Principles and psychophysics of Active Inference in anticipating a dynamic probabilistic bias

Laurent Perrinet, ChloƩ Pasturel and Anna Montagnini

Probabilities and Optimal Inference to Understand the Brain, 5/4/2018

Acknowledgements:

  • Berk Mirza, Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
  • Jean-Bernard Damasse, Laurent Madelain - ANR REM


http://invibe.net/LaurentPerrinet/Presentations/2018-04-05_BCP_talk

Principles and psychophysics of Active Inference in anticipating a dynamic probabilistic bias

Laurent Perrinet, ChloƩ Pasturel and Anna Montagnini

Probabilities and Optimal Inference to Understand the Brain, 5/4/2018

Acknowledgements:

  • Berk Mirza, Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
  • Jean-Bernard Damasse, Laurent Madelain - ANR REM

Outline

  1. Motivation

  2. Raw psychophysical results
  3. The Bayesian Changepoint Detector
  4. Results using the BCP

Motivation - Eye Movements

Montagnini A, Souto D, and Masson GS (2010) J Vis (VSS Abstracts) 10(7):554,
Montagnini A, Perrinet L, and Masson GS (2015) BICV book chapter

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Eye Movements

Motivation - Random-length block design

Motivation - Random-length block design

Outline

  1. Motivation
  2. Raw psychophysical results

  3. The Bayesian Changepoint Detector
  4. Results using the BCP

Raw psychophysical results - Random-length block design

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results - Fitting eye movements

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results - Fitting eye movements

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results

full code @ github.com/chloepasturel/AnticipatorySPEM

Raw psychophysical results

full code @ github.com/chloepasturel/AnticipatorySPEM

Outline

  1. Motivation
  2. Raw psychophysical results
  3. The Bayesian Changepoint Detector

  4. Results using the BCP

The Bayesian Changepoint Detector - Random-length block design

full code @ github.com/chloepasturel/AnticipatorySPEM

The Bayesian Changepoint Detector

Initialize $P(r_0=0)=1$ and $Ī½^{(0)}_1 = Ī½_{prior}$ and $Ļ‡^{(0)}_1 = Ļ‡_{prior}$

The Bayesian Changepoint Detector

Observe New Datum $x_t$ and Perform Prediction $P (x_{t+1} | x_{1:t}) = P (x_{t+1}|x_{1:t} , r_t) \cdot P (r_t|x_{1:t})$

The Bayesian Changepoint Detector

Evaluate (likelihood) Predictive Probability $Ļ€_{1:t} = P(x_t |Ī½^{(r)}_t,Ļ‡^{(r)}_t)$
Calculate Growth Probabilities $P(r_t=r_{t-1}+1, x_{1:t}) = P(r_{t-1}, x_{1:t-1}) \cdot Ļ€^{(r)}_t \cdot (1āˆ’h))$
Calculate Changepoint Probabilities $P(r_t=0, x_{1:t})= \sum_{r_{t-1}} P(r_{t-1}, x_{1:t-1}) \cdot Ļ€^{(r)}_t \cdot h$

The Bayesian Changepoint Detector

Calculate Evidence $P(x_{1:t}) = \sum_{r_{t-1}} P (r_t, x_{1:t})$
Determine Run Length Distribution $P (r_t | x_{1:t}) = P (r_t, x_{1:t})/P (x_{1:t}) $

The Bayesian Changepoint Detector

Update Sufficient Statistics :
$Ī½^{(r+1)}_{t+1} = Ī½^{(r)}_{t} +1$, $Ļ‡^{(r+1)}_{t+1} = Ļ‡^{(r)}_{t} + u(x_t)$
$Ī½^{(0)}_{t+1} = Ī½_{prior}$, $Ļ‡^{(0)}_{t+1} = Ļ‡_{prior}$

Bayesian Changepoint Detector

  1. Initialize
    • $P(r_0=0)=1$ and
    • $Ī½^{(0)}_1 = Ī½_{prior}$ and $Ļ‡^{(0)}_1 = Ļ‡_{prior}$
  2. Observe New Datum $x_t$
  3. Evaluate Predictive Probability $Ļ€_{1:t} = P(x_t |Ī½^{(r)}_t,Ļ‡^{(r)}_t)$
  4. Calculate Growth Probabilities $P(r_t=r_{t-1}+1, x_{1:t}) = P(r_{t-1}, x_{1:t-1}) \cdot Ļ€^{(r)}_t \cdot (1āˆ’H(r^{(r)}_{t-1}))$
  5. Calculate Changepoint Probabilities $P(r_t=0, x_{1:t})= \sum_{r_{t-1}} P(r_{t-1}, x_{1:t-1}) \cdot Ļ€^{(r)}_t \cdot H(r^{(r)}_{t-1})$
  6. Calculate Evidence $P(x_{1:t}) = \sum_{r_{t-1}} P (r_t, x_{1:t})$
  7. Determine Run Length Distribution $P (r_t | x_{1:t}) = P (r_t, x_{1:t})/P (x_{1:t}) $
  8. Update Sufficient Statistics :
    • $Ī½^{(0)}_{t+1} = Ī½_{prior}$, $Ļ‡^{(0)}_{t+1} = Ļ‡_{prior}$
    • $Ī½^{(r+1)}_{t+1} = Ī½^{(r)}_{t} +1$, $Ļ‡^{(r+1)}_{t+1} = Ļ‡^{(r)}_{t} + u(x_t)$
  9. Perform Prediction $P (x_{t+1} | x_{1:t}) = P (x_{t+1}|x_{1:t} , r_t) \cdot P (r_t|x_{1:t})$
  10. go to (2)

The Bayesian Changepoint Detector

full code @ github.com/laurentperrinet/bayesianchangepoint

The Bayesian Changepoint Detector - Full model

full code @ github.com/laurentperrinet/bayesianchangepoint

The Bayesian Changepoint Detector - Fixed window

full code @ github.com/laurentperrinet/bayesianchangepoint

Outline

  1. Motivation
  2. Raw psychophysical results
  3. The Bayesian Changepoint Detector
  4. Results using the BCP

Results using the BCP - Full model

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - Full model

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - Full model

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - Fixed window

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - Fixed window

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - Fixed window

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - fit with BCP

Results using the BCP - fit with BCP

Results using the BCP

full code @ github.com/laurentperrinet/bayesianchangepoint

Results using the BCP - Fixed window

Results using the BCP - Full model

Principles and psychophysics of Active Inference in anticipating a dynamic probabilistic bias

Laurent Perrinet, ChloƩ Pasturel and Anna Montagnini

Probabilities and Optimal Inference to Understand the Brain, 5/4/2018

Acknowledgements:

  • Berk Mirza, Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
  • Jean-Bernard Damasse, Laurent Madelain - ANR REM