

target trajectories that they can use to nuance smooth pursuit,

when trajectories are repeated. We conclude with a discussion of

the implications of these simulation results and how the model can

be used in a more pragmatic way to verify some of its assumptions

and quantify its parameters using empirical data.

Smooth pursuit eye movements and schizophrenia
This section provides a short overview of the smooth pursuit eye

movement (SPEM) literature, with a particular focus on the

phenomena disclosed by visual occlusion and eye movements in

schizophrenia. We will use some of these key findings – at least

heuristically – to motivate the form of the model used in later

sections. We also appeal to studies reviewed here to motivate the

potential importance of schizophrenia as a lesion-deficit model of

false inference, caused by neuromodulatory failures in the

encoding of precision or uncertainty.

Our aim in this and future work is to build a neurobiologically

plausible computational model of an inferential process that is

abnormal in both schizophrenia and those at high genetic risk. If

lesioning the model – in a way that is consistent with known

pathology in schizophrenia – can reproduce abnormalities of

perceptual inference, then we might be able to: (i) quantify model

parameters using empirical data (from both behavioural and

neuroimaging studies), and (ii) interpret other abnormalities in

schizophrenia as similar ‘lesions of inference’ in other brain

systems.

The inferential process we have chosen to model is that of

SPEM. There are several reasons motivating this choice. First,

abnormal SPEM is a good candidate endophenotype for

schizophrenia, with an effect size of around one [7]. Second,

unlike brainstem-derived saccadic eye movement, SPEM is a

cortically driven process [8], whose output is not modified

downstream of the frontal eye fields [9]; it is therefore amenable

to investigation by magnetoencephalography (MEG). Third, its

behavioural expression can be recorded precisely and quantita-

tively using an eye tracker.

Attempts to quantify SPEM abnormalities in schizophrenia

have used both global and specific measurements. Global

measurements – e.g., qualitative measures or measures of the

average distance from the eye to the target – yield the highest

effect sizes, but cannot pinpoint an underlying deficit [10]. More

specific measurements include gain: gain is defined as the ratio of

eye velocity to target velocity during either the initial open-loop

phase – in which the effects of eye movement on target fixation

have not yet reached the cortex – or the closed-loop maintenance of

pursuit. Other measurements include the numbers of catch-up

saccades – that re-fixate a target – or intrusive saccades that de-

fixate a target. Although most SPEM measurements are abnormal

in schizophrenia, decreased maintenance gain is the specific

measure with the largest effect size and narrowest confidence

intervals (mean d 20.87+/20.13, in [10]). This has led several

authors to conclude that a fundamental problem in schizophrenia

is a lag of the eye behind the target, with a compensatory increase

in catch-up saccades [11,12]. This conclusion is reinforced by data

from the relatives of schizophrenics, who also show diminished

maintenance gain (mean d 20.42), albeit without a concomitant

increase in catch-up saccades [13]. Note that impaired pursuit is

not the only fundamental problem in schizophrenia: others include

reduced response inhibition, found in anticipatory and anti-

saccade performance.

Why does the eye lag the target in schizophrenia? Attempts to

answer this question have tested components of existing models of

predictable SPEM, such as that proposed by Barnes [14]. Other

models include the pioneering models of unpredictable pursuit

[15,16] and more recently neural network models implementing

optimal control theory [17]. The Barnes model comprises modules

for: retinal image velocity detection, gain control – that transforms

the representation of target motion into oculomotor commands;

efference copy of the oculomotor command – to continue pursuit

during brief target occlusion; and a short-term velocity memory –

that can learn and store trajectories over longer periods, allowing

better anticipation of target movement. All of these functions have

been shown to be abnormal in schizophrenia; namely, velocity

detection [18] – subsequently attributed to problems using

efference copy [19], the maintenance of target motion represen-
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tation or its use in generating oculomotor commands [20], and the

learning or anticipation of trajectories [6].

Investigators have tried to explain these apparently disparate

problems in terms of an underlying functional abnormality. One

such function – that has long been suspected to be aberrant in

schizophrenia – is that of prediction: specifically, the prediction of

sensory input. In one of the best validated explanations of a

psychotic symptom, Frith [21] proposed that passivity experiences

(delusions of control) could result from the failure of a forward

model to predict accurately the sensory consequences of a motor

command. He argued that if the feeling of agency for a movement

depends upon the accurate prediction of its consequences – rather

than the mere issuing of the motor command – this feeling could

be lost if the prediction failed. Schizophrenics have been

demonstrated to have deficits in predicting the sensory conse-

quences of their actions in numerous paradigms; e.g., force-

matching [22], retinal motion attribution [23], visuomotor [24]

and virtual reality [25] – and in the latter three experiments,

prediction deficits correlated with the strength of their passivity

experiences.

Prediction deficits – or more formally, a weakened influence of

prior expectations on perception and learning [26] – have also

been proposed to underlie many other phenomena in schizophre-

nia. Examples include: decreased susceptibility to illusions such as

the size-weight illusion [27] and the hollow mask illusion [28],

increased susceptibility to the rubber hand illusion [29], decreased

susceptibility to conditioning effects such as latent inhibition [30]

and Kamin blocking [31], and numerous electrophysiological

phenomena [32].

If schizophrenic prediction deficits underlie the lag of eyes

behind their targets, then one would expect to see greater SPEM

abnormalities in tasks with a greater predictive component.

Indeed, smooth pursuit of a pseudorandom stimulus in schizo-

phrenia is no different to that of controls’: a deficit only becomes

apparent once the target motion is sinusoidal, i.e. predictable [33].

Researchers have also addressed this hypothesis using paradigms

in which SPEM does not depend on target motion, but on extra-

retinal signals; i.e., predictions of target motion. Such paradigms

involve the use of occluders or a technique called foveal

stabilization, in which – unknown to the subject – eye tracker

feedback is used to keep the target foveated for a brief period,

which ensures that eye movement is driven purely by expectation,

not by retinal slip of the image.

In normal subjects – asked to maintain pursuit during target

disappearance – occlusion causes eye velocity to fall after around

200 ms until it stabilizes (at around 450 ms) at roughly half the

initial velocity. This ‘residual predictive pursuit’ can be maintained

for at least 4 seconds [34]. If the reappearance of the target is

predictable (e.g., using a constant occluder size), eye velocity

increases – after a few hundred milliseconds – back toward target

velocity, although interestingly this anticipatory acceleration is not

time locked to the target’s reappearance [3].

Several metrics have been used to characterise the predictive

element of SPEM [4]. The ‘mean predictive gain’ is the average

gain during occlusion (by an occluder in the middle of a ramp).

Excluding the initial deceleration period gives the ‘residual

predictive gain’. An even purer measure of memory-driven

prediction can be obtained by placing the occluder at the point

at which a target changes direction – so that the eye’s change of

direction must be driven solely by past experience: in this context,

the ‘peak predictive gain’ is derived from the peak eye velocity/

expected target velocity during the occlusion.

There is evidence that these predictive measures are more

sensitive to schizophrenic SPEM dysfunction than the popular

‘maintenance (closed-loop) gain’. Thaker and colleagues [4]

showed that mean predictive gain was lower in schizophrenics,

even at the low velocity of 9deg/sec, when their maintenance gain

is normal. Similarly, in their study of the first degree relatives of

schizophrenics and community subjects both with and without

schizotypal personalities, they showed no group differences in

maintenance gain, but the schizotypal relatives had significantly

poorer residual predictive gain [35]. Interestingly, the relatives’

peak predictive gain was also significantly poorer, irrespective of

whether they were schizotypal or not. Similar results were

obtained from a large community subject sample, in which all

schizotypal individuals (disorganized subtype) had significantly

lower residual predictive gain [36], whereas only the high-scoring

(.2SD) disorganized schizotypal subjects had diminished mainte-

nance gain [37].

Two other findings suggest that predictive pursuit measures

something quite distinct from maintenance gain, and that this

distinct predictive component could be a more specific endophe-

notype for schizophrenia: in both normal and schizotypal

individuals, residual pursuit deficits are independent of mainte-

nance gain; indeed, in normal subjects they were weakly anti-

correlated at high speed [36,38]. Predictive pursuit gain also has a

much higher heritability (as measured in schizophrenics and their

siblings) than maintenance gain – 0.9 versus 0.27 respectively –

indicating that it has a much more specific genetic component

[39].

The latter study demonstrates why one should not assume that

the meta-analytic finding [10] that maintenance gain has a larger

effect size than predictive measures in schizophrenia (0.87 with

95% confidence intervals 0.74–0.99 versus 0.35 and 0.37 with

95% confidence intervals up to 1 but both including zero) implies

that it is closer to a core neurobiological deficit. In fact, the

opposite is true: maintenance gain is likely to be affected by other

disease-related factors, and the authors comment that its greater

effect size may well be due to the disparity in the numbers of

studies examining maintenance (42) versus predictive (5) gain –

and the fact that the former is based on a greater proportion of the

eye movement record than the latter. Indeed, Hong and

colleagues showed that refining the predictive pursuit measure

can substantially increase its effect size (in schizophrenic’s

relatives): from 0.23 (residual predictive gain) to 0.49 (peak

predictive gain) to 0.87 (using foveal stabilisation) [20].

Two further potential consequences of predictive deficits in

schizophrenia are important to note: the first is the finding that

impaired performance of the initial ‘open-loop’ segment of smooth

pursuit is not due to poor immediate processing of velocity

information, but due to impaired learning of target trajectories

over trials; hence control and schizophrenics perform equally

badly on the first trajectory presentation, but controls subsequently

learn the trajectory; i.e. they are better able to predict trajectories

on the basis of past experience [6]. The second is an example of a

rare scenario, in which schizophrenics perform better than

controls: when there is an unexpected change in target trajectory,

the former show higher maintenance gain than controls in the

120–150 ms period after the trajectory change [5]. As the authors

comment, this finding supports the idea that schizophrenics – and

their relatives [40] – compensate for their problems in predicting

target motion by increasing their reliance on immediate sensory

information. This is consistent with the finding that schizophrenics

have decreased frontal (predictive) and increased occipitotemporal

(sensory) activations on fMRI during SPEM compared with

controls [41]. These findings relate to those of Voss and colleagues

[42], who measured the predictive and retrospective binding of

actions and their effects in time – in schizophrenics and controls –
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demonstrating that the schizophrenics showed no predictive

component but an increased retrospective (reactive) component

relative to controls.

The concept of the brain as a predictive coding network [43], or

an inference engine, performing perceptual inference and learning

using empirical Bayes [44] allows one to frame predictive

pathology in schizophrenia within Bayesian models of psychosis

[45–47]. In such models, the relative contribution of top-down

prior expectations and bottom-up sensory evidence (or prediction

error) to a percept is determined by their relative precisions.

Decreased precision at higher levels of a predictive coding

hierarchy attenuates the contribution of top-down predictions –

called empirical priors – to a percept. In predictive coding

schemes, this attenuates prediction errors at high levels of the

hierarchy, leading to a failure of optimal prediction and greater

prediction errors at the sensory level. Interestingly, abnormal

prediction error responses have been demonstrated in the

midbrain in both reward-related [48] and associative learning

tasks [49] in schizophrenia, and these provide a compelling

explanation for abnormal salience [50]. This failure of optimal

prediction also explains the diminished mismatch negativity and

P300 potentials (a failure to predict regularities and consequent

violations) and the increased P50 auditory potential (a failure to

predict the auditory input) in schizophrenia [32]. In summary, the

role of precision in balancing the confidence in top-down prior

beliefs, in relation to sensory evidence, is crucial for optimal

inference. Functionally, both delusions and hallucinations could be

regarded as instances of false inference [51]. Under predictive

coding, this false inference is expressed in terms of an abnormal

modulation of prediction error responses, which provides a

compelling explanation for some neurophysiological abnormalities

seen in schizophrenia. In the next section, we consider predictive

coding in more detail and the key role of precision in active

inference.

Generalised filtering, free energy and active inference
This section sets out the basic theory used in the simulations. It

introduces active inference in terms of generalised predictive

coding or Bayesian filtering. We will start with a very general

formulation of these schemes using the concept of variational free

energy. In brief, active inference can be regarded as equipping

standard Bayesian filtering schemes with classical reflex arcs that

enable action to fulfil predictions about hidden states of the world.

We will describe the formalism of active inference in terms of

differential equations describing the dynamics of the world and

internal states of the visual-oculomotor system. The neurobiolog-

ical implementation of these differential equations is then

interpreted in terms of predictive coding, which includes

prediction errors on the motion of hidden states – such as the

location of a visual target. This scheme is used in subsequent

sections to simulate smooth pursuit eye movements under visual

occlusion and different levels of uncertainty (precision) about

hierarchical predictions.

The scheme used to model smooth pursuit eye movements in

this paper has been used to model several other processes and

paradigms in neuroscience (see Table 1). This active inference

scheme is based upon just three assumptions:

N The brain minimises the free energy of sensory inputs defined

by a generative model.

N The generative model used by the brain is hierarchical,

nonlinear and dynamic.

N Neuronal firing rates encode the expected state of the world,

under this model.

The first assumption is the free energy principle, which leads to

active inference in the embodied context of action. The free

energy here is a proxy for Bayesian model evidence that is easy to

compute (see Text S1). In Bayesian terms, minimising free energy

means that the brain maximises the evidence for its model of

sensory inputs [52–58]. This is the Bayesian brain hypothesis

[59,60]. If we also allow action to maximise model evidence we get

active inference [61]. In this setting, desired movements are specified

in terms of prior beliefs about state transitions or the motion of

hidden states in the generative model. Action then realises prior

beliefs (policies) by sampling sensory input to provide evidence for

those beliefs.

The second assumption above is motivated by noting that the

world is both dynamic and nonlinear and that hierarchical

structure emerges inevitably from a separation of temporal scales

[62,63]. The final assumption is the Laplace assumption that, in

terms of neural codes, leads to the Laplace code, which is arguably

the simplest and most flexible of all neural codes [64]. See Text S2

for a motivation of the Laplace assumption from basic principles.

Under these assumptions, action and perception can be

regarded as the solutions to coupled differential equations

describing the dynamics of the real world and the behaviour of

an agent. These equations can be expressed in terms of action and

internal states that encode conditional expectations about hidden

states of the world [61]:

s~g(x,v,a)zvv

_xx~f(x,v,a)zvx

_aa~{LaF(~ss,~mm)

_~mm~mm~D~mm{L~mmF(~ss,~mm)

ð1Þ

See Figure 1 for a schematic summary of the implicit conditional

dependencies implied by Equation (1). For clarity, real-world states

are written in boldface, while internal states of the agent are in

Table 1. Processes and paradigms that have been modelled
using generalised filtering.

Domain Process or paradigm

Perception Perceptual categorisation (bird songs) [68]

Novelty and omission-related responses [68]

Perceptual inference (speech) [90]

Sensory learning Perceptual learning (mismatch negativity)
[69]

Attention Attention and the Posner paradigm [1]

Attention and biased competition [1]

Motor control Retinal stabilization and oculomotor reflexes
[61]

Saccadic eye movements and cued reaching
[61]

Motor trajectories and place cells [91]

Sensorimotor integration Bayes-optimal sensorimotor integration [61]

Behaviour Heuristics and dynamical systems theory [92]

Goal-directed behaviour [73]

Action observation Action observation and mirror neurons [91]

doi:10.1371/journal.pone.0047502.t001
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italics (for a glossary of mathematical symbols used here, see

Table 2). The , notation denotes variables in generalized

coordinates of motion where, using the Lagrange notation for

temporal derivatives: ~ss~(s,s’,s’’, . . . ) [65]. The pairs of equations

are coupled because sensory states s(t) depend upon action

through hidden states and causes (x,v), while action a(t) depends

upon sensory states through internal states ~mm(t). The first pair of

coupled stochastic differential equations describes the dynamics of

hidden states and causes in the world and how these generate

sensory states. These equations are stochastic because sensory

states and the motion of hidden states are subject to random

fluctuations (vv,vx). The second pair of differential equations

corresponds to action and perception respectively – they constitute a

gradient descent on variational free energy.

The last differential equation describing perception is known as

generalised filtering or predictive coding and has the same form as

standard Bayesian (Kalman-Bucy) filters – see also [43,66]. The

first term is a prediction based upon a differential operator D that

returns the generalised motion of the conditional expectations –

such that D~mm~(m’,m’’,m’’’, . . . ). The second is an update term that

ensures the changes in conditional expectations are Bayes-optimal

predictions of hidden states of the world – in the sense that they

maximise (the free energy bound on) Bayesian model evidence.

To perform simulations using this scheme, one simply integrates

or solves Equation (1) to simulate (neuronal) dynamics that encode

conditional expectations and ensuing action. Conditional expec-

tations depend upon a generative model, which we assume has the

following (hierarchical) form

s~g(1)(x(1),v(1))zv(1)
v

_xx(1)~f (1)(x(1),v(1))zv(1)
x

..

.

v(i{1)~g(i)(x(i),v(i))zv(i)
v

_xx(i)~f (i)(x(i),v(i))zv(i)
x

..

.

ð2Þ

This equation is just a way of writing down a generative model

that specifies a probability density function over sensory inputs and

hidden states and causes. This probability density is needed to

define the free energy of sensory input (see Text S1): it is specified

in terms of some functions and Gaussian assumptions about

random fluctuations (v(i)
x ,v(i)

v ) on the motion of hidden states and

causes. It is these that make the model probabilistic – they play the

role of sensory noise at the first level and induce uncertainty about

states at higher levels. The (inverse) amplitudes of these

fluctuations are quantified by their precisions (P(i)
x ,P(i)

v ).

The deterministic part of the model is specified by nonlinear

functions (g(i),f (i)) of hidden states and causes that generate

dynamics and sensory consequences. Hidden causes link hierar-

chical levels, whereas hidden states link dynamics over time.

Hidden states and causes are abstract quantities that the brain uses

to explain or predict sensations – like the motion of an object in

the field of view. In hierarchical models of this sort, the output of

one level acts as an input to the next. This input can produce

Figure 1. Exchange with the environment. This schematic shows the dependencies among various quantities modelling exchanges of an agent
with the environment. It shows the states of the environment and the system in terms of a probabilistic dependency graph, where connections
denote directed dependencies. The quantities are described within the nodes of this graph – with exemplar forms for their dependencies on other
variables (see main text). Hidden (external) and internal states of the agent are separated by action and sensory states. Both action and internal states
– encoding a conditional probability density function over hidden states – minimise free energy. Note that hidden states in the real world and the
form of their dynamics can be different from that assumed by the generative model; this is why hidden states are in bold. See main text for further
details.
doi:10.1371/journal.pone.0047502.g001
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complicated convolutions with deep (hierarchical) structure. We

will see examples of this later.

Perception and predictive coding
Given the form of the generative model (Equation 2) one can

write down the differential equations (Equation 1) describing

neuronal dynamics in terms of prediction errors on the hidden

causes and states. These errors represent the difference between

conditional expectations and predicted values, under the gener-

ative model (using A:B : ~AT B and omitting higher-order terms):

_~mm~mm
(i)

x ~D~mm(i)
x z

L~gg(i)

L~mm(i)
x

:P(i)
v ~ee(i)

v z
L~ff (i)

L~mm(i)
x

:P(i)
x ~ee(i)

x {D:P(i)
x ~ee(i)

x

_~mm~mm
(i)

v ~D~mm(i)
v z

L~gg(i)

L~mm(i)
v

:P(i)
v ~ee(i)

v z
L~ff (i)

L~mm(i)
v

T

:P(i)
x ~ee(i)

x {P(iz1)
v ~ee(iz1)

v

~ee(i)
x ~D~mm(i)

x {~ff (i)(~mm(i)
x ,~mm(i)

v )

~ee(i)
v ~~mm(i{1)

v {~gg(i)(~mm(i)
x ,~mm(i)

v )

ð3Þ

Equation (3) can be derived fairly easily by computing the free

energy for the hierarchical model in Equation (2) and inserting its

gradients into Equation (1). This gives a relatively simple update

scheme, in which conditional expectations are driven by a mixture

of prediction errors, where prediction errors are defined by the

equations of the generative model.

It is difficult to overstate the generality and importance of

Equation (3) – its solutions grandfather nearly every known

statistical estimation scheme, under parametric assumptions about

additive noise [67]. These range from ordinary least squares to

advanced variational deconvolution schemes. In this form, one can

see clearly the relationship between predictive coding and

Kalman-Bucy filtering – changes in conditional expectations ~mm(i)

comprise a prediction (first term) plus a weighted mixture of

prediction errors (remaining terms). The weights play the role of a

Kalman gain matrix and are based on the gradients of the model

functions and the precision of random fluctuations.

In neural network terms, Equation (3) says that error-units ~ee(i)

receive predictions from the same hierarchical level ~mm(i{1)
v and the

level above ~mm(i)
v . Conversely, conditional expectations (encoded by

the activity of state units) are driven by prediction errors from the

same level ~ee(iz1)
v and the level below ~ee(i)

v . These constitute bottom-

up and lateral messages that drive conditional expectations

towards a better prediction to reduce the prediction error in the

level below. This is the essence of recurrent message passing

between hierarchical levels to suppress free energy or prediction

error: see [68] for a more detailed discussion. In neurobiological

implementations of this scheme, the sources of bottom-up

prediction errors, in the cortex, are thought to be superficial

pyramidal cells that send forward connections to higher cortical

areas. Conversely, predictions are conveyed from deep pyramidal

cells by backward connections, to target (polysynaptically) the

superficial pyramidal cells encoding prediction error [69,70].

Equation (3) shows how precision P(i) plays an important role in

weighting the influence of prediction errors ~ee(i) at any particular

level of the hierarchy. In other words, by changing the precision

on the prediction errors, we can bias inference towards sensory

Table 2. Glossary of mathematical symbols.

Variable Short description

y)f~xx,~vvg
y)f~xx,~vvg

Hidden states and causes (boldface – real and italic – assumed)

~xx(t)~½x,x’,x’’, . . .�T Generalised hidden states

~vv(t)~½v,v’,v’’, . . .�T Generalised forces or causes that act on hidden states

~ss(t)~½s,s’,s’’, . . .�T Generalised sensory states caused by hidden states

~vvx(t)~½vx,v’x,v’’x, . . .�T Generalised random fluctuations in the motion of hidden states

~vvv(t)~½vv,v’v,v’’v, . . .�T Generalised random fluctuations in hidden causes

Pi Precision (inverse covariance) of generalised random fluctuations

~gg(~xx,~vv,~aa)

~ff(~xx,~vv,~aa)

Sensory mapping and equations of motion generating sensory states

~gg(~xx,~vv)

~ff (~xx,~vv)

Sensory mapping and equations of motion modelling sensory states

a(t) Action

{ln p(~ss) Surprise or negative log evidence of generalised sensory states

F (~ss,~mm)§{ln p(~ss) Free-energy bound on surprise

q(yD~mm) Recognition density on causes with sufficient statistics ~mm

~mm(t)~f~mmx,~mmvg Conditional or posterior expectation of hidden states and causes

~gg(t)~½g,g’,g’’, . . .�T Prior expectation of generalised hidden causes

~ee(i)
x ~D~mm(i)

x {~ff (i)(~mm(i)
x ,~mm(i)

v )

~ee(i)
v ~~mm(i{1)

v {~gg(i)(~mm(i)
x ,~mm(i)

v )

Generalised prediction error on the motion of hidden states and causes at the i-th
hierarchical level

doi:10.1371/journal.pone.0047502.t002
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information or top-down (empirical) priors – empirical priors are

simply beliefs encoded probabilistically that provide top-down

constraints on hierarchically lower levels. Crucially, in the current

context, precision corresponds to the gain of (superficial pyrami-

dal) populations encoding prediction error and has been discussed

as mediating attention and action selection [1,71]. In later

sections, we will change precision to simulate pathology of

synaptic gain and consequent failures of hierarchical inference.

Figure 2 provides a schematic of the proposed message passing

among hierarchically deployed cortical areas.

Action
In active inference, conditional expectations elicit behaviour by

sending predictions down the hierarchy to be unpacked into

proprioceptive predictions at the level of (pontine) cranial nerve

nuclei and spinal-cord. These engage classical reflex arcs to

suppress proprioceptive prediction errors and produce the

predicted motor trajectory

_aa~{LaF~{(La~ee
(1)
v ):P(1)

v ~ee(1)
v ð4Þ

The reduction of action to classical reflexes follows because the

only way that action can minimize free energy is to change sensory

(proprioceptive) prediction errors by changing sensory signals; cf.,

the equilibrium point formulation of motor control [72]. In short,

active inference can be regarded as equipping a generalised

predictive coding scheme with classical reflex arcs: see [61,73] for

details. The actual movements produced clearly depend upon

Figure 2. Hierarchical message passing in the visual-oculomotor system. Schematic detailing a neuronal message passing scheme
(generalised Bayesian filtering or predictive coding) that optimises conditional expectations about hidden states of the world, given sensory (visual)
data and the active (oculomotor) sampling of those data. This diagram shows the speculative cells of origin of forward driving connections (in red)
that convey prediction error from a lower area to a higher area and the backward connections (in black) that construct predictions [70]. These
predictions try to explain away prediction error in lower levels. In this scheme, the sources of forward and backward connections are superficial (red)
and deep (black) pyramidal cells respectively. The equations on the right represent a generalised descent on free energy under the hierarchical model
described in the main text – this can be regarded as a generalisation of predictive coding or Kalman filtering: see [67]. State-units are in black and
error-units are in red. Here, we have placed different levels of some hierarchical model within the visual-oculomotor system. Visual input (illustrated in
the retinal input graph) arrives in an intrinsic (retinal) frame of reference that depends upon the angular position of a stimulus and the direction of
gaze. Exteroceptive input is then passed to the lateral geniculate nuclei (LGN) and to higher visual (we are merging V1–V5) and prefrontal (e.g., frontal
eye fields) areas in the form of prediction errors. Crucially, proprioceptive sensations are also predicted, creating prediction errors at the level of the
cranial nerve nuclei (pons). The special aspect of these proprioceptive prediction errors is that they can be resolved through classical reflex arcs – in
other words, they can elicit action to change the direction of gaze and close the visual–oculomotor loop.
doi:10.1371/journal.pone.0047502.g002
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(changing) top-down predictions that can have a rich and complex

structure.

Summary
In summary, we have derived equations for the dynamics of

perception and action using a free energy formulation of adaptive

(Bayes-optimal) exchanges with the world and a generative model

that is both generic and biologically plausible. A technical

treatment of the material above will be found in [65], which

provides the details of the generalised filtering used to produce the

simulations in the next section. Heuristically, these simulations

simply involve integrating or solving equation (1), given a

generative model in the form of equation (2). The integration

scheme we use is described in Text S3 and can be considered a

simulation of neuronal processing with predictive coding (equation

3) and oculomotor reflexes (equation 4) – this is active inference.

Methods

This section introduces the generative model for smooth pursuit

used to illustrate normal behaviour and, in the next section, the

abnormal behaviour that results from changing the precision of

prediction errors in hierarchical inference. In brief, the neuronal

simulations require us to specify the equations of motion and

sensory mapping from the real world and the corresponding

functions that constitute a subject’s generative model. To

reproduce anticipatory eye movements, during visual occlusion,

we require a hierarchical generative model that represents hidden

motion. For simplicity, we will only consider (horizontal) motion in

one dimension and ignore vertical motion.

Oculomotor following model
The generative model for smooth pursuit eye movements used

here is very simple and is based upon the prior belief that the

centre of gaze and target are attracted to a common (fictive)

attractor in visual space. The process generating sensory inputs is

however much simpler and can be expressed as follows:

s~
so

st

" #
~

x(1)
o

O(x
(1)
t ):exp({(½{8, . . . ,8�zx(1)
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77775zv(1)
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This pair of equations corresponds to the noisy sensory mapping

from hidden states and the equations of motion for those states in

the real world. The real world provides sensory input in two

modalities (see Figure 2): proprioceptive input from cranial nerve

nuclei reports the (horizontal) angular displacement of the eye

so[R and corresponds to the centre of gaze in extrinsic coordinates

x(1)
o . Exteroceptive (retinal) input reports the angular position of a

target in a retinal (intrinsic) frame of reference st[R17|1. This

input models the response of 17 visual channels, each equipped

with a Gaussian receptive field with a width of one angular unit

and deployed at intervals of one angular unit – about 2u of visual

angle. This input can be occluded by a function of target location

O(x
(1)
t )[½0,1�, which turns values between zero and one, such that

whenever the target location x
(1)
t is behind the occluder, retinal

input st falls to zero. The response of each visual channel depends

upon the distance of the target from the centre of gaze. This is just

the difference between the oculomotor angle and target location in

an extrinsic frame of reference: x(1)
o {x

(1)
t .

The hidden states of this model comprise the oculomotor states

– oculomotor angle and velocity(xo,x’o)and the target location

xt[R. Oculomotor velocity is driven by action and decays to zero

with a time constant of eight time bins or 8|16~128
milliseconds. This means the action applies forces to the

oculomotor plant, which responds with a degree of viscosity.

The target location is perturbed by the hidden cause v[R that

describes the location to which the target is drawn (a sinusoid),

with a time constant of one time bin or 16 ms. More specifically,

changes in target location _xx(1)
t are driven by the difference between

an attracting position v(1) and its current location x
(1)
t . In this

paper, the random fluctuations on sensory input and the motion of

hidden states were virtually absent, with a log precision of 16. In

other words, the random fluctuations have a variance

ofexp({16). This completes our description of the process of

generating sensory information; in which hidden causes produce

horizontal motion of a target location and action forces

oculomotor states. Target location and oculomotor states are

combined to produce sensory information about the target in an

intrinsic (retinal) frame of reference over an array of sensory

channels.

The generative model has a similar form to equation (5) but

with two important exceptions: there is no action and the motion

of the hidden oculomotor states is driven by the same hidden cause

that moves the target. In other words, the agent believes that its

gaze is attracted (v(1){x(1)
o ) to the same fictive point in visual space

that is attracting the target (v(1){x
(1)
t ). Second, the generative

model is equipped with a deeper (hierarchical) structure that can

represent periodic trajectories in the hidden cause of target

motion:
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These equations constitute the probabilistic model of how

sensations are generated in the form of Equation 2. This model

defines the free energy in Equation 1 – and specifies behaviour

under active inference. The sensory mapping of the generative

model is exactly the same as above. The equations of motion for

the hidden oculomotor states and target location are very similar;

apart from the fact that oculomotor velocity is now driven by the

displacement between the oculomotor angle and hidden cause.

However, in the generative model hidden causes are informed by
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the dynamics of hidden states at a second level _xx(2). These hidden

states model underlying periodic dynamics using a simple periodic

attractor
x

(2)
2

{x
(2)
1

" #
that produces sinusoidal fluctuations of any

amplitude and a frequency that is determined by a second level

hidden cause v(2)with a prior expectation of g. This prior

expectation corresponds to beliefs about the frequency of periodic

motion of the target. In the simulations below, we used a fixed

prior, which was set to the correct frequency with a wavelength of

56 (simulation with occluders) or 32 (remaining simulations) time

bins. The log precisions on the random fluctuations in the

generative model were three at the first (sensory) level and minus

one at the higher level, unless stated otherwise. This means that

the agent is more confident about its sensory input than it is about

how that sensory input will evolve, as determined by the (motion

of) hidden states and causes. This situation is equivalent to that of

an experimental subject viewing a pursuit paradigm for the very

first time: [s]he can see the target clearly but is uncertain of its

amplitude and frequency until it has completed at least one cycle.

In the last section, we will reduce the precision on the hidden

causes at the second level to simulate inference on the periodicity

of the target trajectory on repeated exposure.

Having specified the generative process and model, we can now

solve the active inference scheme in Equation 1 and examine its

behaviour. This generative model produces smooth pursuit eye

movements because it embodies prior beliefs that its gaze and the

target are attracted by the same hidden causes. This smooth

pursuit rests on conditional expectations about the target location

in extrinsic coordinates and the state of the oculomotor plant,

where target location is driven by hidden causes that also have to

be inferred.

Results

Simulating normal subjects
Figure 3 reports the conditional expectations about hidden

states and causes during the simulation of smooth pursuit eye

movements, using horizontal sinusoidal target motion with a

period of 56 time bins – starting at 16 time bins. Crucially, the

target was occluded whenever it passed behind an occluder at a

leftward displacement of 0.1u to 1.8u of visual angle.

The upper left panel shows the predicted sensory input

(coloured lines) and sensory prediction errors (dotted red lines)

along with the true values (broken black lines – which are almost

superimposed). Here, we see fluctuations in the predicted sensory

input during smooth pursuit where, crucially, these inputs fall to

zero during periods of occlusion (these sensory fluctuations are

shown in image format in Figure 4). The proprioceptive sensations

(blue lines) reflect a veridical smooth pursuit, even during

occlusion. These sensory predictions are based upon the condi-

tional expectations m(1)
x of hidden oculomotor (blue line) and target

(red line) angular displacements shown on the upper right. The

grey regions correspond to 90% Bayesian confidence intervals and

the broken lines show the true values. One can see clearly the

target motion that elicits pursuit responses that follow with a short

delay of about two time bins (about 32 ms). The hidden cause of

these displacements is shown (broken black line) with its

conditional expectation m(1)
v (blue line) on the middle left. Note

the profound increase in uncertainty about this hidden cause

during the periods of occlusion; however, this uncertainty not

complete, because the hidden cause is informed by the motion of

hidden states at the second level – shown on the middle right.

These show the anticipated periodic dynamics of appropriate

amplitude to minimise prediction errors at lower levels in the

hierarchy. The period of these dynamics is fixed by a hidden cause

at the second level, as shown on the lower left. The true cause and

action are shown on the lower right. The action (blue line) is

responsible for oculomotor displacements and is driven by

proprioceptive prediction errors. For our purposes, these simula-

tions can be regarded as Bayes optimal solutions to the smooth

pursuit problem.

Figure 4 shows the same results in a different format: the top left

panel shows the responses of sensory channels in image format as a

function of peristimulus time. This shows the small fluctuations in

signal that are due to imperfect pursuit and consequent retinal slip

at the onset of target motion. Later, during periods of occlusion,

the sensory input disappears. The lower panels show the angular

displacement (top) and velocity (bottom) of the target (solid lines)

and eye (broken black lines) as a function of peristimulus time (we

will consider the red lines later). From the angular displacement

trace, one can see that after some initial uncertainty about the path

of the target (its speed and amplitude), the eye tracks the target

fairly accurately.

These results illustrate two important aspects of pursuit behind

occluders: initial effects and anticipatory effects. The first time the

target passes behind the occluder, the eye tracks its location quite

well to begin with, but after around 100 ms the eye velocity drops

significantly and it lags the target. When it emerges at 900 ms the

eye must then make a saccade-like movement to catch up with the

target (although not as fast as a real saccade – taken to exceed at

least 30u per second [74], as indicated by the broken horizontal

line). Aside from the latency and speed of corrective saccades,

which are not the focus of our modelling, this sequence is typical of

normal subjects’ pursuit behind occluders: e.g. see Figure 1 in [38].

On the second and third cycles of target occlusion, the eye’s

tracking is much better, because the agent has inferred the hidden

target motion – as its conditional expectations about hidden states

become entrained by its sensations. The anticipation of the target

motion is so good that it only lags the target when the latter is

accelerating (at 1800 ms and 2700 ms). The improved tracking of

an occluded target when its reappearance is anticipated is also a

well-documented finding [3]; in some cases, pursuit velocity

behind the occluder does not drop at all, e.g. Figure 8 in [75].

Summary
In summary, to account for anticipatory pursuit movements that

are not apparent in target motion, one needs to equip generative

models with a hierarchical structure that can accommodate latent

dynamics that may or may not be expressed at the sensory level.

Hierarchical extensions of this sort emphasise the distinction

between visual motion processing and oculomotor control based

purely upon retinal and proprioceptive input – they emphasise

extra-retinal processing that is informed by prior experience and

beliefs about the latent causes of visual input. These beliefs and

associated inference are disclosed nicely by visual occlusion. In the

next section, we look at simulated lesions to this Bayes optimal

pursuit behaviour as a metaphor for the deficits seen in

schizophrenia.

Simulating psychopathology
In this section, we make one simple change to the generative

model and repeat the simulations of previous section. The putative

deficit in schizophrenia – reduced high-level precision – can be

modelled by reducing the precision on the prediction errors at the

highest level of the hierarchy. One can see how this affects

conditional predictions in the first equality in equation (3) – see

also Figure 2: lowering the precision P(2)
x reduces the contribution
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of prediction errors to the conditional expectations modelling

(hidden) periodic motion of the target. This results in a slowing of

the (empirical prior beliefs about the) target trajectory, as

confidence in the prediction errors on its motion falls. Normally,

this would place more emphasis on bottom-up prediction errors to

guide the trajectory; however, during occlusion these are simply

absent and, in principle, we should see the behavioural effect of the

ensuing loss of certainty or precision.

To model this deficit, we introduced a small reduction in the log

precision of prediction error on the motion of hidden states at the

second level of the generative model, from 21 to 21.25.

Neurobiologically, this corresponds to a reduction in the

postsynaptic gain of superficial pyramidal cells encoding prediction

error in cortical areas responsible for representing high-level

statistical regularities in target motion. This reduction in gain in

schizophrenia may involve interactions between classical modula-

tory neurotransmitter systems and NMDA receptor function (see

the Discussion). To examine the effects of the simulated lesion on

smooth pursuit during visual occlusion, we repeated the above

simulation:

Figure 4 shows the resulting sensory sampling (upper right

panel) and underlying angular positions and velocities of the target

and eye (red broken lines) in the lower top and bottom panels

respectively. Comparison with the corresponding results under

normal precision (black broken lines) shows some typical

properties of schizophrenic pursuit. First, the reduced precision

Figure 3. Simulation of smooth pursuit of a partially occluded target. This figure reports the conditional estimates of hidden states and
causes during the simulation of smooth pursuit eye movements, using horizontal sinusoidal target motion with a period of 56 time bins – starting at
16 time bins. All times are measured in 16 ms time bins. The target was occluded whenever it passed behind an occluder at a leftward displacement
of 0.1u to 1.8u of visual angle. The upper left panel shows the predicted sensory input (coloured lines) and sensory prediction errors (dotted red lines)
along with the true sensory input (broken black lines). The different coloured lines correspond to photoreceptor activity over the array of (17) sensory
inputs. The proprioceptive sensations (blue lines) reflect a veridical smooth pursuit, even during occlusion, indicated by the light grey bars. These
sensory predictions are based upon the conditional expectations of hidden oculomotor (blue line) and target (red line) angular displacements shown
on the upper right. The grey regions correspond to 90% Bayesian confidence intervals and the broken black lines show the true values. The hidden
cause of these displacements (broken black line) is shown with its conditional expectation (blue line) in the middle left panel where the prediction
error on this hidden cause shown as a dotted red line. Note the increase in uncertainty about this hidden cause during the periods of occlusion;
however, this uncertainty is moderated because the hidden cause is informed by the motion of hidden states at the second level – shown on the
middle right. These show the anticipated periodic dynamics of appropriate amplitude to minimise prediction errors at lower levels in the hierarchy.
The period of these dynamics is fixed by the hidden cause at the second level, as shown on the lower left – where the conditional expectation (blue
line) reaches its prior expectation almost immediately. The true cause and action (Equation 5) are shown on the lower right. The action (blue line) is
responsible for oculomotor displacements and is driven by proprioceptive prediction errors.
doi:10.1371/journal.pone.0047502.g003
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trace is disproportionately affected by target occlusion: at the end

of occlusion, the lag behind the target is much greater than the

normal precision trace on four out of six occasions: including those

in which the target is actually decelerating. This is despite the fact

that when the target is visible and pursuit is stabilized, the

‘schizophrenic’ tracking is no different to that of the normal eye

(1200–1400 ms and 2000–2200 ms). This echoes empirical

findings in schizophrenic pursuit at modest speeds (see Table 2

in [4]). Second, the reduced precision trace is more inaccurate on

the third cycle than the first: it shows much less anticipatory

behaviour than the normal trace. Indeed, it lags so much just prior

to 2700 ms that it has to make a catch-up saccade when the target

re-emerges (note the pathological catch up saccade exceeds 30u
per second). We shall return to this precision-dependent difference

in learning in our final simulation.

Overall, these results are consistent with findings in schizophre-

nia that suggest an impaired ability to maintain veridical pursuit

eye movements in the absence of visual information. Furthermore,

they suggest that the computational mechanism that underlies this

failure rests on a failure to assign precision or certainty to

(empirical) prior beliefs about hidden trajectories.

Perhaps a relative loss of certainty about top-down predictions

could also explain the ability of schizophrenics to respond to

unpredicted changes in direction of the target. To explore this

possibility, we removed the occluder, decreased the target period

to 32 time bins, and introduced an unexpected reversal in the

motion of the target – at the beginning of the second cycle of

motion (at around 780 ms). We then repeated the simulations

using a normal generative model and the generative model with a

second level precision deficit of 24 (a greater precision deficit is

required to demonstrate effects when occluders are absent,

because sensory precision is relatively high). The results of the

simulations are shown in Figure 5, in terms of the angular

displacements and velocities shown in the previous figure. The

traces in black correspond to normal pursuit and the traces in red

show the performance under reduced precisions. Although the

effect is small (as it is in real subjects [5]), the schizophrenic

simulation (red lines) shows more accurate pursuit performance,

Figure 4. Smooth pursuit of a partially occluded target with and without high-level precision. The panels of this figure show the results
of the previous in a different format: the upper left panel shows the responses of each of the (17) photoreceptors in image format as a function of
peristimulus time. This shows the small fluctuations in signal that are due to imperfect pursuit and consequent retinal slip at the onset of target
motion. Later, during periods of occlusion, the sensory input disappears. The lower panels show the angular displacement (top) and velocity (bottom)
of the target (solid lines) and eye (broken lines) as a function of peristimulus time. The grey area corresponds to the period of visual occlusion. The
equivalent results – when the precisions of prediction errors on the motion of hidden states at the second level were reduced from a log precision of
21 to 21.25 – are shown in the upper right panel and as red broken lines in the lower panels. The broken horizontal line in the lower panel
corresponds to an angular velocity (30u/s) at which the eye movement could be considered saccadic. Please refer to the main text for a detailed
description.
doi:10.1371/journal.pone.0047502.g004
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both in terms of the displacement between the target and centre of

gaze and in terms of a slight reduction in the peak velocity during

the compensatory eye movement – a movement that is nearly fast

enough to be a saccade. These differences are highlighted by pink

circles.

Summary
In summary, a single manipulation – that has some construct

validity, in relation to the pathophysiology of schizophrenia – can

account for both impaired smooth pursuit eye movements during

occlusion and the paradoxical improvement of responses to

unpredictable changes in target direction. This dissociation makes

perfect sense from the point of view of the computational anatomy

we have modelled here – reducing synaptic gain (precision) at high

levels of a hierarchical Bayesian inference or predictive coding

scheme reduces confidence in predictions that impairs perfor-

mance when these predictions are needed (during occlusion) and

that improves performance when they are not (during unpredicted

motion). In the simulations so far, we have assumed that the top-

down predictions are veridical and that all the simulated subjects

have properly inferred that the period of sinusoidal motion. In the

final section, we look at how these beliefs are acquired:

Acquiring prior beliefs
In this section, we briefly show that this Bayes optimal scheme

can easily infer the dynamics of target motion through optimising

its conditional expectation about the frequency of periodic motion.

This can be regarded as an experience-dependent accumulation of

evidence about the periodicity of target movement, during

repeated exposure to the trajectory. This is a fairly difficult

problem to solve, because active inference is actually changing the

sensory samples at a timescale that is fairly close to the periodicity

that needs to be inferred. However, if we accumulate information

sufficiently slowly – by placing appropriately informative priors on

the hidden causes at the second level – then we can use predictive

coding to establish posterior beliefs about statistical regularities in

target motion that can then be used as prior beliefs for subsequent

trials.

To simulate this experience-dependent inference, we simply

repeated the simulation of periodic motion in the absence of an

occluder. To model a subject who anticipated sinusoidal motion

but had no expectations about its frequency, we increased the log

precision on the (second level) hidden states encoding the

sinusoidal motion (from minus one to three), and reduced the

log precision on the (second level) hidden cause encoding the

frequency of periodic motion (from minus one to minus four), with

a prior expectation of zero. The left-hand panels of Figure 6 show

the results of this simulation using same format as Figure 4. It can

be seen that pursuit performance is virtually the same as it was

under visual occlusion. The key difference here is that the hidden

states at the second level only attain the correct amplitude after

nine cycles of motion. This is accompanied by a slow rise in the

hidden causes at the third level (blue line) to the true level (broken

black line) shown in the pink circle on the lower left – this is the

inferred frequency of periodic motion. This slow rise reflects the

evidence accumulation and optimisation of the posterior or

conditional expectation about the periodicity of motion as more

and more sensory evidence becomes available. Note that there is

no discernible improvement in performance – afforded by

recognising periodic motion – because the target is visible at all

times and provides precise visual information. However, as we

have seen the previous section, a failure to properly infer periodic

motion can produce profound deficits during visual occlusion.

The key question now is whether the 3 log unit deficit in

precision used in the previous section to reproduce the behavioural

deficits seen in schizophrenia, also accounts for a failure to infer or

recognise periodic target motion. As noted above, schizophrenics

seem to have particular difficulty in recognising and exploiting

statistical regularities with consequent failures of SPEM relative to

control subjects after, and only after, exposure to repeated

movement trajectories [6]. The right-hand panels of Figure 6

show the results of the same simulation of experience-dependent

inference reported in the left panels but using the generative model

with reduced precision. Crucially, this simulated lesion completely

abolishes the evidence accumulation and consequent inference

about periodic motion (pink circle on the right).

Summary
There is some evidence to suggest that schizophrenics are

unable to recognise or make inferences about target trajectories, in

the context of smooth pursuit eye movements. The simulation

results in this section suggest that these inferences are confounded

by the same reduction in precision used to simulate schizophrenic

pathophysiology in the previous section. The mechanism here is

Figure 5. Smooth pursuit with an unexpected trajectory
change, with and without high-level precision. This figure reports
the results of simulations using an occluded periodic motion with a
reversal in the direction of the trajectory at the beginning of the second
cycle (plain black line). The broken traces in black correspond to normal
pursuit and the broken traces in red show the performance under
reduced precision. Although the effect is small, the low precision
simulation shows more accurate pursuit performance, both in terms of
the displacement between the target and centre of gaze and in terms
of a slight reduction in the peak velocity during the compensatory eye
movement (pink circles).
doi:10.1371/journal.pone.0047502.g005
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quite straightforward – Bayesian updates to the hidden causes at

the third level are mediated by precise prediction errors from the

second. Reducing the precision of these prediction errors subverts

this inference by reducing the potency of bottom up prediction

errors and the rate of evidence accumulation.

Discussion

In this paper, we have considered optimal oculomotor control in

the context of smooth pursuit eye movements and visual occlusion.

In particular, we have taken a Bayesian perspective on optimality

and have simulated various aspects of smooth pursuit using active

inference. Active inference depends upon a generative model of

stimulus trajectories and their active sampling through eye

movement. This requires a careful consideration of the generative

models that might be embodied by the visual-oculomotor system

and the sorts of behaviours one would expect to see under these

models. We hope to have shown that the sorts of anticipatory eye

movements seen in visual occlusion paradigms can be reproduced

using simulations of active inference with hierarchical models.

Crucially, these models enable hidden trajectories to be repre-

sented and updated dynamically during periods of visual occlusion

– and thereby inform anticipatory eye movements. We considered

how one might model the pathophysiology of disorders like

schizophrenia and account for the particular deficits shown by

schizophrenics in terms of smooth pursuit eye movements. In brief,

we have seen that a single change – a reduction in the precision or

certainty with which high-level beliefs about target motion are

held – provides a unifying explanation for performance deficits

and paradoxical advantages – and a failure to infer contextual

constraints or regularities that would otherwise improve perfor-

mance.

Crucially, this single change is not implausible, given current

understanding about the synaptic pathologies implicated in

schizophrenia. We have described elsewhere how precision is

encoded by synaptic gain of prediction error units in neuronal

models of predictive coding [1,71]. This suggests that a reduction

in high-level precision could be associated with abnormalities of

the synaptic gain of superficial pyramidal cells in higher cortical

areas, such as prefrontal cortex (PFC). Abnormalities in two

crucial determinants of synaptic gain in the PFC have long been

implicated in schizophrenia: dopaminergic activity [76] and

NMDA receptor function [45]. Dopaminergic and NMDA

receptors have complex and interacting roles in prefrontal cortex:

D1 receptor activation potentiates the slowly decaying and

voltage-dependent NMDA receptor conductance, whereas D2

Figure 6. Failure to infer high-level causes when precision is low. This figure shows the results of simulating numerous cycles of periodic
motion starting with a prior expectation about its frequency of zero. The panels on the left show the results of a simulation with normal precision,
while the right panels present the equivalent results under lower precision. These panels use the same format as Figure 3, including time which is
measured in 16 ms bins. The key result here is a failure to infer the true level (broken black lines in the lower left panels) of the hidden cause at the
highest level (blue lines) when precision is low (pink circles).
doi:10.1371/journal.pone.0047502.g006
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receptors have the opposite effect – and a large literature shows

how the balance of D1 and D2 receptor activity could affect the

stability of attractor networks subserving working memory in PFC;

e.g. [77–80]. These biophysically informed models have shown

how D1 activity can reinforce currently active cell assemblies

whilst inhibiting the formation of new ones, and conversely D2

activity makes cell assemblies more flexible but much more

unstable and vulnerable to noise. This is precisely the effect of

reducing precision in the simulations above – rendering high-level

dynamics less stable and susceptible to other sources of prediction

error.

Building on the work of Weinberger and Goldman-Rakic

[81,82], another literature has evolved in parallel, modelling how

abnormalities of synaptic gain in this system could account for

many symptoms of schizophrenia. For example, Braver and

colleagues used a connectionist model to show how a noisy

dopamine signal could reproduce typical schizophrenic impair-

ments on the Continuous Performance Task (CPT) [83]. They

established this by increasing the variability of the gain with which

cue inputs drive PFC context units – that maintain a short-term

memory of the preceding cue for comparison with the current cue.

Durstewitz and Seamans point out that most accounts of psychosis

implicate higher D2 activity and hence a fragile and dysfunctional

working memory and the other dysexecutive problems associated

with the ‘disorganized’ syndrome [84]; although they add that

higher D1 activity – secondary to D1 receptor upregulation due to

chronic hypodopaminergia in PFC [85] could cause perseveration

and disengagement from motivational processes characteristic of

the ‘negative’ syndrome. Lastly, Rolls and colleagues used a

dynamical-systems framework to show how NMDA receptor

hypofunction could cause unstable attractor networks in different

areas of PFC, accounting for both cognitive symptoms (in

dorsolateral PFC) and negative symptoms (in orbitofrontal or

anterior cingulate cortex) [86].

Clearly, there are many aspects of oculomotor control and

schizophrenic pathophysiology we have ignored in this theoretical

work. For example, we have not addressed the general reduction

in oculomotor gain seen in schizophrenia prior to – or in the

absence of – occlusion. Non-specific effects of this sort can be

reproduced fairly easily, by reducing the precision at lower levels

of the hierarchy (results not shown). We will pursue this in future

work using visual targets that are degraded with high levels of

sensory noise. Here, we have chosen to focus on the profound and

specific deficits disclosed by visual occlusion. Another outstanding

area is the relationship between our active inference scheme and

previous models of oculomotor control. There is a slight

disconnect between active inference and classical models based

upon optimal control theory (e.g. [17]). This is because classical

models rely upon a cost or value function to specify optimal

trajectories. Active inference does not fall into this class of models

and does not require (user-specified) cost functions. Having said

this, there are some formal similarities between the optimal control

models and active inference – most notably the use of prediction

errors and state estimation. See [87] for a fuller discussion.

To conclude, we hope to have shown that reducing the

precision at high levels in a neurobiologically plausible hierarchical

inference scheme can reproduce some of the key schizophrenic

abnormalities of SPEM. We have demonstrated elsewhere (see

Table 1) that this model of brain function (based on generalised

filtering) is plausible and accounts for a wide variety of neuronal

processes and electrophysiological data. We argued that reducing

the high-level precision in this model – and hence its ability to

specify high-level predictions of the sensorium – is a realistic model

of schizophrenic pathology for both conceptual reasons (outlined

in the second section) and for the pathophysiological reasons

outlined above. The former include the close parallels between this

model and other theories of psychosis based on failures of

prediction; e.g., Frith’s account of passivity, reduced susceptibility

to illusions, differences in conditioning performance and electro-

physiological potentials and more recent Bayesian accounts; the

latter include the dopaminergic and NMDA receptor mediated

failures of prefrontal synaptic gain, which underpin many other

theories of schizophrenic symptoms. The associated functional

reduction in high-level precision – during hierarchical inference –

reproduced various characteristic schizophrenic SPEM abnormal-

ities: the reduction of gain during target occlusion, the poor

learning of target trajectories, and the slightly improved tracking of

unexpected changes in trajectory.

Further challenges remain. Among them is to use this model as

the basis for a dynamic causal model [88] of MEG signals and

simultaneous eye movement data from normal subjects perform-

ing smooth pursuit in the presence of occluders. If possible, we

shall also attempt to model the data generated by schizophrenics

and normal subjects undergoing pharmacological manipulations,

and – from the consequent changes in model parameters – we

ought to be able to make specific inferences about how synaptic

function differs in schizophrenia and how this impacts upon both

connectivity between brain regions [47] and the process of

inference itself [89].
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