Principles and psychophysics of Active Inference in anticipating a dynamic probabilistic bias
Laurent Perrinet
, ChloƩ Pasturel and Anna Montagnini
Probabilities and Optimal Inference to Understand the Brain
, 5/4/2018
Acknowledgements:
Berk Mirza, Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
Jean-Bernard Damasse, Laurent Madelain - ANR REM
http://invibe.net/LaurentPerrinet/Presentations/2018-04-05_BCP_talk
Principles and psychophysics of Active Inference in anticipating a dynamic probabilistic bias
Laurent Perrinet
, ChloƩ Pasturel and Anna Montagnini
Probabilities and Optimal Inference to Understand the Brain
, 5/4/2018
Acknowledgements:
Berk Mirza, Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
Jean-Bernard Damasse, Laurent Madelain - ANR REM
Outline
Motivation
Raw psychophysical results
The Bayesian Changepoint Detector
Results using the BCP
Motivation - Eye Movements
Montagnini A, Souto D, and Masson GS (2010)
J Vis (VSS Abstracts) 10(7):554
,
Montagnini A, Perrinet L, and Masson GS (2015)
BICV book chapter
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Eye Movements
Motivation - Random-length block design
Motivation - Random-length block design
Outline
Motivation
Raw psychophysical results
The Bayesian Changepoint Detector
Results using the BCP
Raw psychophysical results - Random-length block design
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results - Fitting eye movements
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results - Fitting eye movements
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results
full code @
github.com/chloepasturel/AnticipatorySPEM
Raw psychophysical results
full code @
github.com/chloepasturel/AnticipatorySPEM
Outline
Motivation
Raw psychophysical results
The Bayesian Changepoint Detector
Results using the BCP
The Bayesian Changepoint Detector - Random-length block design
full code @
github.com/chloepasturel/AnticipatorySPEM
The Bayesian Changepoint Detector
Initialize $P(r_0=0)=1$ and $Ī½^{(0)}_1 = Ī½_{prior}$ and $Ļ^{(0)}_1 = Ļ_{prior}$
The Bayesian Changepoint Detector
Observe New Datum $x_t$ and Perform Prediction $P (x_{t+1} | x_{1:t}) = P (x_{t+1}|x_{1:t} , r_t) \cdot P (r_t|x_{1:t})$
The Bayesian Changepoint Detector
Evaluate (likelihood) Predictive Probability $Ļ_{1:t} = P(x_t |Ī½^{(r)}_t,Ļ^{(r)}_t)$
Calculate Growth Probabilities $P(r_t=r_{t-1}+1, x_{1:t}) = P(r_{t-1}, x_{1:t-1}) \cdot Ļ^{(r)}_t \cdot (1āh))$
Calculate Changepoint Probabilities $P(r_t=0, x_{1:t})= \sum_{r_{t-1}} P(r_{t-1}, x_{1:t-1}) \cdot Ļ^{(r)}_t \cdot h$
The Bayesian Changepoint Detector
Calculate Evidence $P(x_{1:t}) = \sum_{r_{t-1}} P (r_t, x_{1:t})$
Determine Run Length Distribution $P (r_t | x_{1:t}) = P (r_t, x_{1:t})/P (x_{1:t}) $
The Bayesian Changepoint Detector
Update Sufficient Statistics :
$Ī½^{(r+1)}_{t+1} = Ī½^{(r)}_{t} +1$, $Ļ^{(r+1)}_{t+1} = Ļ^{(r)}_{t} + u(x_t)$
$Ī½^{(0)}_{t+1} = Ī½_{prior}$, $Ļ^{(0)}_{t+1} = Ļ_{prior}$
Bayesian Changepoint Detector
Initialize
$P(r_0=0)=1$ and
$Ī½^{(0)}_1 = Ī½_{prior}$ and $Ļ^{(0)}_1 = Ļ_{prior}$
Observe New Datum $x_t$
Evaluate Predictive Probability $Ļ_{1:t} = P(x_t |Ī½^{(r)}_t,Ļ^{(r)}_t)$
Calculate Growth Probabilities $P(r_t=r_{t-1}+1, x_{1:t}) = P(r_{t-1}, x_{1:t-1}) \cdot Ļ^{(r)}_t \cdot (1āH(r^{(r)}_{t-1}))$
Calculate Changepoint Probabilities $P(r_t=0, x_{1:t})= \sum_{r_{t-1}} P(r_{t-1}, x_{1:t-1}) \cdot Ļ^{(r)}_t \cdot H(r^{(r)}_{t-1})$
Calculate Evidence $P(x_{1:t}) = \sum_{r_{t-1}} P (r_t, x_{1:t})$
Determine Run Length Distribution $P (r_t | x_{1:t}) = P (r_t, x_{1:t})/P (x_{1:t}) $
Update Sufficient Statistics :
$Ī½^{(0)}_{t+1} = Ī½_{prior}$, $Ļ^{(0)}_{t+1} = Ļ_{prior}$
$Ī½^{(r+1)}_{t+1} = Ī½^{(r)}_{t} +1$, $Ļ^{(r+1)}_{t+1} = Ļ^{(r)}_{t} + u(x_t)$
Perform Prediction $P (x_{t+1} | x_{1:t}) = P (x_{t+1}|x_{1:t} , r_t) \cdot P (r_t|x_{1:t})$
go to (2)
The Bayesian Changepoint Detector
full code @
github.com/laurentperrinet/bayesianchangepoint
The Bayesian Changepoint Detector - Full model
full code @
github.com/laurentperrinet/bayesianchangepoint
The Bayesian Changepoint Detector - Fixed window
full code @
github.com/laurentperrinet/bayesianchangepoint
Outline
Motivation
Raw psychophysical results
The Bayesian Changepoint Detector
Results using the BCP
Results using the BCP - Full model
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - Full model
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - Full model
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - Fixed window
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - Fixed window
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - Fixed window
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - fit with BCP
Results using the BCP - fit with BCP
Results using the BCP
full code @
github.com/laurentperrinet/bayesianchangepoint
Results using the BCP - Fixed window
Results using the BCP - Full model
Principles and psychophysics of Active Inference in anticipating a dynamic probabilistic bias
Laurent Perrinet
, ChloƩ Pasturel and Anna Montagnini
Probabilities and Optimal Inference to Understand the Brain
, 5/4/2018
Acknowledgements:
Berk Mirza, Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
Jean-Bernard Damasse, Laurent Madelain - ANR REM